
Deciding Semantic Finiteness of Pushdown
Processes and First-Order Grammars w.r.t.
Bisimulation Equivalence
Petr Jančar

Dept. of Computer Science, FEI, Technical University Ostrava, Czech Republic
petr.jancar@vsb.cz

Abstract
The problem if a given configuration of a pushdown automaton (PDA) is bisimilar with some
(unspecified) finite-state process is shown to be decidable. The decidability is proven in the
framework of first-order grammars, which are given by finite sets of labelled rules that rewrite
roots of first-order terms. The framework is equivalent to PDA where also deterministic popping
epsilon-steps are allowed, i.e. to the model for which Sénizergues showed an involved procedure
deciding bisimilarity (FOCS 1998). Such a procedure is here used as a black-box part of the
algorithm. For deterministic PDA the regularity problem was shown decidable by Valiant (JACM
1975) but the decidability question for nondeterministic PDA, answered positively here, had been
open (as indicated, e.g., by Broadbent and Goeller, FSTTCS 2012).

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases pushdown processes, first-order grammars, bisimulation, regularity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.52

1 Introduction

The question of deciding semantic equivalences of systems, like language equivalence, has
been a frequent topic in computer science. A closely related question asks if a given system
in a class C1 has an equivalent in a simpler class C2. Pushdown automata (PDA) constitute
a well-known example. Language equivalence and regularity are undecidable for PDA. In the
case of deterministic PDA (DPDA), the decidability and complexity results for regularity
(see [13] and the references therein) preceded the famous decidability result for equivalence
by Sénizergues [9].

In concurrency theory, logic, verification, and other areas, a finer equivalence, called
bisimulation equivalence or bisimilarity, has emerged as another fundamental behavioural
equivalence; on deterministic systems it essentially coincides with language equivalence. An
on-line survey of the results which study this equivalence in a specific area of process rewrite
systems is maintained by Srba [11].

Among the most involved results in this area is the decidability of bisimilarity for pushdown
processes, generated by (nondeterministic) PDA with only deterministic and popping ε-steps;
this was shown by Sénizergues [10] who thus generalized his above mentioned result for
DPDA. There is no known upper bound on the complexity of this decidable problem. The
nonelementary lower bound established in [1] is, in fact, TOWER-hardness in the terminology
of [8], and it holds even for real-time PDA, i.e. PDA with no ε-steps. For the above mentioned
PDA with deterministic and popping ε-steps the bisimilarity problem is even not primitive
recursive, its Ackermann-hardness is shown in [5]. In the deterministic case, the equivalence

© Petr Jančar;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

problem is known to be PTIME-hard, and has a primitive recursive upper bound shown by
Stirling [12] (where a finer analysis places the problem in TOWER [5]).

Extrapolating the deterministic case, we might expect that for PDA the “regularity”
problem w.r.t. bisimilarity (asking if a given PDA-configuration is bisimilar with a state in
a finite-state system) is decidable as well, and that this problem might be easier than the
equivalence problem solved in [10]; “only” EXPTIME-hardness is known here (see [7], and
[11] for detailed references). Nevertheless, this decidability question has been open so far, as
also indicated in [2] (besides [11]).

Contribution of this paper. We show that semantic finiteness of pushdown configurations
w.r.t. bisimilarity is decidable. The decidability is proven in the framework of first-order
grammars, i.e. of finite sets of labelled rules that rewrite roots of first-order terms. The
framework is equivalent to PDA where also deterministic and popping ε-steps are allowed,
i.e. to the model to which Sénizergues’s general decidability proof [10] applies. (A simplified
proof directly in the first-order grammar framework is given in [4].) The presented algorithm,
answering if a given configuration, i.e. a first-order term in the labelled transition system
generated by a first-order grammar, has a bisimilar finite-state system, uses the result of [10]
(or of [4]) as a black-box procedure. By [5] we cannot get a primitive recursive upper bound
via a black-box use of the decision procedure for bisimilarity.

