
An Improved Approximation Algorithm for the
Traveling Tournament Problem with Maximum
Trip Length Two∗

Mingyu Xiao1 and Shaowei Kou2

1 University of Electronic Science and Technology of China, Chengdu, China
myxiao@gmail.com

2 University of Electronic Science and Technology of China, Chengdu, China
kou_sw@163.com

Abstract
The Traveling Tournament Problem is a complex combinatorial optimization problem in tourna-
ment timetabling, which asks a schedule of home/away games meeting specific feasibility require-
ments, while also minimizing the total distance traveled by all the n teams (n is even). Despite
intensive algorithmic research on this problem over the last decade, most instances with more
than 10 teams in well-known benchmarks are still unsolved. In this paper, we give a practical ap-
proximation algorithm for the problem with constraints such that at most two consecutive home
games or away games are allowed. Our algorithm, that generates feasible schedules based on
minimum perfect matchings in the underlying graph, not only improves the previous approxima-
tion ratio from (1 + 16/n) to about (1 + 4/n) but also has very good experimental performances.
By applying our schedules on known benchmark sets, we can beat all previously-known results
of instances with n being a multiple of 4 by 3% to 10%.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sports scheduling, Traveling Tournament Problem, Approximation Al-
gorithms, Timetabling Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.89

1 Introduction

In the field of tournament timetabling, the Traveling Tournament Problem is a well-known
and practically difficult optimization problem inspired by Major League Baseball. This
problem asks for a double round-robin schedule that minimizes the sum of distances traveled
by all teams. Since the first introduction of this problem [6], several variants have been
proposed, with a significant amount of research [13, 16]. Before introducing more background,
we give the precise definition of the Traveling Tournament Problem.

The Traveling Tournament Problem (TTP-k):
Input:An n × n distance matrix D to indicate the distance between each pair of n

teams, and an integer k;
Output:A double round-robin tournament on the n teams such that the total distance
traveled by all the teams is minimized, subject to the following three conditions:

∗ This work is supported by National Natural Science Foundation of China, under the grant 61370071,
and the Fundamental Research Funds for the Central Universities, under the grant ZYGX2015J057.

© Mingyu Xiao and Shaowei Kou;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 89; pp. 89:1–89:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922500?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.89
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

89:2 An Improved Approximation Algorithm for TTP-2

each-venue: Each pair of teams plays twice, once in each other’s home venue.
at-most-k: No team may have a home stand or a road trip lasting more than k

games.
no-repeat: A team cannot play against the same opponent in two consecutive
games.

When calculating the total distance, we assume that each team begins the tournament at
home and returns home after playing its last away game. Furthermore, whenever a team
has a road trip consisting of multiple away games, the team does not return to its home
city but rather proceeds directly to its next away venue. There are two commonly used
assumptions: each team has a game scheduled on each time slot with no time slots off and
then the number n of teams must be even. The distances in D satisfy symmetry and triangle
inequality, i.e.,Di,j = Dj,i and Di,j ≤ Di,h + Dh,j for all i, j, h. We also require that Di,i = 0
for each i.

The integer k in the input defines the tradeoff between distance traveled and the length
of the home stands and road trips. For the case that k =∞, there is no constraint on the
number of consecutive home stands or road trips and a team can be scheduled with its
traveling length as short as that of the traveling salesman tour of the cities. The smaller k,
the more often teams have to return to their home cities.

TTP-k can be regarded as a variant of the well-known Traveling Salesman Problem.
The NP-hardness of TTP-k with k = ∞ or k = 3 has been proved [17, 2]. There is a
large number of contributions on approximation algorithms [22, 12, 15, 21, 11] and heuristic
algorithms [7, 14, 1, 5, 9].

There is an online set of benchmark data sets [19] with the list of best-known results for
TTP-3. For most benchmark problems, instances are often completely solved or improved
after weeks of computation on high-performance machines using parallel computing, see,
e.g. [20]. Since the search space of TTP-k is very large, no instance with more than 10 teams
in [19] has been completely solved even on high-performance machines. Goerigk et al. [9]
used a technique of packing P3 paths to find feasible solutions as initial inputs for some
hybrid algorithms and then improved five benchmark instances of TTP-3. New techniques
become more important to get further improvements.

