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Abstract
Labeled graphs, in which edges are labeled by letters from some alphabet Σ, are extensively used
to model many types of relations associated with actions, costs, owners, or other properties. Each
path in a labeled graph induces a word in Σ∗ – the one obtained by concatenating the letters
along the edges in the path. Classical graph-theory problems give rise to new problems that take
these words into account. We introduce and study the constrained Eulerian path problem. The
input to the problem is a Σ-labeled graph G and a specification L ⊆ Σ∗. The goal is to find an
Eulerian path in G that satisfies L. We consider several classes of the problem, defined by the
classes of G and L. We focus on the case L is regular and show that while the problem is in
general NP-complete, even for very simple graphs and specifications, there are classes that can
be solved efficiently. Our results extend work on Eulerian paths with edge-order constraints. We
also study the constrained Chinese postman problem, where edges have costs and the goal is to
find a cheapest path that contains each edge at least once and satisfies the specification. Finally,
we define and study the Eulerian language of a graph, namely the set of words along its Eulerian
paths.
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1 Introduction

Many practical problems can be reduced to problems about graphs. A graph consists of
vertices, which model objects, and edges, which model pairwise relations between the objects.
Different settings call for different types of graphs. For example, when the relation between
the objects is not symmetric, the graph is directed, and when it is not binary, the graph may
have parallel edges or be weighted, say for modeling lengths or costs. In many applications, the
edges of the graph carry information beyond weight. For example, edges may be associated
with an action (say, in VLSI design), a query (say, in databases), properties like their owner
or their security level (say, in a network of channels), and many more. Such applications
require labeled graphs, in which each edge is labeled by a letter from some alphabet.1

Each path in a Σ-labeled graph induces a word in Σ∗ – the one obtained by concatenating
the letters along the edges in the path. Classical graph-theory problems give rise to new
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1 Alternatively, one could consider graphs with labels on vertices. It is not hard to alter our results to
apply also for this setting.
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problems that take these words into account. For example, rather than finding any shortest
path between two given vertices in a graph [10], it is sometimes desirable, say in transportation
planning [5], web searching [1], or network routing, to restrict attention to paths that satisfy
some constraint [4]. The basic query mechanism in these applications retrieves all pairs
of nodes connected by a path conforming to a given pattern. There have been plenty of
theoretical and practical work on the subject of regular path queries, where we wish to find
all objects reachable by paths whose labels form a word in a given regular language over the
alphabet of the labels [8]. As another example, rather than finding a maximal flow along
arbitrary routes in a graph [13], one may want to restrict the used routes to ones that satisfy
some specification [23]. The specification may restrict the length of the routes, preventing
long routes from consuming the system, it may restrict the number of different resources
applied in a route, require an application of specific resources, require a specific event to
trigger another specific event, and so on. As a third example, an extension of network
formation games [2] assumes that the edges in the network are labeled and allows to lift the
reachability objectives of the players to objectives that are arbitrary regular languages [3].
Paths constrained by regular languages were also considered in the context of finding efficient
algorithms for processing database queries ([24, 1]). Finally, online algorithms for finding
paths that satisfy regular constraints are given in [7].

An interesting question is how enriching the setting with labels and constrains influences
the complexity of classical problems. Note that now there are two parameters to the problem:
the graph itself, as well as a formal language L ⊆ Σ∗, which is usually regular and is given
by means of a finite automaton or a regular expression. We refer to L as a specification.
Existing work shows that the picture is diverse. For example, in the case of shortest paths,
finding a shortest path that satisfies regular and even context-free specifications can still
be done in polynomial time [4]. Their algorithm is generalized in [6] for graphs with both
negative and positive edge weights (but without negative-weight cycles). However, research
in regular path queries shows that the problem of finding a shortest simple path that satisfies
a regular specification is NP-complete (note that a shortest path that satisfies a specification
need not be simple, even when all weights are positive) [24]. In the context of maximal flow,
it is shown in [23] that even simple regular restrictions on the routes make the problem
APX-hard, namely it is even hard to approximate. Likewise, adding regular objectives to
network formation games result in games that are much less stable: they need not have
a Nash Equilibrium, and their Price of Stability is higher than in the case of reachability
objective [3].

An Eulerian path in a graph is a path that traverses all the edges of the graph, each
edge exactly once. The problem of deciding whether a given graph has an Eulerian path
(the EP problem, for short) was introduced in 1736, in what is considered the first paper
in the history of graph theory. The problem can be solved in linear time by examining the
parity of the degree of the vertices. Back in 1736, the motivation to study the problem
was the challenge of traversing the seven bridges of Königsberg. Nowadays, the problem
and its many variants have applications in planning [21], coding [9], synchronization [19],
DNA sequencing [27], and many more. In many of these applications, it is useful to restrict
attention to Eulerian paths that satisfy some constraint. For example, [21] studies Eulerian
paths that satisfy precedence constraints on the edges, specified by linear orders on subsets
of the edges. In [27], the input to the EP problem contains a set of paths, and the goal is to
find an Eulerian path that contains all the paths in the set as sub-paths. Another related
problem is studied in [17]: each edge e in a graph with m edges is associated with an interval
Ie = [le, he] inside [1,m], and the goal is to find an Eulerian path so that the position of
every edge e in the path belongs to Ie.
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Once we move to consider labeled graphs, the type of restrictions can be much richer.
Eulerian paths in labeled graphs were considered in [25], where the problem of finding an
Eulerian cycle with a lexicographically minimal label is shown to be NP-complete. Note that
the constraint in [25] is not given by means of a specification L ⊆ Σ∗. Rather, the letters
in Σ are ordered and the constraint refers to the lexicographic order between the Eulerian
cycles, possibly with respect to a given word. In this work we study Eulerian paths with
regular constraints. Formally, the constrained Eulerian path problem (CEP problem, for
short) is defined as follows: given a Σ-labeled graph G and a regular language L ⊆ Σ∗, find
an Eulerian path in G that satisfies L. We consider several classes of the problem, according
to the classes of G and L. We first show that the general CEP problem is NP-complete, and
that it is NP-hard already for very restricted graphs and specifications: when the graph
does not have parallel edges or loops, and when the specification is a regular expression
of a fixed size that can be expressed by a two-state deterministic automaton. In fact, the
problem stays NP-hard even when the specification L is a singleton (that is, requiring the
Eulerian path to be labeled with a specific given word). We then describe classes of regular
languages for which the CEP problem can be solved in polynomial time. For this, we relate
the CEP problem with the problem of finding edge-disjoint paths in a graph. In particular,
we show that the CEP problem can be solved in polynomial time for regular expressions
of the form R = b1 . . . bk, where k is fixed, for every 1 ≤ i ≤ k, we have bi = σ∗i or bi = σi
for some σi ∈ Σ, and for every σ ∈ Σ, the expression σ∗ appears at most three times in R.
Alternatively, bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ appears at most once
in R. We demonstrate the usefulness of such expressions in specifying desired behaviors
of paths. We also consider multi-labeled graphs, where an edge may be labeled by several
letters, and show that then, the problem is NP-hard even for specifications given by a regular
expression of the form a∗b∗, which essentially partitions the path into two types of labels.