Semidecidability of the semantic finiteness problem has been long clear, hence it is the
existence of finite effectively verifiable witnesses of the negative case that is the crucial
point here. Such witnesses are shown by considering “limits” of repeated substitutions,
resulting in regular terms (i.e.infinite terms with only finitely many subterms). Some finite
paths with “pumpable” segments are shown to be increasing the “equivalence-level” with the
respective limit above any bound while never reaching the equivalence class of the limit. The
(black-box) procedure deciding equivalence is used to show a verifiable bound on the number
of segment-pumpings that allows to confirm the witness property of a path.

A full version of this paper is planned to appear as the second version of the paper at
http://arxiv.org/abs/1305.0516; it will contain detailed proofs.

2 Basic Notions and Result

In this section we define the basic notions and state the result in the form of a theorem.
Some standard definitions are restricted when we do not need the full generality. We finish
the section by a note about a transformation of pushdown automata to first-order grammars.

By N and N+ we denote the sets of nonnegative integers and of positive integers, respect-
ively. By [i, j] we denote the set {i, i+1, . . . , j}. For a set A, by A∗ we denote the set of
finite sequences of elements of A, which are also called words (over A). By |w| we denote
the length of w ∈ A∗, and by ε the empty sequence (hence |ε| = 0). We put A+ = A∗ r {ε}.

Labelled transition systems. A labelled transition system, an LTS for short, is a tuple
L = (S,Σ, (a−→)a∈Σ) where S is a finite or countable set of states, Σ is a finite set of actions
(or letters), and a−→⊆ S × S is a set of a-transitions (for each a ∈ Σ). We say that L is a
deterministic LTS if for each pair s ∈ S, a ∈ Σ there is at most one s′ such that s a−→ s′

(which stands for (s, s′) ∈ a−→). By s w−→ s′, where w = a1a2 . . . an ∈ Σ∗, we denote that
there is a path s = s0

a1−→ s1
a2−→ s2 · · ·

an−→ sn = s′; if s w−→ s′, then s′ is reachable from s.
By s w−→ we denote that w is enabled in s, i.e., s w−→ s′ for some s′. If L is deterministic,
then s w−→ s′ or s w−→ denotes a unique path.

http://arxiv.org/abs/1305.0516

P. Jančar 52:3

Bisimilarity. Given L = (S,Σ, (a−→)a∈Σ), we say that a set B ⊆ S ×S covers (s, t) ∈ S ×S
if for any s a−→ s′ there is t a−→ t′ such that (s′, t′) ∈ B, and for any t a−→ t′ there is s a−→ s′

such that (s′, t′) ∈ B. For B,B′ ⊆ S × S we say that B′ covers B if B′ covers each (s, t) ∈ B.
A set B ⊆ S ×S is a bisimulation if B covers B. States s, t ∈ S are bisimilar, written s ∼ t, if
there is a bisimulation B containing (s, t). A standard fact is that ∼⊆ S×S is an equivalence
relation, and it is the largest bisimulation, the union of all bisimulations.

Semantic finiteness. Given L = (S,Σ, (a−→)a∈Σ), we say that s0 ∈ S is finite up to
bisimilarity, or bisim-finite for short, if there is some state f in some finite LTS such that
s0 ∼ f ; otherwise s0 is infinite up to bisimilarity, or bisim-infinite. (When comparing states
from different LTSs, we implicitly refer to the disjoint union of these LTSs.)

First-order terms, regular terms, finite graph presentations. We will consider LTSs in
which states are first-order regular terms. They are built from variables from a fixed countable
set Var = {x1, x2, x3, . . . } and from function symbols, also called (ranked) nonterminals,
from some specified finite set N ; each A ∈ N has arity(A) ∈ N. (An example of a finite
term is C(D(x3, B), x2), where the arities of B,C,D are 0, 2, 2, respectively.)

Transitions will be determined by a finite set of (schematic) root-rewriting rules (that
can be exemplified by A(x1, x2, x3) b−→ C(D(x3, B), x2), where x1, x2, x3 serve as the “place-
holders” for the depth-1 subterms of a term with the root A that might be rewritten by
performing action b). We will now formalize this, making also some conventions on the use
of (finite and infinite) terms and substitutions.

