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Abstract
The problem of constructing a minimally resolved phylogenetic supertree (i.e., having the smallest
possible number of internal nodes) that contains all of the rooted triplets from a consistent set R
is known to be NP-hard. In this paper, we prove that constructing a phylogenetic tree consistent
with R that contains the minimum number of additional rooted triplets is also NP-hard, and
develop exact, exponential-time algorithms for both problems. The new algorithms are applied
to construct two variants of the local consensus tree; for any set S of phylogenetic trees over some
leaf label set L, this gives a minimal phylogenetic tree over L that contains every rooted triplet
present in all trees in S, where “minimal” means either having the smallest possible number of
internal nodes or the smallest possible number of rooted triplets. The second variant generalizes
the RV-II tree, introduced by Kannan, Warnow, and Yooseph in 1998.
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1 Introduction

Phylogenetic trees are used to describe evolutionary relationships between species [11]. The
supertree approach is a relatively new divide-and-conquer-based technique for reconstructing
phylogenetic trees that may be useful when dealing with very big datasets [4]. The general
idea behind it is to first infer a set of highly accurate trees for overlapping subsets of the species
(e.g., using a computationally expensive method such as maximum likelihood [9, 11]) and then
combine all the trees into one tree according to some well-defined rule. An example of a famous
phylogenetic supertree for more than 4500 species can be found in [5]; see also [4, 15] for
references to many other supertrees in the biological literature. One class of supertree methods
consists of the BUILD algorithm [2] and its various extensions [10, 13, 14, 18, 19, 20, 21, 24]
for combining a set of rooted triplets (binary phylogenetic trees with three leaves each), e.g.,
inferred by the method in [9].

A consensus tree [1, 7, 17] can be regarded as the special case of a phylogenetic supertree
where all the trees that are to be combined have the same leaf label set. Such inputs
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arise when a collection of alternative datasets, each covering all the species, is available,
or when applying bootstrapping or different tree reconstruction algorithms to the same
basic dataset [11]. A consensus tree can also measure the similarity between two identically
leaf-labeled trees or identify parts of trees that are similar. Many different types of consensus
trees, whose formal definitions of how to handle conflicts differ, have been proposed in the
last 45 years. See the surveys in [7], Chapter 30 in [11], and Chapter 8.4 in [23] for more
details about different consensus trees and their advantages and disadvantages.

In situations where more than one phylogenetic tree can explain some given experimental
data equally well, it is natural to select a “minimal” tree that supports the data while making
as few extra statements about the evolutionary history as possible. A minimally resolved
phylogenetic supertree [16] is a supertree that is consistent with all of the input and that has
the minimum number of internal nodes. By minimizing the number of internal nodes, the
risk of creating false groupings called “spurious novel clades” [4] is reduced. Furthermore,
such a tree gives a simpler overview of the data than a tree with many internal nodes and
can in general be stored in less memory. Another way to define “minimal” above, giving what
we call a minimally rooted-triplet-inducing phylogenetic supertree, instead requires that the
supertree contains the minimum number of rooted triplets. This interpretation of minimal
was previously considered in the definition of the RV-II local consensus tree in [17].

The goal of this paper is further develop the mathematical framework of minimal phylo-
genetic supertrees and to design new supertree algorithms that can also be applied to the
construction of consensus trees.

1.1 Problem Definitions
A rooted phylogenetic tree is a rooted, unordered, leaf-labeled tree in which all leaf labels
are different and every internal node has at least two children. For example, T1 and T2 in
Figure 1 are two rooted phylogenetic trees. In this paper, rooted phylogenetic trees are
referred to as “trees” and every leaf in a tree is identified with its unique label.

Let T be a tree. The set of all nodes in T , the set of internal nodes in T , and the set
of leaves in T are denoted by V (T ), I(T ), and Λ(T ), respectively. For any u, v ∈ V (T ), if
u is a descendant of v and u 6= v then we write u ≺ v. lca(u, v) means the lowest common
ancestor of u and v.

A rooted triplet is a binary tree with exactly three leaves. We use the notation xy|z to
refer to the rooted triplet with leaf label set {x, y, z} such that lca(x, y) ≺ lca(x, z) = lca(y, z).
Let T be a tree. For any x, y, z ∈ Λ(T ), if lca(x, y) ≺ lca(x, z) = lca(y, z) holds in T then
the rooted triplet xy|z and T are said to be consistent with each other. For example, ab|c
is consistent with T1 but not with T2 in Figure 1. Observe that for any {x, y, z} ⊆ Λ(T ),
exactly zero or one of the three rooted triplets xy|z, xz|y, and yz|x is consistent with T .
The set of all rooted triplets that are consistent with T is denoted by r(T ). For any set R of
rooted triplets, if R ⊆ r(T ) then R and T are consistent with each other. Finally, a set R of
rooted triplets is consistent if there exists a tree that is consistent with R.