An optimization variant or the EP problem is the Chinese postman problem. There, each
edge in the graph has a non-negative cost, and the goal is to find a postman path – one that
contains each edge in the graph at least once, of a minimal cost. Clearly, when the graph
has an Eulerian path, it induces an optimal postman path. Otherwise, the goal is to get as
close as possible to an Eulerian path. Researchers have studied useful restrictions on the
allowed postman paths [12]. In particular, a natural extension of the precedence restrictions
studied for the EP problem is the hierarchical Chinese postman problem [11, 16, 22]. Here,
the edges of the graph are partitioned into clusters E1, . . . , Ek, and a precedence relation ≺
specifies the order in which the clusters should be traversed. That is, we seek the cheapest
path that visits each edge at least once and so that if Ei ≺ Ej , then all the edges in Ei are
visited for the first time before an edge in Ej is visited. The problem is NP-hard in general,
but can be solved in polynomial time in some cases. We consider labeled graphs and study
the constrained Chinese postman problem (the CCP problem, for short), where the postman
path should satisfy a regular specification. We study the complexity of the CCP problem,
show that it is in general NP-complete, but point to useful polynomial cases.

A labeled graph G can be viewed as a generator of formal languages. The traditional
way to do this is to designate some of the vertices of G as initial and as final vertices. The
language of the obtained automaton is then the set of words that label paths from some
initial to some final vertex. We introduce and study the Eulerian language of G, denoted
EL(G), namely the set of words that label Eulerian paths in G. Clearly, deciding whether
EL(G) 6= ∅ amount to deciding whether G has an Eulerian path, and can be done in linear
time. More interesting questions about the Eulerian language of G relate it to nontrivial
languages: whether EL(G) is contained in some specification L, whether some set L of
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desired behaviors is contained in EL(G), and the relation between the Eulerian languages
of two different graphs. Since EL(G) contains only words of a fixed length, we know that
EL(G) is finite and hence regular. On the other hand, given a regular language L ⊆ Σ∗ it is
not clear whether there is a graph G such that EL(G) = L. We study all the above problems
and show that they belong to different levels of the polynomial hierarchy.

Due to lack of space, detailed proofs can be found in the full version, in the authors’
URLs.

2 Preliminaries

2.1 Graphs and Eulerian paths
A graph G = 〈V,E〉 consists of a set V of vertices and a set E of directed edges. The graph
G may contain loops and parallel edges.2 A graph is simple if it does not contain loops or
parallel edges. A path P in G is a sequence of edges e1, . . . , ek such that there are k + 1
vertices v0, . . . , vk and ei = (vi−1, vi) for all 1 ≤ i ≤ k. We say that P is a path of length
k from v0 to vk. If v0 = vk, then P is a cycle. We sometimes refer to P as a sequence
of vertices, referring to the vertices v0, . . . , vk. For an alphabet Σ, a Σ-labeled graph is a
tuple G = 〈V,E, l〉, where 〈V,E〉 is a graph and l : E → Σ maps each edge to a letter in Σ.
The label of a path P = e1, . . . , ek, denoted l(P ), is the word l(e1) · . . . · l(ek) obtained by
concatenating the labels of the edges along P . A specification for G is a language L ⊆ Σ∗.
We say that P satisfies a specification L if l(P ) ∈ L.

Consider a graph G = 〈V,E〉. For a vertex v ∈ V , the in degree and out degree of v,
denoted indeg(v) and outdeg(v), are the number of edges entering and leaving v, respectively.
An edge (u1, u2) ∈ E is incident to v if u1 = v or u2 = v. We say that G is strongly
connected if for every two vertices u, v ∈ V there is a path from u to v. An undirected
path in G is a sequence of edges e1, . . . , ek such that there are k + 1 vertices v0, . . . , vk and
ei ∈ {(vi−1, vi), (vi, vi−1)} for all 1 ≤ i ≤ k. We say that G is connected if for every u, v ∈ V
there is an undirected path from u to v. The size of G, denoted |G|, is the number of vertices
and edges in G.

A path in a graph G = 〈V,E〉 is Eulerian (EP, for short) if it visits every edge in E

exactly once. We say that G is Eulerian if it has an Eulerian cycle. For two edges e1 and e2
in E, an EP with e1 ≺ e2 is an EP in which the edge e1 is visited before the edge e2. The
following is well known.