We identify terms with their syntactic trees. Thus a term over N is (viewed as) a rooted,
ordered, finite or infinite tree where each node has a label from N ∪Var; if the label of a
node is xi ∈ Var, then the node has no successors, and if the label is A ∈ N , then it has
m (immediate) successor-nodes where m = arity(A). A subtree of a term E is also called a
subterm of E. We make no difference between isomorphic (sub)trees, and thus a subterm
can have more (maybe infinitely many) occurrences in E. Each subterm-occurrence has its
(nesting) depth in E, which is its (naturally defined) distance from the root of E. We also use
the standard notation for terms: we write E = xi or E = A(G1, . . . , Gm) with the obvious
meaning; in the latter case we have root(E) = A ∈ N , m = arity(A), and G1, . . . , Gm are
the ordered occurrences of depth-1 subterms of E.

A term is finite if the respective tree is finite. A (possibly infinite) term is regular if it
has only finitely many subterms (though the subterms may be infinite and can have infinitely
many occurrences). We note that any regular term has at least one finite-graph presentation,
i.e. a finite directed graph, with a designated root, where each node has a label from N ∪Var;
if the label of a node is xi ∈ Var, then the node has no outgoing arcs, if the label is A ∈ N ,
then it has m ordered outgoing arcs where m = arity(A). The standard tree-unfolding of
the graph is the respective term, which is infinite if there are cycles in the graph. The nodes
in the least presentation of E are bijectively mapped onto (the roots of) the subterms of E.

In what follows, by a “term” we mean a “regular term” unless the context makes clear that
the term is finite. (We do not consider non-regular terms.) We reserve symbols A,B,C,D
to range over nonterminals, and E,F,G,H to range over (regular) terms.

Substitutions, associative composition, limits of infinite compositions. By TermsN we
denote the set of all (regular) terms over a set N of (ranked) nonterminals (and over the
set Var of variables). A substitution σ is a mapping σ : Var → TermsN whose support
supp(σ) = {xi | σ(xi) 6= xi} is finite; we reserve the symbol σ for substitutions. By applying

MFCS 2016

52:4 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

a substitution σ to a term E we get the term Eσ that arises from E by replacing each
occurrence of xi with σ(xi); given graph presentations, in the graph of E we just redirect
each arc leading to xi towards the root of σ(xi) (which includes the special “root-designating
arc” when E = xi). Hence E = xi implies Eσ = xi σ = σ(xi).

The natural composition of substitutions, where σ = σ1σ2 is defined by xiσ = (xiσ1)σ2,
can be easily verified to be associative. We thus write simply Eσ1σ2 when meaning (Eσ1)σ2
or E(σ1σ2). We let σ0 be the empty-support substitution, and we put σi+1 = σσi. If σ is
guarded, which means that xiσ = xj implies i = j (in other words, for each xi ∈ supp(σ)
the root of Ei = xiσ is a nonterminal “guarding” the occurrences of variables in Ei), then
even the limit σω is well-defined: “operationally”, to get graph presentations of terms xiσ

ω

from graph presentations of xiσ, for all xi ∈ supp(σ), we redirect any arc leading to xj ,
where xj ∈ supp(σ), towards the root of (the presentation of) xjσ. We note that no variable
xi ∈ supp(σ) occurs in any term Eσω, for any guarded substitution σ; such variables
“disappear” by applying σω. (Hence Eσω can only contain variables xi for which xiσ = xi.)

First-order grammars. A first-order grammar, or just a grammar for short, is a tuple
G = (N ,Σ,R) where N = {A1, A2, . . . } is a finite set of ranked nonterminals, viewed as
function symbols with arities, Σ = {a1, a2, . . . } is a finite set of actions (or letters), and
R = {r1, r2, . . . } is a finite set of rules of the form

A(x1, x2, . . . , xm) a−→ E (1)

where A ∈ N , arity(A) = m, a ∈ Σ, and E is a finite term over N in which each occurring
variable is from the set {x1, x2, . . . , xm}. We can exemplify the rules by A(x1, x2, x3) b−→
C(D(x3, B), x2), A(x1, x2, x3) b−→ x2, D(x1, x2) a−→ A(D(x2, x2), x1, B); here the arities of
A,B,C,D are 3, 0, 2, 2, respectively.