Next, we give the definitions of the minimally resolved phylogenetic supertree consistent
with rooted triplets problem (MinRS) (studied in [16]) and the minimally rooted-triplet-
inducing phylogenetic supertree consistent with rooted triplets problem (MinIS). In both
problems, the input is a consistent set R of rooted triplets1, and the output is a tree T

1 This paper assumes without loss of generality that the input R to MinRS/MinIS is consistent. The
reason is that given an arbitrary R, one can check whether R is consistent or not in polynomial time
using the BUILD algorithm [2] described below.
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Figure 1 An example. Let S = {T1, T2} as above with Λ(T1) = Λ(T2) = {a, b, c, d, e, f, g}. Then
r(T1) ∩ r(T2) = {ab|e, ab|f, ab|g, cd|e, cd|f, cd|g, ef |a, ef |b, ef |c, ef |d, ef |g} and T2 is an optimal
solution to MinRLC. On the other hand, |r(T1)| = 15 while |r(T2)| = 23, so T2 cannot be an optimal
solution to MinILC.

satisfying Λ(T ) =
⋃
t∈R Λ(t) and R ⊆ r(T ). The objectives are to minimize the value

of |I(T )| (for MinRS) and to minimize the value of |r(T )| (for MinIS), respectively.
In the minimally resolved local consensus tree problem (MinRLC) and the minimally

rooted-triplet-inducing local consensus tree problem (MinILC) (introduced in [17] for the
special case k = 2), the input is a set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) =
. . . = Λ(Tk) = L for some leaf label set L, and the output is a tree T satisfying Λ(T ) = L and⋂k
i=1 r(Ti) ⊆ r(T ). The objectives in MinRLC and MinILC are, respectively, to minimize

the value of |I(T )| and to minimize the value of |r(T )|.
Note that MinRLC and MinILC admit trivial polynomial-time reductions to MinRS

and MinIS, respectively, by letting R =
⋂k
i=1 r(Ti).

See Figure 1 for a simple example showing that MinRLC and MinILC are indeed
different problems, and consequently, that MinRS is different from MinIS. From here
on, we will use Newick notation2 to describe trees compactly. E.g., in Figure 1, we have
T1 = ((a, b), (c, d), (e, f), g); and T2 = ((a, b, c, d), (e, f), g);.

Throughout the paper, the size of the input to MinRS/MinIS is expressed in terms of
k = |R| and n = |L|, where L =

⋃
t∈R Λ(t). For MinRLC/MinILC, k = |S| and n = |L|,

where L = Λ(T1) = Λ(T2) = . . . = Λ(Tk).

1.2 Previous Work
Here, we give an overview of some relevant results from the literature.

BUILD: Aho et al. [2] presented a polynomial-time algorithm called BUILD for determining
if an input set R of rooted triplets is consistent, and if so, constructing a tree T with
Λ(T ) =

⋃
t∈R Λ(t) and R ⊆ r(T ). (When the input R is not consistent, one can for example

look for a tree T that maximizes |r(T ) ∩R|; cf. Section 2 in [8] for a survey on this problem
variant.) BUILD is summarized in Section 2.1 below. Henzinger et al. [15] gave a faster
implementation of BUILD, and we note that substituting the data structure for dynamic
graph connectivity used in the proof of Theorem 1 in [15] by the one in [25] yields a time
complexity of min{O(n+ k log2 n

log logn ), O(k + n2 logn)}, where k = |R| and n = |
⋃
t∈R Λ(t)|.

Importantly, BUILD does not solve MinRS and MinIS. This was first observed by Bryant
[6, Section 2.5.2], who gave the following counterexample: R = {bc|a, bd|a, ef |a, eg|a}.
Given R as input, BUILD constructs the tree TB = (a, (b, c, d), (e, f, g));, which has three

2 See, e.g., http://evolution.genetics.washington.edu/phylip/newicktree.html.
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internal nodes and 24 rooted triplets. In contrast, the optimal solution to both MinRS and
MinIS is the tree TO = (a, (b, c, d, e, f, g));, which has two internal nodes and 15 rooted
triplets. As pointed out in [16], the claim by Henzinger et al. in [15] that their Algorithm A’
always constructs a minimal tree is therefore false. In another highly cited paper, Ng and
Wormald [18] presented an extension of BUILD named OneTree to so-called fans. However,
Note 2 in Section 4 of [18] incorrectly states that OneTree outputs a tree with the minimum
number of nodes.

MinRS: For MinRS, the following strong negative result is known: MinRS cannot be
approximated within n1−ε for any constant ε > 0 in polynomial time, unless P = NP [16].
An algorithm named AllMinTrees in [19] outputs all minor-minimal trees consistent with R,
where a tree T is minor-minimal if it is consistent with R and it is not possible to obtain a
tree consistent with R by contracting any edges of T , and this algorithm can be used to solve
MinRS. However, it runs in Ω((n2 )n/2) time [16], which is self-exponential in n/2. Some
special cases of MinRS can be solved in polynomial time; e.g., if the output tree has at most
three internal nodes or if it is a caterpillar (a tree in which every node has at most one child
that is an internal node) [16]. Also, for any positive integer p, if every node in the output
tree has at most p children which are internal nodes then MinRS can be solved in pO(n)

time [16].

MinIS: To determine the computational complexity of MinIS was listed as an open problem
in Section 6 in [16]. As far as we know, it has not been studied previously.