In this paper, we focus on TTP-2. TTP-2 was first mentioned by Campbell and Chen [3],
who scheduled a basketball conference of ten teams. In this problem, all away trips consist
of either a single team or pairs of teams. It is reasonable that each team has at most two
consecutive home stands or road trips in practice. In a schedule, we hope that home stands
and road trips alternate as regularly as possible for each team. We can see that the perfect
schedule with k = 1 can not be achieved [4]. It is natural to consider TTP-2. However,
compared to the case that k ≥ 3, TTP-2 did not attract much attention. A significant
contribution to approximation algorithms for TTP-2 is due to Thielen and Westphal [18].
They first gave an approximation algorithm with ratio 3/2 + O(1/n) and then improved the
ratio to 1 + 16/n for the case that n ≥ 12 and n is a multiple of 4. Their algorithms also get
the current best results on the benchmark instances listed on the website [19].

The main contribution of this paper is an improved approximation algorithm for TTP-2.
Our algorithm generates a feasible solution to TTP-2 for n being a multiple of 4 with a
traveling distance at most (1 + 2/(n− 2) + 2/n) times of the optimal distance, improving the
previous approximation ratio of (1 + 16/n) by an addition of almost 12/n. Our algorithm
takes only 2.6 seconds on a standard laptop to compute all the instances with n being a
multiple of 4 (half of all the benchmark instances) in the benchmark [19], and beat the
previously best-known upper bounds by 3% to 10%.

M. Xiao and S. Kou 89:3

it

3t

1t

2t

4t

Figure 1 the itinerary graph of team ti.

The remaining parts of the paper are organized as follows: We first introduce a simple
lower bound of the problem, then introduce our methods of constructing schedule, and
finally prove the approximation ratio and demonstrate the performance of the algorithm on
benchmark instances.

2 A Lower Bound

Most lower bounds for the Traveling Tournament Problem are obtained by a relaxation
technique called “independent”. It is to compute the minimum distance of a “feasible”
traveling for each team independently and then sum all of them together to get a bound.
Here “feasible” means that the traveling satisfies the three conditions in the definition of
TTP-k. This bound is known as the “independent lower bound”.

The independent lower bound for TTP-2 was firstly obtained by Campbell and Chen [3].
It can be computed by finding a minimum perfect matching in a complete undirected graph
G on the set of teams with edge weight being the distance between the homes of two teams.
By triangle inequality, we know that an optimal feasible traveling for a team contains at
most one away trip of a single team and all other away trips of a pair of teams. According to
the definition of the problem, the number n of teams is even. So each team contains exactly
one away trip consisting of a single site (team) and all other away trips consisting of a pair
of sites (teams). The itinerary graph of a team ti is as shown in Figure 1.

Each team ti must travel to or from each other team for at least once. See the light lines
in Figure 1. The total length of all light lines is a constant. It is the total distance from a
team ti to all other teams, which is also denoted by Di. We have that Di =

∑
j 6=i Di,j .

The dark lines in Figure 1 form a perfect matching of G. We use M to denote a minimum
perfect matching (a perfect matching with minimum total edge weight) of G and use DM to
denote the total edge weight of M . We can observe that the traveling distance of team ti is
at least

LBi = Di + DM ,

which is called the independent lower bound for team ti. We use DG to denote the sum of the
weights of all edges in G. A lower bound for the Traveling Tournament Problem, obtained
by summing up the independent lower bound of each team, is given as follows.

LB =
n∑

i=1
LBi =

n∑
i=1

(Di + DM) = 2DG + nDM . (1)

If we can find a feasible tournament schedule such that all teams achieve the independent
lower bound synchronously, then the Traveling Tournament Problem is solved optimally.
However, it is impossible for all teams to reach the independent lower bound synchronously
in any feasible tournament schedule [18]. It is also worthy to mention that for k ≥ 3 it is

MFCS 2016

89:4 An Improved Approximation Algorithm for TTP-2

even NP-hard to compute the independent lower bound for a team, since it will involve the
problem of finding an optimal k-path packing in a graph.

3 Techniques for Construction

It is nontrivial to obtain a feasible tournament schedule for TTP-2 even without considering
the traveling distance. “Expander construction” is an effective method used to construct
feasible schedules for TTP-3 [10, 9]. We will modify this method for TTP-2 to construct
an initial solution. After obtaining a feasible tournament schedule, we use some techniques
based on minimum perfect matchings to arrange the order of teams and then we can obtain
a solution with the traveling distance quite near to the independent lower bound.

To make the traveling distance small, we hope that an away trip of a team consists of a
pair in a minimum perfect matching of G. This gives us an idea to consider the teams in the
tournament as pairs corresponding to a minimum perfect matching. After scheduling the
pairs, we “expand” by replacing each pair with two original teams to get the final schedule.
This is the main idea of the initial construction.