I Theorem 1. Consider a directed graph G = 〈V,E〉.
1. The graph G is Eulerian iff G is connected and for every v ∈ V , we have indeg(v) =

outdeg(v).
2. The graph G has an Eulerian path from s to t (with s 6= t) iff G is connected, outdeg(s) =

indeg(s) + 1, indeg(t) = outdeg(t) + 1, and for every v 6∈ {s, t}, we have indeg(v) =
outdeg(v).

By Theorem 1, one can decide in time linear in |G| whether G is Eulerian or has an EP
between two given vertices. Furthermore, if G has an EP from s to t, then such path can be
found as follows: Follow some path from s until reaching t. It is not possible to get stuck at
any vertex other than t, because when the path enters another vertex v there must be an

2 Since G may contain parallel edges, we do not refer to E as a subset of V ×V . However, for simplicity of
notations, whenever there is no cause for confusion, we still denote an edge by a pair (v1, v2) ∈ V × V .
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unused edge leaving v. The path formed in this way may not cover all edges of the initial
graph. As long as there exists a vertex v that belongs to the current path but that has
incident edges not part of the path, start another path from v, following unused edges until
returning to v (as above, this process does not get stuck), and join the path formed in this
way to the previous path.

A path (cycle) in a graph G = 〈V,E〉 is Hamiltonian if it visits every vertex in V exactly
once. The Hamiltonian path (cycle) problem, namely deciding whether a given graph has a
Hamiltonian path (cycle), is NP-hard already when the graph is simple [15].

2.2 Regular languages and the constrained Eulerian path problem
A nondeterministic finite automaton (NFA, for short) is a tuple A = 〈Σ, Q,Q0, δ, F 〉, where Σ
is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ→ 2Q is
a transition function, and F ⊆ Q is a set of final states. Given a word w = σ1 ·σ2 · · ·σl ∈ Σ∗, a
run of A on w is a sequence r = q0, q1, . . . , ql of states such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi+1)
for all i ≥ 0. The run is accepting if ql ∈ F . The NFA A accepts the word w iff it has an
accepting run on it. The language of A, denoted L(A) is the set of words that A accepts.
If |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ, then A is deterministic. Note that a
deterministic finite automaton (DFA) has at most one run on each word.

A regular expression (RE, for short) over Σ is defined as follows.
∅, ε, and σ, for σ ∈ Σ, are REs.
If R1 and R2 are REs, then so are R1 +R2, R1 ·R2, and R∗1.

The language of an RE R, denoted L(R), is defined inductively on the structure of R,
where +, ·, and ∗ stand for union, concatenation, and Kleene star, respectively.

We say that R is a chain RE if it is of the form b1 · b2 · · · bk, where for every 1 ≤ i ≤ k, we
have bi = w∗i or bi = wi for a word wi ∈ Σ∗. We call every such bi a block. Note that a chain
RE does not contain the symbol “+" and does not contain nested Kleene stars. For l ≥ 1, we
say that a chain RE R is l-wide if |wi| ≤ l for all 1 ≤ i ≤ k with bi = w∗i . Note that when R
is 1-wide, then for all 1 ≤ i ≤ k, we have that bi = σ∗ or bi = σ, for some σ ∈ Σ. For d ≥ 1,
we say that R is d-diverse if each letter in Σ appears in R at most d times. We say that R is
d-star-diverse if for each letter σ ∈ Σ, the expression σ∗ appears in R at most d times. Note
that if R is d-diverse then it is also d-star-diverse. For example, a∗(ba)∗c∗(bc)∗ is a 2-wide,
2-diverse, 1-star-diverse chain RE. Then, a∗b∗a∗ is a 1-wide, 2-diverse, 2-star-diverse chain
RE, and (a+ b)∗(b+ c)∗ is not a chain RE.

The constrained Eulerian path problem (CEP problem, for short) is defined as follows:
given a labeled graph G and a regular language L, given by means of an NFA, DFA, or RE,
find an Eulerian path in G that satisfies L.

I Example 2. We describe some chain REs that are useful specifications.
Zone patrolling and periodic checks. Consider a communication, social, or physical net-
work. Let a, b, c, and d be labels of edges in different zones of the network. We may want to
patrol the network in a certain pattern. For example, in security, one may want a guard to
patrol the zones of a physical network in a certain order, and in commercial applications, one
may want to do the same with an advertisement that traverses a social network. Likewise,
several communication protocols are based on the fact that a message must patrol different
zones of the network in some predefined order before reaching its destination; e.g., in Onion
routing, where the message is encrypted in layers, or in proof-of-work protocols that are used
to deter denial of service attacks and other service abuses such as spam. For this, REs of
the form (a+b+c+d+)∗, where σ+ stands for σσ∗, may be useful. If the pattern of visits is

MFCS 2016



62:6 Eulerian Paths with Regular Constraints

of a known bounded length, it can be specified as a conjunction of 1-wide chain REs, say
a+b+c+d+a+b+c+d+.