A rule A(x1, x2, . . . , xm) a−→ E will generate a-transitions A(x1, x2, . . . , xm)σ a−→ Eσ

for all substitutions σ. The concrete rule A(x1, x2, x3) b−→ C(D(x3, B), x2) generates the
transitions like A(x1, x2, x3) b−→ C(D(x3, B), x2) and A(x5, x5, x2) b−→ C(D(x2, B), x5),
and more generally A(G1, G2, G3) b−→ C(D(G3, B), G2) for any (regular) terms G1, G2, G3.
The rule A(x1, x2, x3) b−→ x2 generates A(G1, G2, G3) b−→ G2. We now give a more formal
definition.

LTSs generated by grammars. Given G = (N ,Σ,R), by Lr
G we denote the (rule-based)

LTS Lr
G = (TermsN ,R, (

r−→)r∈R) where each rule r of the form A(x1, x2, . . . , xm) a−→ E

induces transitions A(x1, . . . , xm)σ r−→ Eσ for any substitution σ (also unguarded; we can
have xiσ = xj for i 6= j). Thus the rule A(x1, . . . , xm) r−→ E is itself a transition, using σ
with supp(σ) = ∅.
The LTS Lr

G is deterministic, since for each F and r there is at most one H such that
F

r−→ H. We note that variables are dead (have no outgoing transitions), and transitions
cannot add variables, i.e., F w−→ H implies that each variable occurring in H also occurs in
F (but not necessarily vice versa).

Since the rhs (right-hand sides) E in the rules (1) are finite, all terms reachable from a
finite term are finite. (It is convenient to have the rhs finite while including regular terms
into our LTSs; the other options are in principle equivalent.)

The deterministic rule-based LTS Lr
G is helpful technically, but we are primarily interested

in the (generally nondeterministic) action-based LTS La
G = (TermsN ,Σ, (

a−→)a∈Σ) where

P. Jančar 52:5

each rule A(x1, . . . , xm) a−→ E induces the transitions A(x1, . . . , xm)σ a−→ Eσ for all
substitutions σ.

Given a grammar G = (N ,Σ,R), two terms from TermsN are bisimilar if they are
bisimilar as states in the action-based LTS La

G . By our definitions all variables are bisimilar,
since they are dead terms. The variables serve us primarily as “place-holders for subterm-
occurrences” in terms (that might themselves be variable-free); such a use of variables has
been already exemplified in the rules (1).

Main result, and its relation to pushdown automata. We now state the theorem, to be
proven in the next section, and we mention why the result also applies to pushdown automata
(PDA) with deterministic popping ε-steps.

I Theorem 1. There is an algorithm that, given a grammar G = (N ,Σ,R) and (a finite
presentation of) E0 ∈ Terms(N), decides if E0 is bisim-finite (i.e., if E0 ∼ f for a state f
in some finite LTS).

A transformation of (nondeterministic) PDA in which deterministic popping ε-steps are
allowed to first-order grammars (with no ε-steps) is recalled in the full arxiv-version. This
makes clear that the semantic finiteness of PDA with deterministic popping ε-steps (w.r.t.
bisimilarity) is also decidable. In fact, the problems are interreducible; the close relationship
between (D)PDA and first-order schemes has been long known (see, e.g., [3]). The proof of
Theorem 1 presented here uses the fact that bisimilarity of first-order grammars is decidable;
this was shown for the above mentioned PDA model by Sénizergues [10], and a direct proof
in the first-order-term framework was presented in [4]. We note that for PDA where popping
ε-steps can be in conflict with “visible” steps bisimilarity is already undecidable [6]; hence
the proof presented here does not yield the decidability of semantic finiteness in this more
general model.