MinRLC, MinILC, and local consensus trees: The MinILC problem originates from
Kannan et al. [17], who gave several alternative definitions of a “local consensus tree”. They
called a tree T an RV-II (“relaxed version II”) tree of two trees T1 and T2 with identical leaf
label sets if r(T1)∩r(T2) ⊆ r(T ) and |r(T )| is minimized. (Thus, an RV-II tree is a solution to
MinILC when k = 2.) In Section 5.4 of [17], the authors suggested that applying BUILD to
the set r(T1)∩r(T2) always produces an RV-II tree, but this is not correct. A counterexample,
analogous to the one for MinRS and MinIS above, is obtained by letting T1 and T2 be
the two trees TB and TO, which gives r(T1) ∩ r(T2) = {bc|a, bd|a, cd|a, ef |a, eg|a, fg|a}, so
that the solution to both MinRLC and MinILC is TO while BUILD’s output is TB. This
shows that one cannot solve MinRLC and MinILC by taking R =

⋂k
i=1 r(Ti) and applying

BUILD directly.
Bryant [7] later defined the “local consensus tree” as the output of BUILD when given⋂k

i=1 r(Ti) as input. The algorithm in Section 5.4.1 of [17] constructs such a tree in O(n2)
time for the case k = 2, while the O(kn3)-time algorithm in Theorem 7 in [15] by Henzinger et
al. can be used for unbounded k. Note that finding a tree T satisfying only

⋂k
i=1 r(Ti) ⊆ r(T )

is trivial since one can just select T = T1, so some additional conditions are needed to make
the tree informative. The advantages of Bryant’s local consensus tree are that it is unique and
can be computed efficiently; the disadvantages are that it does not minimize the number of
nodes or induced rooted triplets and that it is defined in terms of the output of an algorithm
and not axiomatically.

1.3 Our New Results and Organization of the Paper
Section 2 reviews the BUILD algorithm from [2] and a useful result by Semple in [19] that
characterizes all trees consistent with the input R. Based on Semple’s characterization,
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Section 3 presents an O∗((1 +
√

3)n) = O(2.733n)-time algorithm3 for MinRS and an
O(kn3 + 2.733n)-time algorithm for MinRLC, and Section 4 presents an O∗(4n)-time
algorithm for MinIS and an O(kn3 + 4n · poly(n))-time algorithm for MinILC.

All four problems are NP-hard; MinRS was shown to be NP-hard in [16], and we
complement this result by establishing the NP-hardness of MinRLC in Section 5 and the
NP-hardness of MinIS and MinILC in Section 6.

2 Preliminaries

2.1 Aho et al.’s BUILD Algorithm [2]
The BUILD algorithm [2] is a recursive, top-down algorithm that takes as input a set R of
rooted triplets and a leaf label set L such that

⋃
t∈R Λ(t) ⊆ L and outputs a tree T with

Λ(T ) = L that is consistent with all of the rooted triplets in R, if such a tree exists; otherwise,
it outputs fail. The time complexity of BUILD is polynomial (q.v., Section 1.2).

A summary of how BUILD works is given here. It first partitions the leaf label set L
into blocks based on the information contained in R. More precisely, BUILD constructs an
auxiliary graph, defined as the undirected graph G(L) = (L,E) where for any x, y ∈ L, the
edge {x, y} belongs to E if and only if R contains at least one rooted triplet of the form xy|z
with z ∈ L. It then computes the connected components in G(L) and assigns the leaf labels
in each connected component to one block. (Henceforth, the set of leaf labels belonging to
any connected component C in G(L) is denoted by Λ(C), and for every L′ ⊆ L, we define
R|L′ = {t ∈ R : Λ(t) ⊆ L′}.) Next, for each block Λ(C), BUILD builds a tree TC by calling
itself recursively using R|Λ(C) together with Λ(C) as input. Finally, BUILD returns a tree
consisting of a newly created root node whose children are the roots of all the recursively
constructed TC-trees. The recursion’s base case is when the leaf label set consists of one
element x, in which case the algorithm just returns a tree with a single leaf labeled by x. If
any auxiliary graph G(L′) constructed during BUILD’s execution has only one connected
component and |L′| > 1 holds then the algorithm terminates and outputs fail. See, e.g., [2]
for the correctness proof and further details.

Returning to the example in Section 1.2 where R = {bc|a, bd|a, ef |a, eg|a} and L =
{a, b, c, d, e, f, g}, the blocks in the auxiliary graph G(L) are {a}, {b, c, d}, and {e, f, g}. The
auxiliary graphs on the successive recursive levels contain no edges, so BUILD outputs the
tree (a, (b, c, d), (e, f, g));.

2.2 Semple’s Characterization
In [19], Semple clarified the relationship between the auxiliary graph G(L) used in the BUILD
algorithm and the trees consistent with R. For any tree T , define π(T ) as the partition
of Λ(T ) whose parts are the leaves in the different subtrees attached to the root of T ; as
an example, π(T1) = {{a, b}, {c, d}, {e, f}, {g}} in Figure 1. With this notation, Semple’s
characterization can be expressed as:

I Lemma 1. (Corollary 3.3 in [19]) Let T be any tree that is consistent with R. For each
connected component C in G(L), Λ(C) ⊆ B for some B ∈ π(T ).

Lemma 1 implies that if T is any tree consistent with R then the partition π(T ) can be
obtained by performing zero or more mergings of G(L)’s connected components. Thus, every

3 The notation O∗(f(n)) means O(f(n) · poly(n)).
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tree consistent with R can be recovered by trying all possible mergings of the connected
components in G(L) at each recursion level.4

We remark that Lemma 1 is very useful. For example, it can be employed to prove the
non-uniqueness of solutions to MinRLC and MinILC (and hence, MinRS and MinIS)
by considering the instance S = {T1, T2, T3} with T1 = ((1, 2, 3, 4, 5, 6), (7, 8), (9, 10), 11);,
T2 = ((1, 2, 3, 4, 5, 6, 7, 8), (9, 10), 11);, and T3 = ((1, 2, 3, 4, 5, 6, 9, 10), (7, 8), 11);. The
connected components in G(L), where R =

⋂3
i=1 r(Ti), consist of {1, 2, 3, 4, 5, 6}, {7, 8},

{9, 10}, and {11}. By Lemma 1, we only need to check a few possible candidate trees
(corresponding to the different ways of merging these connected components), and we find that
each of T1, T2, and T3 is an optimal solution to MinILC since |r(T1)| = |r(T2)| = |r(T3)| = 93.
Furthermore, each of T2 and T3 is an optimal solution to MinRLC.