The construction contains two steps. Step 1 is to create a single round-robin tournament
Um on m = n/2 teams (each of which will represent a pair of original teams). Step 2 is to
expand Um to a double round-robin tournament Zn on n teams. Note that the construction
only works for m = n/2 being even, i.e., n ≡ 0 (mod 4). Next, we always assume that m is
even.

Step 1. Constructing a single round-robin tournament Um: The single round-robin
tournament Um on m teams is built by using a variation of the Modified Circle Method [8, 10].
We use {u1, u2, · · · , um−1, x} to denote the m teams. Each team plays with each of the other
m − 1 teams on m − 1 time slots according to the following rule: for each 1 ≤ i ≤ m − 1,
team ui plays with team uj on time slot r such that

r − i ≡ j − 1 (mod m− 1),

where we interpret the case that a team ui plays with itself as that ui plays with team x on
the time slot. This assignment can guarantee a feasible schedule, i.e., each of the m teams
plays with another team on each of the m− 1 time slots.

The construction is not finished yet. We still designate a home team and a road team for
each game not involving team x: for each 1 ≤ i ≤ m/2, ui plays only road games until it
meets team x, before finishing the remaining games at home; for each m/2 + 1 ≤ i ≤ m− 1,
we have the opposite scenario, where ui plays only home games until it meets team x, before
finishing the remaining games on the road. Please see Table 1 for an illustration of the single
round-robin schedule with m = 8, where items in bold font indicate that the corresponding
teams (on the left of the table) are home teams in this game.

Step 2. Constructing a double round-robin tournament Zn: We have four substeps to
construct a double round-robin tournament Zn on n teams from the single round-robin
tournament Um on m = n/2 teams. Recall that each team ui in Um is represented with a
pair of original teams in the tournament. So we will replace ui (where x is interpreted as
um) with two original teams {t2i−1, t2i} in this step. Thus, the set of the original n teams in
Zn is denoted by {t1, t2, ..., tn−1, tn}.

In Um, a game on the last time slot is called a last game and a game not on the last time
slot is called a normal game. To construct Zn, we distinguish four kinds of games in Um

according to the game being a last game or not and involving team x or not.

M. Xiao and S. Kou 89:5

Table 1 The single round-robin construction for m = 8.

1 2 3 4 5 6 7
u1 xO u2 u3 u4 u5 u6 u7

u2 u7 u1 xO u3 u4 u5 u6

u3 u6 u7 u1 u2 xO u4 u5

u4 u5 u6 u7 u1 u2 u3 xO
u5 u4 xO u6 u7 u1 u2 u3

u6 u3 u4 u5 xO u7 u1 u2

u7 u2 u3 u4 u5 u6 xO u1

x u1 u5 u2 u6 u3 u7 u4

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

Time slot: 4 3r 4 2r 4 1r 4r

Figure 2 Expansion of Case 1.

Table 2 Expanding a game of Case 1.

4r −3 4r −2 4r −1 4r

t2i−1 t2j−1 t2j t2j−1 t2j

t2i t2j t2j−1 t2j t2j−1

t2j−1 t2i−1 t2i t2i−1 t2i

t2j t2i t2i−1 t2i t2i−1

Case 1. Normal games not involving team x: We consider a game in Um, where a home
team ui plays against a road team uj on time slot r (1 ≤ i, j ≤ m− 1 and 1 ≤ r ≤ m− 2).
We will expand this game to 2 × 4 = 8 games on four consecutive time slots in Zn. The
corresponding four time slots are from 4r − 3 to 4r. Recall that ui will be replaced with
{t2i−1, t2i} and uj will be replaced with {t2j−1, t2j}. Figure 2 demonstrates how the four
teams play on the four time slots, where an arc from a to b means a road team a playing
against a home team b.

The eight games in Figure 2 determine 16 items in Zn, which correspond to the eight
games between four teams {t2i−1, t2i, t2j−1, t2j} on the four time slots from 4r− 3 to 4r. The
matching assignments in Zn are presented in Table 2.

Note that in this scheduling, each of {t2i−1, t2i} has an away trip consisting of two teams
in {t2j−1, t2j}, and also each of {t2j−1, t2j} has an away trip consisting of two teams in
{t2i−1, t2i}. Furthermore, there is no conflict to assign the games in Zn corresponding to all
games of Case 1 in Um, i.e., the three conditions in the definition of TTP-k hold.

Case 2. Normal games involving team x: We consider a game in Um, where a team ui

plays against the team x in time slot r (1 ≤ i ≤ m− 1 and 1 ≤ r ≤ m− 2). For the purpose
of presentation, we use x1 and x2 to denote the two teams in Zn corresponding to x, i.e.,
x1 = tn−1 and x2 = tn. We also expand this game to 2× 4 = 8 games on four consecutive
time slots in Zn. However, the expansions are different according to the time slot r being
odd or even.