3 Proof of Theorem 1

3.1 Computability of eq-levels, and semidecidability of bisim-finiteness

We will note that the semidecidability of bisim-finiteness is clear, but we first recall the
computability of eq-levels, which is one crucial ingredient in our proof of semidecidability of
bisim-infiniteness.

Stratified equivalence, and eq-levels. Assuming an LTS L = (S,Σ, (a−→)a∈Σ), we put
∼0= S × S, and define ∼k+1⊆ S × S (for k ∈ N) as the set of pairs covered by ∼k. (Hence
s ∼k+1 t iff for any s a−→ s′ there is t a−→ t′ such that s′ ∼k t

′ and for any t a−→ t′ there is
s

a−→ s′ such that s′ ∼k t
′.)

We easily verify that ∼k are equivalence relations, and that ∼0⊇∼1⊇∼2⊇ · · · · · · ⊇∼.
For the (first infinite) ordinal ω we put s ∼ω t if s ∼k t for all k ∈ N; hence ∼ω= ∩k∈N ∼k. It
is standard (and can be easily checked) that ∩k∈N ∼k is a bisimulation in image-finite LTSs,
and thus ∼= ∩k∈N ∼k =∼ω. We recall that L is image-finite if the set {s′ | s a−→ s′} is
finite for each pair s ∈ S, a ∈ Σ. Our grammar-generated LTSs La

G are obviously image-finite
(while Lr

G are even deterministic); we thus further assume image-finiteness.
We attach the equivalence level (eq-level) EqLv(s, t) = max {k ∈ N ∪ {ω} | s ∼k t} to

each pair of states.

MFCS 2016

52:6 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

Eq-levels are computable for first-order grammars. We now state an important lemma
that follows easily from the involved decidability proof in [10] (and a transformation to first-
order grammars); as already mentioned, a proof given directly for the first-order grammars
was presented in [4]. (This is surely a fundamental theorem in general, the name lemma has
been chosen here to reflect that it is a prerequisite for the only theorem proven in this paper.)

I Lemma 2. There is an algorithm that, given G = (N ,Σ,R) and E0, F0 ∈ Terms(N),
computes EqLv(E0, F0) in La

G (and thus also decides if E0 ∼ F0).

Proof. For each fixed k ∈ N it is decidable if E0 ∼k F0, as can be shown by a straightforward
induction on k. The question E0

?∼ F0, i.e. E0
?∼ω F0, can be decided by [10] (and [4]). J

Semidecidability of bisim-finiteness. Given G and E0, we can systematically generate all
finite LTSs, presenting them by first-order grammars with nullary nonterminals (which then
coincide with states); for each state f of each generated system we can check if E0 ∼ f by
Lemma 2. In fact, Lemma 2 is not crucial here, since decidability of E0 ∼ f can be shown in
a much simpler way (see, e.g., [7]).

3.2 Semidecidability of bisim-infiniteness.
In Section 3.2.1 we note a few simple general facts on bisim-infiniteness, and also note
the obvious compositionality (congruence properties) of bisimulation equivalence in our
framework of first-order terms. In Section 3.2.2 we describe some finite structures that are
candidates for witnessing bisim-infiniteness of a given term, and show an algorithm checking
if a candidate is indeed a witness. In Section 3.2.3 we then show that each bisim-infinite
term has a witness. Together this yields a proof of Theorem 1.

3.2.1 Some facts on bisim-infiniteness, and compositionality
Bisimilarity quotient. Given an LTS L = (S,Σ, (a−→)a∈Σ), the quotient-LTS L∼ is the
tuple ({ [s]; s ∈ S },Σ, (a−→)a∈Σ) where [s] = {s′ | s′ ∼ s}, and [s] a−→ [t] if s′ a−→ t′ for some
s′ ∈ [s] and t′ ∈ [t]; in fact, [s] a−→ [t] implies that for each s′ ∈ [s] there is t′ ∈ [t] such that
s′

a−→ t′. We have s ∼ [s], since {(s, [s]) | s ∈ S} is a bisimulation (in the union of L and
L∼). We refer to the states of L∼ as to the bisim-classes (of L).