As another example, let s label edges in which a checksum is performed on the message,
and let σ label all other edges. We may want a message to be periodically checked for
corruptions. This can be specified by the chain RE (σis)∗, for the duration i after which
a check should be performed. If we want the specification to be more flexible, say allow
different durations between successive checks, all bounded by i, this is possible, but the RE
is no longer a chain RE.
Bounded-delay response and FIFO. Let r, r1, and r2 label edges in which requests are
submitted, possibly parameterized by the user that submits them, and let g, g1, and g2 label
edges in which requests are granted, again possibly parameterized by the granted user. The
semantics of requests and grants depend on the type of the network. Suppose there can be at
most one request in the graph and we want a request, if submitted, to be followed by a grant
within 3 steps. Let σ label all edges that are not labeled r or g. This can be specified by
R = σ∗ + σ∗rgσ∗ + σ∗rσgσ∗ + σ∗rσσgσ∗. Note that R is a union of 1-wide 4-diverse chain
REs. In case of a grant bounded by k steps, the REs are 1-wide (k+ 1)-diverse chain REs. If
there are two requests and we want them to be granted in a FIFO order, the specification is
R = σ∗ + σ∗r1σ

∗g1σ
∗ + σ∗r1σ

∗r2σ
∗g1σ

∗g2σ
∗ + σ∗r1σ

∗g1σ
∗r2σ

∗g2σ
∗, and dually when only

r2 is submitted or when r2 is before r1. Note that R is a union of 1-wide 5-diverse chain REs.

3 It Is Hard

In this section we study the general CEP problem and show that it is NP-complete for
specifications given by NFAs, DFAs, or REs. The reductions in this section are simple. We
give them here for completeness and as a warm-up before things get more complicated in the
next sections.

I Theorem 3. The CEP problem is NP-complete.

Proof. We start with membership in NP. Checking the membership of a given word in the
language of a given NFA, DFA, or RE can be done in polynomial time. Hence, given a
labeled graph G = 〈V,E, l〉 and a regular language L given by means of an NFA, DFA, or
RE, checking whether a sequence P of |E| edges is an EP in G and that l(P ) ∈ L can be
done in polynomial time.

We prove NP-hardness by a reduction from the Hamiltonian-path problem. We prove
hardness for specifications given by DFAs. Hardness for NFAs follows immediately, and
hardness for REs follows from the polynomial translation of DFAs to REs. Given a graph
G = 〈V,E〉, we construct a labeled graph G′ and a DFA A such that there is a Hamiltonian
path in G iff there is an EP in G′ that satisfies L(A). The labeled graph G′ is over the
alphabet V . It consists of a single vertex u with |V | parallel self loops, each labeled by a
different vertex in V . That is, the EPs of G′ correspond to permutations of V . We define the
specification DFA A so that L(A) includes exactly all words that label paths in G. It is easy
to define A as above by adding to G an initial state that has a transition to all vertices, and
labeling all transitions, including the new ones, by their destination vertex. All the states
in A are final. Now, there is a Hamiltonian path in G iff there is a permutation of V that
forms a path in G iff there is an EP in G′ that satisfies L(A). J

The graph G′ used in the proof of Theorem 3 is not simple. It is easy, however, to add a
new letter # to the alphabet V and obtain a simple graph G′′ by replacing every (parallel)
self-loop labeled v in G′ by a (disjoint) cycle labeled v# in G′′. Hence the following theorem.

I Theorem 4. The CEP problem is NP-hard already for simple graphs.
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Figure 1 A graph and its Eulerian closure.

4 It Is Very Hard

While the graph G′′ defined in the reduction in the proof of Theorem 4 is simple, the DFA
A used in the proof is essentially the graph G. This suggests that we may do better with
specifications of a constant size. In this section we show that the CEP problem is NP-hard
already for more restricted cases, in particular for specification of a constant size. As we
then show in Section 5, the cases we point to are tight, in the sense that tightening the
restrictions makes the problem feasible.

We first define the Eulerian closure of a given graph – a construction that is going to be
useful in some of our reductions. Given a graph G = 〈V,E〉, the Eulerian closure of G is the
graph G = 〈V, E〉, defined as follows (see an Example in Figure 1).

For each vertex v ∈ V we include in V two vertices vin and vout. We also include in V a
new vertex w. That is, V = {vin : v ∈ V } ∪ {vout : v ∈ V } ∪ {w}. The set of edges of G is
the union E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6, defined below:

E1 = {(vin, vout) : v ∈ V }. Thus, E1 includes an edge for each vertex in G.
E2 = {(uout, vin) : (u, v) ∈ E}. Thus, E2 includes an edge for every edge in G.
E3 = {(vout, vin) : v ∈ V }. Thus, E3 includes an opposite edge for every edge in E1.
E4 = {(vin, uout) : (u, v) ∈ E}. Thus, E4 includes an opposite edge for every edge in E2.
E5 = {(v, w) : v ∈ V \ {w}}.
E6 = {(w, v) : v ∈ V \ {w}}.

Note that, by Theorem 1, the graph G is Eulerian. Indeed, the edges in E5 and E6 guarantee
that G is strongly connected regardless of the connectivity of G. Also, for every vertex v ∈ V ,
we have indeg(v) = outdeg(v). Finally, if G is simple, then so is G.

I Theorem 5. The CEP problem is NP-hard already for a simple graph and a specification
given by fixed-size RE that can be expressed by a DFA with two states.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given
a simple graph G = 〈V,E〉, we construct a simple labeled graph G′ and a RE R that can be
expressed by a DFA with two states, such that there is a Hamiltonian path in G iff there is
an EP in G′ that satisfies L(R). The graph G′ is defined by G′ = 〈V, E , l〉 where 〈V, E〉 is
the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {b} if e ∈ E2, and is {c} otherwise.
Let R = (a+ b)∗(b+ c)∗. Note that L(R) can be expressed by a DFA with two states. In the
full version of the paper we prove that the reduction is correct. For this, we show that the
way we have defined the Eulerian closure of G guarantees that if there is a Hamiltonian path
in G, then it induces a path in G′ that contains only edges labeled by a or b and can be
extended to an Eulerian cycle by appending a path that contains only edges labeled by b or
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62:8 Eulerian Paths with Regular Constraints

c. Also, every EP in G′ that satisfies L(R) starts with a subpath that induces a Hamiltonian
path in G. J

We continue and show that the CEP problem is NP-hard already for singleton specifica-
tions, namely when the specification consists of a single word, and for specifications given by
a fixed-size RE without union and without nested Kleene star operators.