MFCS 2016

89:6 An Improved Approximation Algorithm for TTP-2

2 1it

2it

1x

2x

2 1it

2it

1x

2x

2 1it

2it

1x

2x

2 1it

2it

1x

2x

Time slot: 4 3r 4 2r 4 1r 4r

Figure 3 Expansion of Case 2 on an odd time slot.

Table 3 Expanding a game of Case 2 on an odd time slot.

4r −3 4r −2 4r −1 4r

t2i−1 x1 x2 x1 x2

t2i x2 x1 x2 x1

x1 t2i−1 t2i t2i−1 t2i

x2 t2i t2i−1 t2i t2i−1

Table 4 Expanding a game of Case 2 on an even time slot.

4r −3 4r −2 4r −1 4r

t2i−1 x1 x2 x1 x2

t2i x2 x1 x2 x1

x1 t2i−1 t2i t2i−1 t2i

x2 t2i t2i−1 t2i t2i−1

On an odd time slot r, a team ui with 1 ≤ i ≤ m/2 plays against the team x. We assign
the games among four teams {t2i−1, t2i, x1, x2} on time slots from 4r − 3 to 4r according to
Figure 3.

The corresponding 16 items in Zn determined by the games in Figure 3 are given in
Table 3.

On an even time slot r, a team ui with m/2 + 1 ≤ i ≤ m− 1 plays against the team x.
The schedule is almost the same as that in Table 3. We just need to switch the designation of
home team and road team in each game. The corresponding part in Zn is shown in Table 4.

For Case 2, we use a construction strategy different from that in Case 1 so that we are
able to satisfy the condition of “at-most-k”. From this schedule, we can see that each of
{t2i−1, t2i} has two away trips consisting of a single team, which are x1 and x2, and each of
{x1, x2} has an away trip consisting of two teams in {t2i−1, t2i}.

After expanding games of Cases 1 and 2, only last games on the last time slot in Um are
left unexpanded. If we expand last games according to the rules in Cases 1 and 2, superficially
it will not cause trouble. However, after this there are still two games not assigned for each
team, which are between two teams t2i−1 and t2i corresponding to ui in Um. These two
games cannot be assigned on two consecutive time slots by the “no-repeat” condition. It will
be hard to find a place to schedule these two games. To solve this problem, our idea is to
expand the last time slot in Um into six (instead of four) time slots in Zn, two of which will
schedule the last two games. Then we have the following two cases.

Case 3. Last games not involving team x: We consider a game in Um, where a home
team ui plays against a road team uj in time slot m − 1 (1 ≤ i, j ≤ m − 1). We expand
this game to 2× 6 = 12 games on six consecutive time slots, from 2n− 7 to 2n− 2, in Zn.
Figure 4 demonstrates the 12 games on the six time slots.

The corresponding part in Zn is shown in Table 5.

M. Xiao and S. Kou 89:7

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 1it

2it

2 1jt

2 jt

2 7n 2 6n 2 5n

2 4n 2 3n 2 2n

Time slot:

Time slot:

Figure 4 Expansion of Case 3.

Table 5 Expanding a game of Case 3.

2n−7 2n−6 2n−5 2n−4 2n−3 2n−2
t2i−1 t2j−1 t2i t2j t2i t2j t2j−1

t2i t2j t2i−1 t2j−1 t2i−1 t2j−1 t2j

t2j−1 t2i−1 t2j t2i t2j t2i t2i−1

t2j t2i t2j−1 t2i−1 t2j−1 t2i−1 t2i

1x

2x

1mt

mt

1x

2x

1mt

mt

1x

2x

1mt

mt

1x

2x

1mt

mt

1x

2x

1mt

mt

1x

2x

1mt

mt

2 7n 2 6n 2 5n Time slot:

2 4n 2 3n 2 2n Time slot:

Figure 5 Expansion of Case 4.

Case 4. Last games involving team x: After Case 3, there is only one game in Um left
unexpanded. It is the game where team um/2 plays against x on time slot m− 1. We expand
this game to 2× 6 = 12 games on six consecutive time slots in Zn according to a strategy
similar to that in Figure 4. We only need to replace x1 and x2 with t2j−1 and t2j , respectively,
and switch the designation of home team and road team in each game in Figure 4. Figure 5
demonstrates the 12 games on the six time slots. The corresponding part in Zn is given in
Table 6.