A sufficient condition for bisim-infiniteness. We recall that s0 ∈ S is bisim-finite if there
is some state f in a finite LTS such that s0 ∼ f ; otherwise s0 is bisim-infinite. We observe
that s0 is bisim-infinite in L iff the reachability set of [s0] in L∼, i.e. the set of states
reachable from [s0] in L∼, is infinite. The LTSs generated by first-order grammars are finitely
branching (i.e., the set {s′ | s a−→ s′ for some a} is finite for each s ∈ S), and we also use
(one implication in) the following simple fact:

I Proposition 3. A state s0 of a finitely branching LTS is bisim-infinite iff there is an
infinite path s0

a1−→ s1
a2−→ s2

a3−→ · · · where si 6∼ sj for all i 6= j.

To demonstrate that s0 is bisim-infinite, it suffices to show that its reachability set
contains states with arbitrarily large finite eq-levels w.r.t. a “test state” t. The sufficiency
of this condition is based on the simple fact that s ∼ s′ implies EqLv(s, t) = EqLv(s′, t).
More formally:

I Proposition 4. Given L = (S,Σ, (a−→)a∈Σ) and states s0, t, if for every e ∈ N there is s′
that is reachable from s0 and satisfies e < EqLv(s′, t) < ω, then s0 is bisim-infinite.

P. Jančar 52:7

Eq-levels w.r.t. a test set in a bounded region. Our final general observation (tailored to
a later use) is also straightforward: if two states are bisimilar, then the states in their equally
bounded reachability regions must yield the same eq-levels when compared with states from
a fixed (test) set. We formalize this observation as follows.

For any s ∈ S and d ∈ N (a distance, or a “radius”) we put

Region(s, d) = {s′ | s w−→ s′ for some w ∈ Σ∗ where |w| ≤ d}.

For any s ∈ S, d ∈ N, and T ⊆ S (a test set), we define the following subset of N (finite
TestEqLevels):

TEL(s, d, T) = {e ∈ N | e = EqLv(s′, t) for some s′ ∈ Region(s, d) and some t ∈ T }.

I Proposition 5. If TEL(s, d, T) 6= TEL(s′, d, T) then s 6∼ s′.

Compositionality of the states of the grammar-generated LTSs. Regarding the congru-
ence properties, in principle it suffices for us to observe that if in a term E we replace
a subterm F with F ′ such that F ′ ∼ F then the resulting term E′ satisfies E′ ∼ E

(replacing a subterm with an equivalent one does not change the bisim-class). Hence
A(G1, . . . , Gm) 6∼ A(G′1, . . . , G′m) implies that Gi 6∼ G′i for some i ∈ [1,m]. (This is surely
not specific to bisimilarity.) Formally, we put σ ∼ σ′ if xiσ ∼ xiσ

′ for each xi, and we note:

I Proposition 6. If σ ∼ σ′, then Eσ ∼ Eσ′.
(Hence Eσ 6∼ Eσ′ implies that xiσ 6∼ xiσ

′ for some xi occurring in E.)

Conventions. We further consider only the normalized grammars G = (N ,Σ,R), i.e. those
satisfying the following condition: for any A(x1, . . . , xm) and any i ∈ [1,m] there is a word
w such that A(x1, . . . , xm) w−→ xi; hence for any E it is possible to “sink” to any of its
subterm-occurrences by applying the grammar-rules. Such a normalization can be efficiently
achieved by harmless modifications of the nonterminal arities and of the rules in R, while
the LTS La

G remains the same up to isomorphism.
For convenience, in our notation we usem as the arity of all nonterminals in the considered

grammar, though formally the maximum arity is meant. We will thus harmlessly write
A(G1, . . . , Gm) instead of A(G1, . . . , GmA

) where mA = arity(A). (In fact, such uniformity
can be achieved while keeping the above normalization condition, when a slight problem
with arity 0 is handled; but this is not necessary for us to discuss.)

From now on, we view the expressions like G w−→ H as referring to the deterministic LTS
Lr
G (hence w ∈ R∗), though ∼k, ∼, and the eq-levels refer solely to (the action-based LTS)
La
G .