I Theorem 6. The CEP problem is NP-hard for singleton specifications and for specifications
given by a fixed-size 2-wide 2-diverse chain RE.

Proof. In both cases, we show a reduction from the problem of Hamiltonian path for simple
graphs. Let G = 〈V,E〉 be a simple graph, and let V = {v1, . . . , vn}. We define the simple
graph G′ = 〈V, E , l〉, where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is
{b} if e ∈ E2 ∪ E6, and is {c} otherwise.

Consider the word x = a(ba)n−1c2n−1(cb)|E|+n+1. We prove that there is a Hamiltonian
path in G iff there is an EP in G′ that is labeled by x. First, it is not hard to see that if G′
has an EP labeled x, then the prefix a(ba)n−1 of x induces a Hamiltonian path in G. Now,
assume that there is a Hamiltonian path P in G from v1 to vn. We construct an Eulerian
cycle in G′ as follows: The Eulerian cycle starts with the path Q in G′ corresponding to
P . This path starts with the edge (v1

in, v
1
out), ends with the edge (vnin, vnout), and visits the

edge (viin, viout) for every i exactly once. Note that l(Q) = a(ba)n−1. In the full version of
the paper we show how the way the Eulerian closure is defined enables us to continue Q as
required.

We continue to the second class. Let R be the RE R = a(ba)∗c∗(cb)∗. Note that R is
indeed a fixed-size 2-wide 2-diverse chain RE. We show that there is a Hamiltonian path in
G iff there is an EP in G′ that satisfies L(R). Again, it is not hard to see that if G′ has an
EP that satisfies L(R), then the prefix a(ba)∗ of R induces a Hamiltonian path in G. Also,
if there is a Hamiltonian path in G, then an Eulerian cycle in G′ that satisfies L(R) can be
constructed as in the case of the word x.3 J

5 But Sometimes It Is Easy

In this section we show classes of regular languages for which the CEP problem can be
solved in polynomial time. By Theorem 6, the CEP problem is NP-hard for fixed-size 2-wide
2-diverse chain REs. We show that when one of the width and diversity parameters is
tightened, the problem becomes feasible. We start with diversity and show that when a chain
RE R is 1-diverse, we can solve the CEP problem for it in polynomial time even when R and
its blocks are not of a fixed size.

I Theorem 7. The CEP problem can be solved in polynomial time for specifications given
by a 1-diverse chain RE.

Proof. Let G = 〈V,E, l〉 be a labeled graph and let R = b1 . . . bk be a RE, where for every i
we have bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ appears at most once in R.
We assume that every letter that appears in G, appears also in R, because otherwise the
CEP problem is trivial. We show how to find an EP that satisfies L(R) and that starts in a
vertex v1 ∈ V . Note that since every σ ∈ Σ appears at most once in R, then the subpath that

3 Note that we could have defined the RE R to be a∗(ba)∗c∗(cb)∗, implying that NP-hardness applies
already for fixed-size 2-wide 2-diverse chain REs in which all blocks have a Kleene star.
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corresponds to a block bi must be an EP in the subgraph Gi induced by the edges labeled by
letters in wi. Therefore, the first vertex in every subpath determines the last vertex in this
subpath: if the degrees in every vertex in Gi are balanced, that is, the in degree is equal to
the out degree for every vertex, then an EP must be a cycle; if the degrees are not balanced
then an EP must start in the only vertex si where outdeg(si) = indeg(si) + 1 and end in the
only vertex ti where indeg(ti) = outdeg(ti) + 1. Thus, the algorithm checks whether G1 has
an EP from v1 that corresponds to b1, and if it does then it finds the vertex v2 in which this
EP ends. Then the algorithm checks whether G2 has an EP from v2 that corresponds to b2
and continues similarly.

We now show how to find an EP in Gi = 〈Vi, Ei, l〉 that starts in a vertex vi and
corresponds to bi. If bi = wi, then we check whether Gi contains every letter in wi exactly
once, and whether wi induces a path in Gi from the vertex vi. Assume now that bi = w∗i ,
and wi = σ0 . . . σn−1. We construct a graph G′i = 〈V ′i , E′i〉, where V ′i = {〈v, j〉 : v ∈ Vi and
0 ≤ j ≤ n− 1} and E′i = {(〈u, j〉, 〈v, j + 1 (mod n)〉) : (u, v) ∈ Ei and l((u, v)) = σj}. Thus,
G′i includes n copies of Gi such that every edge (u, v) with l((u, v)) = σj in Gi induces an
edge from u in the j-th copy to v in the (j + 1)-th copy in G′i. Note that there is an EP in
Gi from the vertex vi that corresponds to bi, iff there is an EP in G′i from the vertex 〈vi, 0〉
to some vertex 〈u, 0〉. Therefore, the problem is reduced to finding an EP from 〈vi, 0〉 in
G′i. J

We continue and show that tightening the width also makes the problem solvable in
polynomial time. We first describe another well-studied problem that we show to be strongly
related to our problem. Let G = 〈V,E〉 be a directed or undirected graph and let (si, ti), for
i = 1, . . . , k, be k ordered pairs of vertices. In the edge-disjoint paths problem (EDP problem,
for short), we need to find, for every 1 ≤ i ≤ k, a path in G from si to ti such that the paths
are edge-disjoint; that is, an edge cannot appear in more than one path. The EDP problem
is NP-complete for both directed and undirected graphs [29]. When the graph is undirected
and k is fixed, there is a polynomial-time algorithm ([28, 20]). For directed graphs, the
problem is NP-complete already when k = 2 [14]. The directed graph GD = 〈V,ED〉 where
ED = {(ti, si) : i = 1 . . . k} is called the demand graph.