It is not hard to see that the construction can be implemented in O(n2) time. The
complete tournament schedule for Z8 is given in Table 7, where time slots 1-4 and 5-8 for
teams t3 and t4 correspond to Case 1, time slots 1-4 for teams t1 and t2 correspond to Case 2,
time slots 9-14 for teams t5 and t6 correspond to Case 3, time slots 9-14 for teams t3 and t4
correspond to Case 4.

MFCS 2016

89:8 An Improved Approximation Algorithm for TTP-2

Table 6 Expanding a game of Case 4.

2n−7 2n−6 2n−5 2n−4 2n−3 2n−2
tm−1 x1 tm x2 tm x2 x1

tm x2 tm−1 x1 tm−1 x1 x2

x1 tm−1 x2 tm x2 tm tm−1

x2 tm x1 tm−1 x1 tm−1 tm

Table 7 A Double Round-Robin Schedule for n = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t1 t7 t8 t7 t8 t3 t4 t3 t4 t5 t2 t6 t2 t6 t5

t2 t8 t7 t8 t7 t4 t3 t4 t3 t6 t1 t5 t1 t5 t6

t3 t5 t6 t5 t6 t1 t2 t1 t2 t7 t4 t8 t4 t8 t7

t4 t6 t5 t6 t5 t2 t1 t2 t1 t8 t3 t7 t3 t7 t8

t5 t3 t4 t3 t4 t7 t8 t7 t8 t1 t6 t2 t6 t2 t1

t6 t4 t3 t4 t3 t8 t7 t8 t7 t2 t5 t1 t5 t1 t2

t7 t1 t2 t1 t2 t5 t6 t5 t6 t3 t8 t4 t8 t4 t3

t8 t2 t1 t2 t1 t6 t5 t6 t5 t4 t7 t3 t7 t3 t4

4 Schedule based on Perfect Matchings

The above strategy provides a feasible tournament schedule for any order on the n teams.
There are n! permutations of n teams. To minimize the total traveling distance, we order the
teams according to a minimum perfect matching M of G, where G is a complete undirected
graph on the set of teams with edge weight representing the distance between teams.

An order {t1, t2, · · · , tn} of teams is consistent with a minimum perfect matching M if
for each odd i, teams ti and ti+1 are in a pair in M , i.e., each pair of teams corresponding to
a team in Um is also a pair in M . There are many orders of teams consistent with matching
M . We will introduce a way to find a good order of teams consistent with M , which can yield
tournament schedules with good performances in both theory and practice. Our algorithm
contains five steps.

Step 1. Construct the complete undirected graph G and compute a minimum perfect
matching M of G. Note that G has n vertices and M has n/2 edges.

Step 2. Construct another complete undirected graph H based on G and M . The graph
H has n/2 vertices {ui1 , ui2 , · · · , uim}. Each vertex ui is corresponding to an edge t2i−1t2i

in M (also a team in Um). The weight of each edge uiuj between two vertices ui and uj

in H, denoted by wH(uiuj), is the total weight of the four edges between {t2i−1, t2i} and
{t2j−1, t2j} in G.

Step 3. Find a vertex, denoted by um, in H such that the weight of all edges incident on it
is minimized.

Step 4. Find a minimum perfect matching MH in H. We let

MH = {u1um−1, u2um−2, · · · , um/2−1um/2+1, um/2um}.

M. Xiao and S. Kou 89:9

1t

it

2t jt 1jt 4t3t 3nt 2nt

1 1()nt x

2()nt x

it

'ijt ij
t

1t

it

2t jt 1jt 4t3t 3nt 2nt

it

'ijt ij
t

()a ()biA iLB

1 1()nt x

2()nt x

Figure 6 Itinerary of team ti in Case (i).

Step 5. Order the n teams according to MH . We get an order {t1, t2, · · · , tn} of the teams
such that: t2i−1 and t2i are two teams in the edge in M corresponding to ui for 1 ≤ i ≤ m.

This algorithm mainly computes two minimum perfect matchings and runs in O(n3) time.
From the analysis in the next section, we will see the advantages of taking this permutation
of teams.

5 Analysis of The Approximation Ratio

We use Ai to denote the traveling distance of team ti in our schedule. The total traveling
distance in the tournament under our schedule is AALL =

∑n
i=1 Ai. To evaluate the

performance of our schedule, we will analyze the ratio of AALL/LB. Let ∆ = AALL − LB.
First of all, we compare Ai with the independent lower bound LBi. Let ∆i = Ai − LBi.

We analyze ∆i for different cases according to the value of i.