3 Exponential-Time Algorithms for MinRS and MinRLC

This section presents an exact O(2.733n)-time algorithm for MinRS. As a consequence,
MinRLC can be solved in O(kn3 + 2.733n) time.

The main idea is to use Lemma 1 together with dynamic programming. For every L′ ⊆ L,
let opt(L′) be the number of internal nodes in an optimal solution to MinRS for R|L′.
Clearly, if |L′| = 1 then opt(L′) = 0. To compute opt(L′) when |L′| ≥ 2, observe that if T ′ is
any optimal solution for R|L′ then T ′ consists of a root node whose children are the roots of
the optimal solutions for R|P1, R|P2, . . ., R|Pt, where {P1, P2, . . . , Pt} is equal to π(T ′). The
partition π(T ′) can be found by enumerating partitions of L′ and using dynamic programming
to identify the best one; according to Lemma 1, only partitions corresponding to the different
ways of merging connected components in the auxiliary graph G(L′) need to be considered.

The details are explained next. Let CL′ be the set of connected components in G(L′). For
every subset D ⊆ CL′ , define Merge(D) as the set of all leaf labels belonging to components
in D, i.e., Merge(D) =

⋃
Q∈D Λ(Q). Also define DP (D) for every D ⊆ CL′ to be the minimum

value of
∑
X∈Q opt(Merge(X )) taken over all possible true partitions Q of D, where we say

that a partition Q of a set X is a true partition of X if |X| ≥ 2 and Q 6= {X} (i.e., if |Q| > 1),
or if |X| = |Q| = 1. Then:

I Lemma 2. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP (CL′) + 1.

Proof. Let T ′ be any optimal tree for R|L′. The children of the root of T ′ are the roots of
the optimal solutions for R|P1, R|P2, . . ., R|Pt, where each Pi equals Merge(D) for some
D ⊆ CL′ because of Lemma 1. By definition, DP (CL′) is the minimum value of

∑
X∈P opt(X )

over all true partitions P of L′ such that each X ∈ P equals Merge(D) for some D ⊆ CL′ .
Together with the common root node, this gives opt(L′) = DP (CL′) + 1. J

I Lemma 3. For every D ⊆ CL′ with |D| ≥ 2, DP (D) = min
∅6=X(D

{
opt(Merge(X )) +

min{DP (D \ X ), opt(Merge(D \ X ))}
}
.

Proof. DP (D) = min
{∑

X∈Q opt(Merge(X )) : Q is a true partition of D
}

=
min

{
opt(Merge(X )) + min{DP (D\X ), opt(Merge(D\X ))} : X ∈ Q, Q is a true partition

of D
}

= min
{

opt(Merge(X )) + min{DP (D \ X ), opt(Merge(D \ X ))} : ∅ 6= X ( D
}
. J

4 This technique was actually used even earlier than [19]; the SUPERB algorithm in [10] outputs all
binary trees consistent with R by considering all ways of merging the connected components of G(L)
into exactly two connected components at each recursion level.
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Algorithm MinRS_exact
Input: Set R of rooted triplets over a leaf label set L.
Output: The number of internal nodes in a minimally resolved tree consistent with R
and leaf-labeled by L.

1: For every x ∈ L, initialize opt({x}) := 0;
2: for i := 2 to n do
3: for every cardinality-i subset L′ of L do
4: Construct G(L′). Let C and U be the set of connected components and the set

of singleton components, respectively, in G(L′);
5: Let DP (∅) := 0. For every X ∈ C \ U , let DP ({X}) := opt(Λ(X));
6: for j := 2 to |C| − |U| do
7: for every cardinality-j subset D of C \ U do
8: DP (D) :=

min
∅6=X(D

{
opt(

⋃
Q∈X Λ(Q)) + min{DP (D \ X ), opt(

⋃
Q∈D\X Λ(Q))}

}
;

9: end for
10: end for
11: opt(L′) := DP (C \ U) + 1;
12: end for
13: end for
14: return opt(L);

Figure 2 Algorithm MinRS_exact.

Lemmas 2 and 3 suggest the following strategy: Compute opt(L′) for all subsets L′ of L
in order of increasing cardinality by evaluating the formula in Lemma 2, while using dynamic
programming to compute and store the relevant DP -values. To do this, for each L′, we
first construct G(L′) in polynomial time. We then enumerate all subsets D of CL′ in a loop
having |CL′ | iterations in which iteration j uses Lemma 3 to compute all DP (D)-values
where |D| = j. Each application of Lemma 3 takes O∗(2|D|) time, so this takes a total of
O∗(

∑|CL′ |
j=1

(|CL′ |
j

)
2j) = O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for each L′. To obtain opt(L), we

iterate over all subsets L′ of L of cardinality i = 1, 2, . . . , n; iteration i computes opt(L′) for
each L′ with |L′| = i in O∗(3|CL′ |) time as just described. The total running time becomes
O∗(

∑n
i=1
(
n
i

)
3i) = O∗((3 + 1)n) = O∗(4n).

To reduce the time complexity, we will reduce the number of applications of Lemma 3
in the main loop that computes opt(L′) for any L′ ⊆ L. We rely on the following simple
observation, which essentially tells us that the singleton components of G(L′) can be ignored.