Consider the graph G+GD = 〈V,E ∪ ED〉 obtained by adding to G the edges from GD.
When G+GD is Eulerian, we say that there is an Eulerian promise on the demand. It is
shown in [18] that when there is an Eulerian promise on the demand, there is a polynomial-
time algorithm for the EDP problem with k = 3. It is also conjectured in [18] that when
there is an Eulerian promise on the demand, there is a polynomial-time algorithm for the
EDP problem for every fixed k. To the best of our knowledge, however, this problem is still
open (it is also declared open in [29, 26]).

We first relate the EDP problem to the problem of finding an EP that respects a linear
order on the subset of the edges.

I Lemma 8. Consider a directed graph G = 〈V,E〉 and two vertices s, t ∈ V . Let e1, . . . , ek
be some edges in E and τ = e1 ≺ . . . ≺ ek be an order on them. If k ≤ 2, then finding an
EP from s to t that respects τ can be done in polynomial time. If k > 2 is fixed, then finding
an EP from s to t that respects τ can be solved in polynomial time iff the EDP problem for a
directed graph with an Eulerian promise on the demand can be solved in polynomial time for
k + 1 paths.

We now relate the CEP problem for fixed-size 1-wide chain REs to the problem of finding
an EP that respects a linear order on a subset of the edges. Lemma 8 then enables us to
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relate the former also to the EDP problem, implying that restricting the width also leads to
a polynomial complexity.

I Theorem 9. The CEP problem can be solved in polynomial time for specifications given
by a fixed-size 1-wide 3-star-diverse chain RE. For specifications given by a fixed-size 1-wide
d-star-diverse chain RE, the CEP problem can be solved in polynomial time iff the EDP
problem for a directed graph with an Eulerian promise on the demand can be solved in
polynomial time for d paths.

Proof. Let R = b1 . . . bk for a fixed k, where for every i we have bi = σ∗i or bi = σi for
some σi ∈ Σ. We assume that every letter that appears in G appears also in R. Indeed,
otherwise the CEP problem is trivial. We run over all the options for choosing k + 1 vertices
v0, . . . , vk ∈ V (there are |V |k+1 such options), and check whether G has an EP from v0 to
vk that satisfies L(R) and can be partitioned into k subpaths, such that the i-th subpath
starts in vi−1, ends in vi and corresponds to bi. We now describe how to perform this check.

For every i such that bi = σ for some σ ∈ Σ, the graph G must have an edge e = (vi−1, vi)
with l(e) = σ. All the other subpaths corresponding to bj for j 6= i, cannot use the edge
e. In particular, if bj with j 6= i is a single-letter block, then it cannot use the edge e. In
the rest of this proof we assume that for every single-letter block bn = σn there is an edge
en = (vn−1, vn) such that l(en) = σn, and that if bm is a single-letter block with m 6= n then
em and en are different edges (they can be parallel edges). We denote the set of edges that
correspond to a single-letter block by Es.

Let σ ∈ Σ and let bi1 , . . . , bim be the blocks in R such that for every 1 ≤ j ≤ m we
have bij = σ∗. Let Gσ be the subgraph of G induced by the edges {e ∈ E \ Es : l(e) = σ}.
Let G′σ be the graph obtained from Gσ by adding, for every 1 ≤ j ≤ m − 1, an edge
eij = (vij , vij+1−1); that is, we add for every ij an edge from the end of the block ij to the
beginning of the block ij+1. We check whether there is an EP in G′σ from vi1−1 to vim such
that ei1 ≺ ei2 ≺ . . . ≺ eim−1 . In the full version we prove that such an EP exists in G′σ for
every σ iff the required EP in G exists.

Thus, we reduce the CEP problem to the problem of finding an EP that respects a linear
order on a subset of the edges. By Lemma 8, the latter can be reduced to the EDP problem.
Accordingly, we have a polynomial-time algorithm if for every σ ∈ Σ the expression σ∗,
appears at most three times in R (that is, R is 3-star-diverse). Also, if the EDP problem for
a directed graph with an Eulerian promise on the demand can be solved in polynomial time
for d paths, then, according to Lemma 8, we have a polynomial-time algorithm also if R is
d-star-diverse.

Now, assume that there is a polynomial-time algorithm for the case R is d-star-diverse.
Let H = 〈VH , EH〉 be a graph and let e1, . . . , ed−1 ∈ EH . Let H ′ be a labeled graph obtained
from H by assigning a label σi for every edge ei, and assigning a label σ for every other
edge in EH . Note that H has an EP with e1 ≺ . . . ≺ ed−1 iff H ′ has an EP that satisfies
L(R) for R = σ∗σ1σ

∗σ2 . . . σ
∗σd−1σ

∗. By our assumption, the latter problem can be solved
in polynomial time. Therefore, by Lemma 8, the EDP problem for a directed graph with an
Eulerian promise on the demand can be solved in polynomial time for d paths. J

We conclude that there is a polynomial-time algorithm for every specification that is
a disjunction of polynomially many REs of the forms handled in Theorems 7 and 9. As
demonstrated in Example 2, such disjuncts can specify useful behaviors. We note that with
some additional ‘’technical acrobatics”, it is possible to squeeze the lemon some more and
point to additional classes of chain REs that can be solved in polynomial time. For example,
if R = b1 . . . bk, where k is a fixed number and for every 1 ≤ i ≤ k we have bi = w∗i for some
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wi ∈ Σ∗, or bi = σi for some σi ∈ Σ, then it is possible to restrict the diversity of the letters,
but allow repetitions of identical blocks, so that polynomial-time algorithms can be obtained
by combining ideas used in the proofs of Theorems 9 and 7. We do not find, however, these
special cases or technical acrobatics too interesting. A good intuitive and practical conclusion
is that when the specification is a chain RE, it is recommended to use the ideas here in order
to find the complexity of the CEP problem for it, and possibly to decompose or alter it to a
disjunction of specifications of lower width and diversity for which a polynomial algorithm is
possible.