Case (i). Teams ti with 1 ≤ i ≤ n/2−2: These teams in the double round-robin tournament
Zn are expanded from the first m/2− 1 lines (teams) in the single round-robin tournament
Um. We look at the line of team ti in Zn. For the part expanded from Um of Case 1 (normal
games not involving team x), ti has one away trip consisting of two teams in an edge in the
matching M . For the part expanded from Um of Case 2 (normal games involving team x on
odd time slots), ti has two away trips consisting of a single team of x1 = tn−1 and x2 = tn

respectively. For the part expanded from Um of Case 3 (last games not involving team x), ti

has an away trip consisting of a single team tji
and an away trip consisting of two teams ti′

and tj′
i
, where ti and ti′ (resp., tji and tj′

i
) correspond to the same team uq (resp., up) in

Um, and p + q = m. The itinerary graph of team ti is shown in Figure 6 (a). Compared to
the optimal itinerary to achieve the independent lower bound, shown in Figure 6 (b), we get
the following by triangle inequality

∆i = (Di,n−1 + Di,n)−Dn−1,n

+(Di,ji
+ Dj′

i
,i′)− (Di,i′ + Dji,j′

i
)

≤ (Di,n−1 + Di,n) + (Di,ji
+ Di,j′

i
).

Recall that we use wH(uiuj) to denote the weight of the edge between two vertices ui

and uj in H. We have that

n
2−2∑
i=1

∆i ≤
m
2 −1∑
i=1

wH(uium) +
m
2 −1∑
i=1

wH(uium−i). (2)

MFCS 2016

89:10 An Improved Approximation Algorithm for TTP-2

1t

it

2t jt 1jt 4t3t 3nt 2nt

it

1t

it

2t jt 1jt 4t3t 3nt 2nt

it

()a ()biA iLB

1 1()nt x

2()nt x

1 1()nt x

2()nt x

Figure 7 Itinerary of team ti in Case (ii).

1t

it

2t jt 1jt 4t3t 3nt 2nt

it

'ijt ij
t

1t

it

2t jt 1jt 4t3t 3nt 2nt

it

'ijt
ij

t

()a ()biA iLB

1 1()nt x

2()nt x

1 1()nt x

2()nt x

Figure 8 Itinerary of team ti in Case (iii).

Case (ii). Teams ti with i ∈ {n/2 − 1, n/2}: These teams in Zn are expanded from the
m
2 -th line in Um. There are only two kinds of expansions: Case 1 and Case 4. Analogously
to Case (i), we have the itinerary of tn/2−1 as shown in Figure 7. The itinerary graph for
tn/2 is similar.

We get that

∆n/2−1 = (Dn/2−1,n + Dn/2,n−1)
−(Dn/2−1,n/2 + Dn−1,n)

≤ Dn/2−1,n−1 + Dn/2−1,n

and also ∆n/2 ≤ Dn/2,n−1 + Dn/2,n. Then

∆n/2−1 + ∆n/2 ≤ wH(um/2um). (3)

Case (iii). Teams ti with n/2 + 1 ≤ i ≤ n− 2: These teams in Zn are expanded from the
lines from m/2 + 1 to m− 1 in Um. There are three kinds of expansions: Case 1, Case 2 and
Case 3, where the expansions of Case 2 are on even time slots. Then ti has an away trip
consisting of two teams x1 and x2. The itinerary graph for ti is shown in Figure 8. We get
that

∆i = (Di,ji
+ Dj′

i
,i′)− (Di,i′ + Dji,j′

i
)

≤ Di,ji
+ Di,j′

i
,

where ti and ti′ (resp., tji
and tj′

i
) correspond to the same team uq (resp., up) in Um, and

p + q = m.
By summing up i’s in this case, we get

n−2∑
i=n/2+1

∆i ≤
m−1∑

i=m/2+1

wH(uium−i). (4)

M. Xiao and S. Kou 89:11

1mt

mt
1t
2t

1mt 2mt

2mt

3mt

3nt 2nt

1t
2t

1mt 2mt

2mt

3mt

3nt 2nt

()a ()b

mt

1mt

iA iLB

1 1()nt x

2()nt x
1 1()nt x

2()nt x

Figure 9 Itinerary of team x1 in Case (iv).

Case (iv). Teams ti with i ∈ {n− 1, n}: The last two teams in Zn are expanded from the
last line in Um. There are two kinds of expansions involving x: Case 2 and Case 4. The
itinerary graph for x1 = tn−1 is shown in Figure 9.