I Lemma 4. Let U be the set of singleton components in G(L′). DP (CL′) = DP (CL′ \ U).

Proof. Consider any x ∈ U . By the construction of G(L′) and U , there are no rooted triplets
of the form xy|z for any y, z ∈ L′ in the set R|L′. Hence, there exists a minimally resolved
tree consistent with R|L′ in which x is attached directly to the root. The lemma follows. J

The resulting algorithm, called MinRS_exact, is summarized in Figure 2.

I Theorem 5. Algorithm MinRS_exact solves MinRS in O∗((1 +
√

3)n) time.

Proof. First note that CL′ \ U contains no singleton components. Therefore, the number of
connected components in CL′ \U is at most |L

′|
2 , i.e., |CL′ |− |U| ≤ |L

′|
2 . Now, when computing

MFCS 2016
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opt(L′) for any subset L′ of L, the number of applications of the formula in Lemma 3 is reduced
since there no are subsets D of cardinality larger than |CL′ |− |U|. More precisely, the time for
each L′ is reduced to O∗(

∑|CL′ |−|U|
j=1

(|CL′ |−|U|
j

)
2j) = O∗((2 + 1)|CL′ |−|U|) = O∗(3|CL′ |−|U|) =

O∗(
√

3|L
′|). Finally, replacing O∗(3|CL′ |) by O∗(

√
3|L

′|) in the analysis of computing opt(L)
above gives a total time complexity of O∗(

∑n
i=1
(
n
i

)√
3i) = O∗((

√
3 + 1)n). J

I Remark. The algorithm as presented here returns opt(L). An optimal tree with this
number of internal nodes can be obtained by standard traceback techniques.

I Corollary 6. MinRLC can be solved in O(kn3 + (1 +
√

3)n · poly(n)) time.

Proof. First construct R =
⋂k
i=1 r(Ti) in O(kn3) time, e.g., by preprocessing each Ti in

O(n) time so that any query of the form lca(x, y) in Ti with x, y ∈ L can be answered in O(1)
time [3] and then, for every L′ ⊆ L with |L′| = 3, doing 3k lca-queries to see if L′ induces
the same rooted triplet in all of the k trees. Next, run MinRS_exact on R. J

4 Exponential-Time Algorithms for MinIS and MinILC

We now describe an O∗(4n)-time algorithm for MinIS based on the technique from Section 3.
Applying it to MinILC yields an O(kn3 + 4n · poly(n))-time algorithm for the latter.

Lemma 1 guarantees that every valid solution to MinIS can be discovered by trying
all ways of merging connected components in the auxiliary graphs G(L′). As in Section 3,
we use dynamic programming to compute and store optimal values to subproblems but
make the following modifications. First of all, redefine opt so that opt(L′) for every L′ ⊆
L means the value of |r(T ′)| for an optimal solution T ′ to MinIS for R|L′. Secondly,
redefine DP (D) for every D ⊆ CL′ to mean the minimum value of

∑
X∈Q(opt(Merge(X ))+(|Merge(X )|

2
)
· |L′ \Merge(X )|), taken over all possible true partitions Q of D. With the new

definitions of opt and DP , the analogues of Lemmas 2 and 3 become:

I Lemma 7. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP (CL′).

Proof. DP (CL′) counts the minimum number of rooted triplets in a tree consistent with R|L′
among all partitions Q of CL′ . Hence, opt(L′) = DP (CL′). J

I Lemma 8. For every D ⊆ CL′ with |D| ≥ 2, DP (D) = min
∅6=X(D

{
opt(Merge(X )) +(|Merge(X )|

2
)
· |L′ \Merge(X )| + min{DP (D \ X ), opt(Merge(D \ X )) +

(|Merge(D\X )|
2

)
· |L′ \

Merge(D \ X )|}
}
.

Proof. DP (D) = min
{∑

X∈Q(opt(Merge(X )) +
(|Merge(X )|

2
)
· |L′ \Merge(X )|) : Q is a true

partition of D
}

= min
{

opt(Merge(X )) +
(|Merge(X )|

2
)
· |L′ \Merge(X )| + min{DP (D \X),

opt(Merge(D\X ))+
(|Merge(D\X )|

2
)
·|L′\Merge(D\X )|} : X ∈ Q, Q is a true partition of D

}
= min

{
opt(Merge(X )) +

(|Merge(X )|
2

)
· |L′ \Merge(X )| + min{DP (D \X), opt(Merge(D \

X )) +
(|Merge(D\X )|

2
)
· |L′ \Merge(D \ X )|} : ∅ 6= X ( D

}
. J

The new algorithm, called MinIS_exact, is obtained by modifying Algorithm
MinRS_exact as follows:

Change Step 8 so that it computes DP (D) using Lemma 8 instead Lemma 3.
Change Step 11 so that it assigns opt(L′) := DP (CL′), in accordance with Lemma 7.
Change Step 4 so that it always sets U to ∅.
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The reason why we force U = ∅ is that we do not have an analogue of Lemma 4 for MinIS
that would allow us to ignore the singleton components. The algorithm therefore spends
O∗(

∑|CL′ |
j=1

(|CL′ |
j

)
2j) = O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for each L′, just like the slower

version of Algorithm MinRS_exact in Section 3, and the total running time is O∗(
∑n
i=1
(
n
i

)
3i)

= O∗((3 + 1)n) = O∗(4n).

I Theorem 9. Algorithm MinIS_exact solves MinIS in O∗(4n) time.