3.2.2 Simple witnesses of bisim-infiniteness
We fix a grammar G = (N ,Σ,R). Before defining the candidates for witnesses of bisim-
infiniteness, we discuss some building segments of (“non-sinking”) paths in the LTS Lr

G .

Stairs, direct stairs, simple stairs, stairs eligible for “pumping”. A nonempty sequence of
rules w = r1r2 . . . r` ∈ R+ is a stair if we have A(x1, . . . , xm) w−→ F where the rule r1 is of
the form A(x1, . . . , xm) a−→ E, and F has a nonterminal-root (hence F is not a variable xi,
i.e., the path A(x1, . . . , xm) w−→ F does not “sink”); such w is a direct stair if there is no v
such that |v| < |w| and A(x1, . . . , xm) v−→ F . If (the above) w is a direct stair and F is a

MFCS 2016

52:8 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

subterm of E (the right-hand side of r1), then w is a simple stair. A stair w has the type
(A,B) (“from A to B”) if A(x1, . . . , xm) w−→ F where root(F) = B.

(E.g., the sequence r1r2 of rules used in the path A(G1, G2, G3) r1−→ C(D(G3, B), G2) r2−→
D(G3, B) is a stair, of type (A,D), that might be a simple stair; on the other hand r2 is
no stair. Some simple stairs can be of the form A(x1, . . . , xm) w−→ A′(xi1 , . . . , xim

), where
{i1, . . . , im} ⊆ {1, . . . ,m}; we might even have A = A′ but in this case (x1, . . . , xm) 6=
(xi1 , . . . , xim

) since A(x1, . . . , xm) w−→ A(x1, . . . , xm) is no direct stair.)
It is easy to observe that any direct stair w is a sequence of compatible simple stairs,

i.e., w = w1w2 . . . wn where wi is a simple stair of type (Ai−1, Ai), for each i ∈ [1, n]; we
thus have A0(x1, . . . , xm) w1−→ A1(x1, . . . , xm)σ1

w2−→ A2(x1, . . . , xm)σ2σ1
w3−→ · · · for the

respective (not necessarily guarded) substitutions σi.
A stair w where A(x1, . . . , xm) w−→ A(E1, . . . , Em) is eligible (for “pumping”) if the set

of “root-sticks” R = {xi | Ej = xi for some j ∈ [1,m]} is equal to {xi | i ∈ [1,m], Ei = xi}.
(E.g., the stair A(x1, x2, x3, x4) w−→ A(x1, B(x2, x2, x4, x1), x3, x3) is eligible, with R =

{x1, x3}. The stair A(x1, x2, x3, x4) v−→ A(x2, B(x2, x2, x4, x1), x3, x3) is not eligible but the
respective “double” stair A(x1, x2, x3, x4) vv−→ A(B(x2, x2, x4, x1), B(. . .), x3, x3) is eligible.
In particular, if in A(x1, . . . , xm) w−→ A(E1, . . . , Em) all Ej have nonterminal-roots, then w
is eligible, with R = ∅.)

An important fact is that for any eligible stair w, whereA(x1, . . . , xm) w−→ A(x1, . . . , xm)σ,
we can define the terms G(w,z) for all z ∈ N ∪ {ω} by putting

A(x1, . . . , xm) wz

−→ A(x1, . . . , xm)σz = G(w,z)

which is well defined also for z = ω. (Though σ might be not guarded, we have that xjσ = xi

for i 6= j implies xiσ = xi due to the eligibility and thus xjσ
ω = xi.)

Candidates for simple witnesses of bisim-infiniteness. Given a grammar G = (N ,Σ,R)
and a term E0, by a candidate for a simple witness (of bisim-infiniteness of E0), or by a
candidate for short, we mean a pair (u,w) where u ∈ R∗, w ∈ R+, E0

uw−→, and w is an
eligible stair, of the form A(x1, . . . , xm) w−→ A(x1, . . . , xm)σ; we thus have

E0
u−→ A(x1, . . . , xm)σ0

w−→ G(w,1)σ0
w−→ G(w,2)σ0

w−→ G(w,3)σ0
w−→ · · ·

for the respective substitution σ0. We have G(w,j) = A(x1, . . . , xm)σj , and we denote the
term G(w,ω) = A(x1, . . . , xm)σω also by Lim.