We get that

∆n−1 =
∑m−1

j=m/2+1((Dn−1,2j−1 + Dn−1,2j)−D2j−1,2j)
+(Dm−1,n−1 + Dm,n)− (Dm−1,m + Dn−1,n)

≤
∑m−1

j=m/2+1(Dn−1,2j−1 + Dn−1,2j)
+(Dm,n−1 + Dm−1,n−1)

=
∑m−1

j=m/2(Dn−1,2j−1 + Dn−1,2j)

and also ∆n ≤
∑m−1

j=m/2(Dn,2j−1 + Dn,2j). Then

∆n−1 + ∆n ≤
m−1∑

j=m/2

wH(umuj). (5)

By summing up (2), (3), (4) and (5), we get

∆ =
∑n

i=1 ∆i ≤
∑m−1

j=1 wH(umuj)
+2

∑ m
2 −1

i=1 wH(uium−i) + wH(um/2um)
≤ wH(E(um)) + 2wH(MH),

(6)

where wH(E(um)) is the total weight of all edges incident on um in H and wH(MH) is weight
of all edges in the matching MH . Let DH denote the weight of all edges in H. Then

DH = DE −DM . (7)

Since we select um as the vertex in H such that the weight of all edges incident on it is
minimized, we know that

wH(E(um)) ≤ 2
m

DH . (8)

Note that a complete graph of m vertices can be partitioned into m− 1 perfect matchings.
We select MH as a perfect matching of minimum weight. Then we have that

wH(MH) ≤ 1
m− 1DH . (9)

By (1), (6), (7), (8), (9) and n = 2m, we get

∆ ≤ (2
m

+ 2
m− 1)DH ≤ (2

n
+ 2

n− 2)LB,

which implies

I Theorem 1. For TTP-2 with n teams such that n ≡ 0 (mod 4), the above algorithm
runs in O(n3) time and finds a feasible schedule such that the traveling distance is at most
1 + 2

n−2 + 2
n times of the optimal traveling distance.

MFCS 2016

89:12 An Improved Approximation Algorithm for TTP-2

Table 8 The results for real-world instances.

Data Lower Previous Before After Our gap
set bounds results search search (%)

Galaxy40 298484 318033 308235 307469 3.01
Galaxy36 205280 220537 213160 212821 3.67
Galaxy32 139922 148395 145857 145445 3.95
Galaxy28 89242 94389 93317 93235 4.47
Galaxy24 53282 56476 55959 55883 4.88
Galaxy20 30508 33211 32548 32530 6.63
Galaxy16 17562 19432 19124 19040 8.42
Galaxy12 8374 9570 9546 9490 13.33

NFL32 1162798 1268742 1212521 1211239 4.17
NFL28 771442 832396 811586 810310 5.04
NFL24 573618 641686 612928 611441 6.59
NFL20 423958 485618 458099 456563 7.69
NFL16 294866 332468 322528 321357 8.98
NL16 334940 380179 360207 359720 7.40
NL12 132720 148382 145035 144744 9.06

super12 551580 680054 613107 612583 11.06
brazil24 620574 722281 655603 655235 5.59

6 Local Search by Swapping

Some simple local search techniques can still be applied to our schedule. These techniques
may not be able to improve approximation ratio in theory. However, in practice, for most
benchmark instances they still can slightly improve our results by about 1%. We use only
two simple search rules:

Swap two pairs of teams in the matching MH ;
Swap any pair of teams.

7 Applications to Benchmark Sets

To show the efficiency of our algorithm in practice, we apply it to the benchmark instances
provided on the website of Trick [19], most of which are real-world instances. The website
of Trick [19] displays the best results to TTP-3 on these instances, while we focus on the
results to TTP-2. Table 8 lists our results and the best-known results [18] for all 17 instances
with n ≡ 0 (mod 4) and n > 8, where “lower bound” is the independent lower bound,
“before search” and “after search” mean our results before and after applying local search by
swapping respectively, and “our gap” is defined to be ∆/LB. Our results beat all previously
best-known upper bounds, most by about 3% to 10%. It is also worthy to note that our
algorithm computes all instances together within 2.6 seconds on a standard laptop with a
2.40GHz Intel(R) Core(TM) i5-2430 CPU and 4 gigabytes of memory.

8 Conclusion

Our tournament schedule generates a feasible solution to TTP-2 with n ≡ 0 (mod 4). Our
solution is at most 1 + 2

n−2 + 2
n times of the optimal, improving the previous approximation

M. Xiao and S. Kou 89:13

ratio of 1 + 16
n by an addition of almost 12

n . By applying our algorithm on several benchmark
sets of TTP, our tournament schedules beat best-known solutions for all instances with n ≡ 0
(mod 4).