I Corollary 10. MinILC can be solved in O(kn3 + 4n · poly(n)) time.

5 NP-Hardness of MinRLC

Section 3 in [16] proved that MinRS is NP-hard. It follows from the proof in [16] that MinRS
remains NP-hard even if restricted to a particular special case which we now describe.

Suppose that L0 = {v1, v2, . . . , vq} is a set of elements. Define L′0 = {v1′ , v1′′ , v2′ , v2′′ , . . . ,

vq′ , vq′′}, and for any integers i, j with 1 ≤ i < j ≤ q, define R(vi, vj) as the set of four
rooted triplets {vi′vi′′ |vj′ , vi′vi′′ |vj′′ , vj′vj′′ |vi′ , vj′vj′′ |vi′′} over L′0. For any set S, let

(
S
2
)

denote the set of all subsets of S of cardinality 2. According to Section 3 in [16], MinRS is
NP-hard even if restricted to instances where R has the form R =

⋃
{vi,vj}∈Z R(vi, vj) for

some set L0 and some Z ⊆
(
L0
2
)
.

I Theorem 11. MinRLC is NP-hard.

Proof. We reduce from the above variant of MinRS. Let R be any given instance of
the problem. Let P be the set of pairs of indices that form rooted triplets in R, i.e.,
P =

{
{i, j} : vi′vi′′ |vj′ , vi′vi′′ |vj′′ , vj′vj′′ |vi′ , vj′vj′′ |vi′′ ∈ R

}
, and let Q =

({1,2,...,q}
2

)
\ P .

Define a tree T0 = ((v1′ , v1′′), (v2′ , v2′′), . . . , (vq′ , vq′′)); and for every f = {x, y} ∈ Q,
define a tree Tf by taking a copy of T0 and merging the two subtrees (vx′ , vx′′) and (vy′ , vy′′)
so that Tf = ((vx′ , vx′′ , vy′ , vy′′), (v1′ , v1′′), (v2′ , v2′′), . . . , (vn′ , vn′′));. Let S = {T0} ∪ {Tf :
f ∈ Q}. Note that R =

⋂
Ti∈S r(Ti). This is because for any {x, y} ∈ P , the four rooted

triplets vx′vx′′ |vy′ , vx′vx′′ |vy′′ , vy′vy′′ |vx′ , vy′vy′′ |vx′′ appear in R as well as in r(Ti) for every
Ti ∈ S. On the other hand, for any {x, y} ∈ Q, vx′vx′′ |vy′ , vx′vx′′ |vy′′ , vy′vy′′ |vx′ , vy′vy′′ |vx′′

do not appear in R or in r(T{x,y}). Thus, there exists a tree T with
⋂
Ti∈S r(Ti) ⊆ r(T )

having x internal nodes if and only if there exists a tree T ′ with R ⊆ r(T ′) having x internal
nodes. J

6 NP-Hardness of MinILC and MinIS

To prove the NP-hardness of MinILC, we give a polynomial-time reduction from the
Maximum Clique problem, which is NP-hard [12]. Maximum Clique takes as input an
undirected graph G = (V,E) and asks for a largest clique in G, where X ⊆ V is a clique
in G if every two vertices belonging to X are adjacent in G.

The reduction is as follows. Let n = |V | and write V = {1, 2, . . . , n}. Create a set L
of leaf labels such that L = {vi, v′i : i ∈ V } ∪ {z, w1, w2, . . . , wn2}. Define a tree T∅ =
(z, (w1, w2, . . . , wn2), (v1, v

′
1), (v2, v

′
2), . . . , (vn, v′n)); with Λ(T∅) = L. For any nonempty

subset X = {i1, i2, . . . , ip} ⊆ V , let TX be the tree with Λ(TX) = L obtained by taking a copy
of T∅, deleting the subtrees (vi, v′i) for all i ∈ X, and replacing the subtree (w1, w2, . . . , wn2)
by ((w1, w2, . . . , wn2 , vi1 , vi2 , . . . , vip), v′i1 , v

′
i2
, . . . , v′ip). Finally, let S = {T∅} ∪ {T{i} : i ∈

V } ∪ {T{i,j} : {i, j} ∈ E}.
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Section 6.1 first states some general properties satisfied by the trees defined above. Then,
Section 6.2 establishes some specific properties satisfied by any local consensus tree of S.
After that, we will prove that for any X ⊆ V , X is a maximum clique in G if and only if TX
is a local consensus tree of S with the smallest possible number of rooted triplets, giving the
main result of this section.

6.1 General Properties

The following additional notation is used. For any tree H, Child(H) is the set of children
of the root of H. For any u ∈ V (H), the subtree of H induced by u and all proper
descendants of u is called the subtree of H rooted at u and is denoted by Hu. For any
L′ ⊆ Λ(H), H|L′ is the tree obtained from H by deleting all nodes with no descendants
in L′ and their incident edges, and then contracting every edge between a node having
one child and its child. Finally, for every positive integer n, define a function fn(k) =
n5 − k−1

2 n4 + 4kn3 − 6k2−3k−3
2 n2 + (4k2 − 4k − 1)n− 7k3−7k2

2 . We immediately have:

I Lemma 12. For any tree H, |r(H)| =
∑

u∈Child(H)

(
|r(Hu)| +

(|Λ(Hu)|
2

)
· (|Λ(H)| − |Λ(Hu)|)

)
.

I Lemma 13. Let X be any subset of the given V . Write k = |X|. Then |r(TX)| = fn(k).