6 Multi-Labeled Graphs

A multi-labeled graph is a tuple G = 〈V,E, l〉 where 〈V,E〉 is a graph and l : E → 2Σ maps
every edge to a subset of letters from the alphabet Σ. For a path P = e1, . . . , ek we define
l(P ) = {σ1 . . . σk : σi ∈ l(ei) for every 1 ≤ i ≤ k}. We say that P satisfies a specification
L ⊆ Σ∗ if l(P ) ∩ L 6= ∅. Note that we take here the existential approach in model checking,
where satisfaction amounts to an existence of a correct path.

We show that if the graph is multi-labeled, the CEP problem is NP-hard already for the
RE a∗b∗. Note that a∗b∗ is a fixed-size 1-wide 1-diverse chain RE. Thus, by both Theorems 9
and 7, the CEP problem in graphs in which each edge is labeled by a single letter can be
solved in polynomial time.

I Theorem 10. The CEP problem for multi-labeled simple graphs is NP-hard already for
the specification given by the RE R = a∗b∗.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given
a simple graph G = 〈V,E〉, we construct a multi-labeled simple graph G′, such that there is
a Hamiltonian path in G iff there is an EP in G′ that satisfies L(R). The graph G′ is defined
by G′ = 〈V, E , l〉 where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {a, b}
if e ∈ E2, and is {b} otherwise. In the full version of the paper we prove the correctness of
the reduction. J

7 The Constrained Chinese Postman Problem

A weighted graph is a tuple G = 〈V,E, c〉, where 〈V,E〉 is a graph and c : E → IR+ maps
every edge to a non-negative cost. The cost of a path P = e1, . . . , ek, denoted c(P ), is∑k
i=1 c(ei); that is, the sum of the costs of the edges along the path. A postman path in G

is a path that visits every edge in E at least once. An optimal postman path is a least-cost
postman path. Similar definitions apply to cycles. In the well-studied Chinese postman
problem, we are given a weighted graph G and need to find an optimal postman path. Clearly,
when G has an EP, it induces an optimal postman path. Otherwise, the goal is to get as close
as possible to an EP. Thus, the Chinese postman problem can be viewed as an optimization
variant of the EP problem. The combinatorial simplicity of the EP problem is carried over to
the Chinese postman problem. In particular, it has a well-known polynomial-time algorithm
[12].

A labeled weighted graph is a tuple G = 〈V,E, l, c〉, where 〈V,E, l〉 is a labeled graph and
〈V,E, c〉 is a weighted graph. For a regular language L, an L-postman path in G is a path
that satisfies L and visits every edge in E at least once. An optimal L-postman path is a
least-cost L-postman path. In the constrained Chinese postman problem (CCP problem, for
short), we are given a labeled weighted graph G and a regular language L and need to find
an optimal L-postman path in G. In this section we study the CCP problem.
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First, we show that the corresponding decision problem is NP-complete, and is NP-hard
already for restricted classes of graphs and specifications.

I Theorem 11. Consider a labeled weighted graph G and a regular language L given by
an NFA, DFA, or RE. For k ∈ IR+, deciding whether there is an L-postman path P with
c(P ) ≤ k is NP-complete. Furthermore, it is NP-hard already when G is simple, when L is a
singleton, when L is given by a DFA with two states, and when L is given by a fixed-size
2-wide 2-diverse chain RE.

Proof. First, note that a labeled graph H = 〈VH , EH , lH〉 has an EP that satisfies L iff
the labeled weighted graph H ′ = 〈VH , EH , lH , c〉 with c(e) = 1 for every e ∈ EH has an
L-postman path with cost |E|. Thus, the lower bounds follow from Theorems 4, 5, and 6.

We prove the upper bound for L given by an NFA A. The other cases follow. Let
G = 〈V,E, l, c〉, A = 〈Σ, Q,Q0, δ, F 〉, and let N be the product NFA of A and G. Formally,
N = 〈Σ, Q × V,Q0 × V, δ′, F × V 〉, where δ′(〈q, v〉, σ) = {〈q′, v′〉 : q′ ∈ δ(q, σ), (v, v′) ∈ E,
and l((v, v′)) = σ}. Note that N ignores parallel edges in G. Also, a path P in G satisfies
L(A) iff there is an accepting run in N whose projection on V corresponds to P . We claim
that there is an L(A)-postman path P in G with c(P ) ≤ k iff there is an L(A)-postman path
P ′ = e1, . . . , en in G with c(P ′) ≤ k of length n ≤ |E| · |Q| · |V |. Let r be an accepting run
in N whose projection on V corresponds to a path P = e1, . . . , en in G, and assume that
P includes every edge in G (including parallel edges) at least once. Let i1 < . . . < i|E| be
the indices in which all edges appear for the first time in P . If for some j there are more
than |Q| · |V | states between the appearance in r of the transition that corresponds to the
edge eij and the appearance of the transition that corresponds to the edge eij+1 , then r

has a loop that can be avoided. By removing these loops we end up with a path of length
n ≤ |E| · |Q| · |V |. Thus, a witness for having an L(A)-postman path P in G with c(P ) ≤ k
is of size at most n ≤ |E| · |Q| · |V |. J

Since the CCP problem is at least as hard as the CEP problem, we turn to consider cases
for which the CEP problem is solvable in polynomial time. In particular, we restrict further
the class of fixed-size 2-wide 2-diverse chain RE. First by restricting the width, and then the
diversity.