The number n of teams in TTP is required to be even. When we construct a double round-
robin tournament from a single round-robin tournament, we further require that the number
m = n/2 of teams in the single round-robin tournament is even. Thus, our constructive
algorithm requires n ≡ 0 (mod 4). The only left case not considered in this paper is n ≡ 2
(mod 4). For this case, the previously-known approximation ratio is 3

2 + 6
n−4 [18], and the

gaps between upper and lower bounds on benchmark instances are large. A natural question
is whether there is a (1 + O(1/n))-approximation algorithm for the case that n ≡ 2 (mod 4).

References
1 Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Vergados. A

simulated annealing approach to the traveling tournament problem. Journal of Scheduling,
9(2):177–193, 2006.

2 Rishiraj Bhattacharyya. A note on complexity of traveling tournament problem. Optimiz-
ation Online, 2009.

3 Robert Thomas Campbell and DS Chen. A minimum distance basketball scheduling prob-
lem. Management science in sports, 4:15–26, 1976.

4 Dominique de Werra. Some models of graphs for scheduling sports competitions. Discrete
Applied Mathematics, 21(1):47–65, 1988.

5 Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search approach to
the traveling tournament problem. Journal of Heuristics, 13(2):189–207, 2007.

6 Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament problem:
description and benchmarks. In 7th International Conference on Principles and Practice
of Constraint Programming, pages 580–584, 2001.

7 Kelly Easton, George Nemhauser, and Michael Trick. Solving the travelling tournament
problem: a combined integer programming and constraint programming approach. In 4th
International Conference of Practice and Theory of Automated Timetabling IV, pages 100–
109, 2003.

8 Nobutomo Fujiwara, Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. Constructive
algorithms for the constant distance traveling tournament problem. Practice and Theory
of Automated Timetabling VI, pages 135–146, 2007.

9 Marc Goerigk, Richard Hoshino, Ken Kawarabayashi, and Stephan Westphal. Solving the
traveling tournament problem by packing three-vertex paths. In Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 2271–2277, 2014.

10 Richard Hoshino and Ken Kawarabayashi. The linear distance traveling tournament prob-
lem. In Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 1770–1778, 2012.

11 Richard Hoshino and Ken-ichi Kawarabayashi. An approximation algorithm for the bipart-
ite traveling tournament problem. Mathematics of Operations Research, 38(4):720–728,
2013.

12 Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. A 2.75-approximation algorithm
for the unconstrained traveling tournament problem. Annals of Operations Research,
218(1):237–247, 2014.

13 Graham Kendall, Sigrid Knust, Celso C Ribeiro, and Sebastián Urrutia. Scheduling in
sports: An annotated bibliography. Computers & Operations Research, 37(1):1–19, 2010.

14 Andrew Lim, Brian Rodrigues, and X Zhang. A simulated annealing and hill-climbing
algorithm for the traveling tournament problem. European Journal of Operational Research,
174(3):1459–1478, 2006.

MFCS 2016

89:14 An Improved Approximation Algorithm for TTP-2

15 Ryuhei Miyashiro, Tomomi Matsui, and Shinji Imahori. An approximation algorithm for
the traveling tournament problem. Annals of Operations Research, 194(1):317–324, 2012.

16 Rasmus V Rasmussen and Michael A Trick. Round robin scheduling–a survey. European
Journal of Operational Research, 188(3):617–636, 2008.

17 Clemens Thielen and Stephan Westphal. Complexity of the traveling tournament problem.
Theoretical Computer Science, 412(4):345–351, 2011.

18 Clemens Thielen and Stephan Westphal. Approximation algorithms for TTP(2). Mathem-
atical Methods of Operations Research, 76(1):1–20, 2012.

19 Michael Trick. Challenge traveling tournament instances. Online reference at http://mat.
gsia. cmu. edu/TOURN/, 2013.

20 Pascal Van Hentenryck and Yannis Vergados. Population-based simulated annealing for
traveling tournaments. In Twenty-Second AAAI Conference on Artificial Intelligence, pages
267–272, 2007.

21 Stephan Westphal and Karl Noparlik. A 5.875-approximation for the traveling tournament
problem. Annals of Operations Research, 218(1):347–360, 2014.

22 Daisuke Yamaguchi, Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An improved
approximation algorithm for the traveling tournament problem. Algorithmica, 61(4):1077–
1091, 2011.

	Introduction
	A Lower Bound
	Techniques for Construction
	Schedule based on Perfect Matchings
	Analysis of The Approximation Ratio
	Local Search by Swapping
	Applications to Benchmark Sets
	Conclusion