Proof. By Lemma 12, the number of rooted triplets consistent with TX is
(
n2+k

2
)
· k +(

n2+2k
2
)
· (2n − 2k + 1) + (n − k) · (n2 + 2n − 1). Expanding this expression yields the

formula. J

I Corollary 14. For any fixed n ≥ 8, fn(k) is strictly decreasing as k increases.

Proof. By Lemma 13, fn(k+ 1)− fn(k) = − 1
2n

4 + 4n3− 12k+3
2 n2 + 8kn− 7

2 (3k2 + k). Since
n ≥ 8, − 1

2n
4 + 4n3 ≤ 0 holds. Also, 12k+3

2 n > 8k for n ≥ 8 and − 7
2 (3k2 + k) ≤ 0. The

corollary follows. J

I Lemma 15. Consider any u ∈ Child(H) in a tree H. Suppose that Λ(Hu) = α ∪ β for
some α, β 6= ∅ with α ∩ β = ∅. Let H ′ be the tree obtained from H by deleting Hu and
its parent edge and attaching the roots of H|α and H|β as children of the root of H. If
|α|+ |β| ≤ 2|Λ(H)|

3 then |r(H ′)| < |r(H)|.

Proof. Define m = |Λ(H)|. Lemma 12 gives |r(H)| − |r(H ′)| = |r(Hu)| +
(|α|+|β|

2
)
· (m −

|α| − |β|)− |r(H|α)| −
(|α|

2
)
· (m− |α|)− |r(H|β)| −

(|β|
2
)
· (m− |β|). Noting that |r(Hu)| ≥

|r(H|α)|+ |r(H|β)|, we have |r(H)| − |r(H ′)| ≥
(|α|+|β|

2
)
·(m− |α| − |β|)−

(|α|
2
)
·(m− |α|)−(|β|

2
)
·(m− |β|) = |α|·|β|·(m+ 1− 3

2 ·(|α|+ |β|)) ≥ |α|·|β|·(m+ 1−m) = |α|·|β| > 0. J

6.2 Properties of a Local Consensus Tree of S

By the definition of S, we have the next lemma.

I Lemma 16. The set
⋂
Ti∈S r(Ti) consists of the following rooted triplets:

wiwj |z for all 1 ≤ i < j ≤ n2 and viv′i|z for all 1 ≤ i ≤ n;
wiwj |v′k for all 1 ≤ i < j ≤ n2 and 1 ≤ k ≤ n;
viv
′
i|vj, viv′i|v′j, vjv′j |vi, and vjv′j |v′i for all 1 ≤ i < j ≤ n with {i, j} 6∈ E.
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Let T be any local consensus tree of S, i.e., any tree T such that Λ(T ) = L and⋂
Ti∈S r(Ti) ⊆ r(T ). According to Lemma 16, r(T ) contains viv′i|z for all 1 ≤ i ≤ n, so

the two leaves vi and v′i must belong to the same subtree attached to the root of T for all
1 ≤ i ≤ n. Similarly, all leaves in {w1, w2, . . . , wn2} must belong to one subtree attached
to the root of T . The core of T , denoted by γT , is the subtree of T rooted at the node
lca(w1, w2, . . . , wn2). The path from the root of T to the parent of γT is called the core
path of T . For any node u ∈ V (T ), if u is a child of the core path of T that does not
belong to the core path itself and u 6= lca(w1, w2, . . . , wn2), the subtree of T rooted at u is
called a secondary subtree of T . Note that the secondary subtrees of T are disjoint. Define
CT = {i : vi ∈ Λ(γT )}.

I Lemma 17. Let T be a local consensus tree of S. T has the following properties:
1. The core γT does not contain the leaf v′i for any 1 ≤ i ≤ n.
2. CT forms a clique in G.
3. For any i ∈ {1, 2, . . . n}, if CT ∪{i} is not a clique in G then vi and v′i belong to the same

secondary subtree of T .

Proof.
1. Suppose v′i ∈ Λ(γT ). Let wa, wb be any two leaves such that lca({wa, wb}) = lca({w1, w2,

. . . , wn2}). Then, wawb|v′i 6∈ r(T ), contradicting Lemma 16.
2. Consider any i, j ∈ CT with i 6= j. By point 1., vivj |v′i ∈ r(T ), so viv

′
i|vj 6∈ r(T ).

According to Lemma 16, {i, j} 6∈ E does not hold, which means that {i, j} ∈ E.
3. Since CT ∪ {i} is not a clique, there exists some j ∈ CT where {i, j} 6∈ E. By Lemma 16,

viv
′
i|vj ∈ r(T ). Thus, vi and v′i are in the same subtree attached to the core path.

J

Observe that Lemma 17.1 implies Λ(γT ) = {w1, w2, . . . , wn2} ∪ {vp | p ∈ CT }. Moreover,
by Lemma 17.3, for any i ∈ {1, 2, . . . n}, if vi and v′i belong to subtrees attached to different
nodes on the core path then CT ∪ {i} is a clique in G.

I Lemma 18. Let n ≥ 10 and let T be a local consensus tree of S. T can be transformed
into a local consensus tree of S of the form TX for some X ⊆ V where X is a clique in G
and |r(TX)| ≤ |r(T )|.

Proof. We describe a sequence of transformations that can be applied to T without increasing
the number of rooted triplets consistent with it. After each transformation, the resulting
tree still contains all of the rooted triplets listed in Lemma 16, so it is still a local consensus
tree of S.