I Theorem 12. The CCP problem can be solved in polynomial time for specifications given
by a fixed-size 1-wide 2-star-diverse chain RE.

Proof. Let G = 〈V,E, l, c〉 and let R = b1 . . . bk be a 1-wide 2-star-diverse chain RE. We
assume that every letter that appears in G, appears also in R. Indeed, otherwise the CCP
problem is trivial. We run over all the (polynomially many) options for choosing k+1 vertices
v0, . . . , vk ∈ V , and find a least-cost path in G from v0 to vk that satisfies L(R), contains all
edges, and can be partitioned into k subpaths such that the i-th subpath starts in vi−1, ends
in vi, and satisfies L(bi).

First, assume that bi = σ∗i for every i; that is, R does not contain single-letter blocks. Let
σ ∈ Σ. If σ∗ appears exactly once in R and σ = σi, then we find an optimal postman path
from vi−1 to vi in the subgraph Gσ induced by the edges in G labeled by σ. If σ∗ appears
twice in R, let σ = σi = σj with i < j. We construct a weighted graph G′σ by adding to
Gσ the edge (vi, vj−1) with a large cost. Now we need to find a least-cost path in G′σ from
vi−1 to vj in which every edge appears at least once, and the new edge (vi, vj−1) appears
exactly once. Since the edge (vi, vj−1) has a large cost, it can be done simply by finding an
optimal postman path from vi−1 to vj in G′σ. Finally, as in Theorem 9, we construct a path
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P by concatenating the corresponding paths for every block bi in R. In the full version we
describe how to handle the case where R contains single-letter blocks. J

The case of 1-diverse chain REs follows similar considerations and applies the ideas used
in the proof of Theorem 7 in the case of the CEP problem.

I Theorem 13. The CCP problem can be solved in polynomial time for specifications given
by a 1-diverse chain RE with a fixed number of blocks.

8 Eulerian Languages

The Eulerian language of a Σ-labeled graph G, denoted EL(G), is the set of words read
along Eulerian paths in G. Formally, EL(G) = {l(P ) ∈ Σ∗ : P is an EP in G}. Clearly,
the nonemptiness problem, namely deciding whether EL(G) 6= ∅, coincides with the EP
problem and can thus be solved in polynomial time. Given a regular language L ⊆ Σ∗, the
satisfaction problem for G and L is to decide whether EL(G) ∩ L 6= ∅. It is easy to see
that the satisfaction problem coincides with the CEP problem, and is thus NP-complete
(Theorem 3). Given a word w ∈ Σ∗, the membership problem for G and w is to decide
whether w ∈ EL(G). By Theorem 6, the CEP problem is NP-complete also for singleton
specifications, implying that so is the membership problem.

In this section we study additional problems about the Eulerian language of G. Problems
that compare it with other languages, given by an NFA, DFA, or RE, or given as the Eulerian
language of another graph. Not all our complexities are tight, but we are able to place all
problems in different levels of the polynomial hierarchy.

I Theorem 14. Consider a labeled graph G and a specification L given by an NFA, DFA, or
RE. Deciding whether EL(G) ⊆ L is co-NP-complete. Furthermore, it is co-NP-hard already
for a fixed-size specification.

Proof. For the upper bound, note that a witness for EL(G) 6⊆ L, namely an EP in G that
does not satisfy L, can be verified in polynomial time. For the lower bound, recall that the
CEP problem is NP-hard already for fixed-size specifications (Theorem 5). Observe that
there is an EP that satisfies L iff there is an EP that does not satisfy Σ∗ \ L. Since L is
given by a fixed-size NFA, DFA, or RE, the size of an NFA, DFA, or RE for its complement
Σ∗ \ L is also fixed, and we are done. J

I Theorem 15. Consider a labeled graph G and a specification L given by an NFA, DFA,
or RE. Deciding whether L ⊆ EL(G) is in Πp

2 and is NP-hard.

Proof. The lower bound follows from the NP-hardness of the membership problem. The
upper bound follows from the fact that deciding whether L 6⊆ EL(G) can be done with a
nondeterministic polynomial-time Turing machine that uses an oracle for the membership
problem. J

I Theorem 16. Consider two labeled graphs G and G′. Deciding whether EL(G′) ⊆ EL(G)
and deciding whether EL(G′) ∩ EL(G) 6= ∅ is in Πp

2 and Σp2 respectively, and is NP-hard.

Proof. For the lower bound, we show a reduction from the membership problem. Given
a word w and a graph G, we construct a graph G′ such that EL(G′) = {w}. Now,
w ∈ EL(G) iff EL(G′) ⊆ EL(G) iff EL(G′) ∩ EL(G) 6= ∅. For the upper bound, observe
that deciding whether EL(G′) 6⊆ EL(G) and whether EL(G′)∩EL(G) 6= ∅ can be done with
a nondeterministic polynomial-time Turing machine that uses an oracle for the membership
problem. J
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Since EL(G) contains only words of a fixed length, we know that EL(G) is finite and hence
regular. On the other hand, given a regular language L ⊆ Σ∗, even one all whose words are of
the same length, it is not clear whether there is a graph G such that EL(G) = L. For example,
it is possible to find a two-state labeled graph G such that EL(G) = {abcd, adbc, cbad, cdba}
(the reader is encouraged to search for it). but it is impossible to add abdc to the Eulerian
language. An upper bound for the problem follows from our ability to bound the number of
edges in the candidate graph G. The tight complexity, however, is still open.

I Theorem 17. For a language L given by an NFA, DFA, or RE, deciding whether there is
a labeled graph G such that EL(G) = L is in Σp3.

Proof. Follows from the fact that it can be done by a nondeterministic polynomial-time
Turing machine with oracles for the problems described in Theorems 14 and 15. J
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