First, consider the leaf z in T . Let P be the path from the root of T to z, and let
ρ1, ρ2, . . . , ρe be the disjoint subtrees of T attached to P whose roots do not belong to P
themselves. Let T 1 be the tree formed by removing P and attaching z and the roots
of ρ1, ρ2, . . . , ρe as children of the root. Then |r(T 1)| ≤ |r(T )|, and T 1 has the property that
z is a child of the root of T 1.

Secondly, transform T 1 to T 2 by contracting the core γT 1 , i.e., by replacing γT 1 by a
single node to which all leaves in Λ(γT 1) are directly attached. Clearly, |r(T 2)| ≤ |r(T 1)|.

Thirdly, suppose that for some q ∈ {1, 2, . . . , n}, it holds that q 6∈ CT 2 while CT 2 ∪ {q}
is a clique in G. Let T 3 be the tree formed by removing the leaf vq from its location in T 2

and attaching it to the root of γT 2 , and attaching the leaf v′q as a child of the root of γT 2 .
There are two types of rooted triplets involving vq: (i) xvq|y and (ii) xy|vq. For (i), there
are at most n2 + n− 1 choices of x by Lemma 17.1 and at most 2n choices of y, so T 3 has at
most (n2 + n− 1) · 2n more rooted triplets than T 2 of this form. For (ii), there are at least
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(
n2

2
)
such rooted triplets in T 2 but not in T 3, corresponding to pairs of the form (wi, wj),

and at most
(2n

2
)
such rooted triplets in T 3 that are not present in T 2. Similarly, there are

two types of rooted triplets involving v′q: (iii) xv′q|y and (iv) xy|v′q. As above, T 3 has at
most (n2 + n− 1) · 2n more rooted triplets than T 2 of the form (iii) and at most

(2n
2
)
rooted

triplets of the form (iv). Hence, by transforming T 2 to T 3, the number of rooted triplets
is reduced by at least

(
n2

2
)
− 2 ·

(2n
2
)
− 2 · (n2 + 2 − 1) · (2n), which is larger than 0 when

n ≥ 10. We repeat this step until T 3 has no leaf vq such that q 6∈ CT 3 and CT 3 ∪ {q} is a
clique. This gives |r(T 3)| ≤ |r(T 2)|.

Next, transform T 3 to a tree T 4 in which every secondary subtree contains at most two
leaves and, furthermore, the leaves in any secondary subtree with precisely two leaves are of
the form {vq, v′q} where CT 4 ∪ {q} is not a clique in G. To do this, consider each secondary
subtree s of T 3. By the definition of T 3 in the previous paragraph, CT 3 ∪ {q} is not a clique
in G for any vq ∈ Λ(s). While |Λ(s)| > 2, extract any pair of leaves {vq, v′q} from s (recall
from Lemma 17.3 that any two leaves of the form vi and v′i must belong to the same secondary
subtree), and create a new secondary subtree with the leaves {vq, v′q} attached to the core
path as a sibling of s. Every secondary subtree s satisfies |Λ(s)| ≤ 2n ≤ 2n2

3 ≤ 2|Λ(H)|
3 ,

where H is the subtree rooted at the parent of the root of s, so we get |r(T 4)| ≤ |r(T 3)| by
Lemma 15.

Lastly, transform T 4 to a tree T 5 whose core path consists of a single edge (u0, u1), where
u0 is the root of T 5, as follows. Attach each secondary subtree of T 4 having two leaves as a
child of u0, and attach each secondary subtree of T 4 having one leaf as a child of u1. Attach
z as a child of u0 and the core γT 4 as a child of u1. Note that this will not destroy any of
the rooted triplets in Lemma 16, and that |r(T 5)| ≤ |r(T 4)|.

By the definition of TX , T 5 is equal to TX if we select X = CT 5 . Finally, CT 5 is a clique
in G by Lemma 17.2. J

I Lemma 19. Let n ≥ 10. X ⊆ V is a maximum clique in G if and only if TX is a local
consensus tree of S that minimizes the number of rooted triplets.

Proof. (→) For the purpose of obtaining a contradiction, suppose there exists a local
consensus tree T ′ of S with |r(T ′)| < |r(TX)|. Apply Lemma 18 to T ′ to get a tree TQ that
is also a local consensus tree of S with |r(TQ)| ≤ |r(T ′)| and where Q is a clique in G. Then
|Q| > |X| by Lemma 13 and Corollary 14, which is impossible.

(←) Suppose X ′ is a larger clique in G than X. Lemma 13 and Corollary 14 imply |r(TX′)| <
|r(TX)|, contradicting that TX is a local consensus tree of S minimizing the number of rooted
triplets. J

Now, assuming without loss of generality that n ≥ 10 in the reduction from Maximum
Clique above, Lemma 19 gives:

I Theorem 20. MinILC is NP-hard.

Finally, by the reduction from MinILC to MinIS mentioned in Section 1.1:

I Corollary 21. MinIS is NP-hard.

7 Concluding Remarks

The main open problem is to obtain faster exponential-time algorithms than the ones
presented here. In particular, can MinRS be solved in O∗(2n) time?
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Another open problem is to extend the algorithms in this paper to unrooted phylogenetic
trees. This would be interesting because many existing methods for inferring phylogenetic
trees produce unrooted trees [11]. The unrooted case appears to be much harder than the
rooted case, as the basic problem of determining the consistency of an input set of rooted
triplets is solvable in polynomial time (see Section 1.2), while the corresponding problem for
unrooted quartets (unrooted, distinctly leaf-labeled trees with exactly four leaves each and in
which every internal node has at least three neighbors) is already NP-hard [22].
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