We now formalize the simple observation that the terms G(w,k)σ0 with increasing k ∈ N
“approach” the term Limσ0 syntactically, and thus also semantically.

Top-tails presentations. Given a term G and (depth) d ∈ N, let nod1,nod2, . . . ,nodn

(n ≥ 0) be the ordered nodes of (the syntactic tree of) G in depth d (if there are some); let
F1, F2, . . . , Fn be the (occurrences of) subterms of G rooted in nod1,nod2, . . . ,nodn.

By Topd(G) we denote the term that coincides with G up to depth d−1 while its ordered
nodes in depth d are (leaves) labelled with x1, x2, . . . , xn, respectively; here we assume
that no xi, i ∈ [1, n], occurs in G in the depths less than d.
By tailsd(G) we mean the substitution defined by xi tailsd(G) = Fi for i ∈ [1, n].

We have G = (Topd(G))σ where σ = tailsd(G). In particular, if G = A(F1, . . . , Fm), then
G = (Top1(G))tails1(G) = A(x1, . . . , xm)σ where xiσ = Fi.

If some xi occur in G in the depths less than d, then we define Topd(G), tailsd(G) by
introducing the variables (in the role of place-holders) other than such xi. In the following
example we highlight this by using “another set of variables” yi.

P. Jančar 52:9

For G = A(B(x3, x2, x2), x2, C(x1, B(x2, x3, x1), x1)) we have
Top2(G) = A(B(y1, y2, y3), x2, C(y4, y5, y6)), and
tails2(G) = {(y1, x3), (y2, x2), (y3, x2), (y4, x1), (y5, B(x2, x3, x1)), (y6, x1)}.

The next proposition refers to a candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ A(x1, . . . , xm)σσ0
where we denote xiσ by Ei for i ∈ [1,m].

I Proposition 7. The following conditions hold for all k ∈ N and i ∈ [1,m].
1. Topk(Eiσ

kσ0) = Topk(Eiσ
ωσ0), hence Topk(G(w,k)σ0) = Topk(Limσ0).

2. Eiσ
kσ0 ∼k Eiσ

ωσ0 and thus EqLv(G(w,k)σ0,Limσ0) ≥ k.

Checking if a candidate is a simple witness. A candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ is
a simple witness (of bisim-infiniteness of E0) if G(w,k)σ0 6∼ Limσ0 for infinitely many k ∈ N.
Since EqLv(G(w,k)σ0,Limσ0) ≥ k (Prop. 7(2)), we then have

e < EqLv(G(w,e+1) σ0,Limσ0) < ω for infinitely many e ∈ N,

and by Prop. 4 we derive that E0 is bisim-infinite if it has a simple witness.
The existence of an algorithm checking if a candidate is a simple witness follows from the

next lemma, if we recall the fundamental fact captured by Lemma 2.

I Lemma 8. Given a candidate E0
u−→ A(x1, . . . , xm)σ0

w−→ A(E1, . . . , Em)σ0, there is a
computable number e such that one of the following conditions holds:
1. G(w,e)σ0 ∼ Limσ0, in which case G(w,k)σ0 ∼ Limσ0 for all k ≥ e, or
2. G(w,e)σ0 6∼ Limσ0, in which case G(w,k)σ0 6∼ Limσ0 for all k ≥ e.
(The candidate is a simple witness of bisim-infiniteness of E0 in the case 2.)

Proof. We restrict our attention to those Ei that “almost always matter” when we apply σ,
where xiσ = Ei, to the term A(E1, . . . , Em)σ`, for growing ` ∈ N. The sets

V` = {xi | xi occurs in A(E1, . . . , Em)σ`}

satisfy V`+1 = {xj | xj occurs in Ei for some i such that xi ∈ V`}, and thus {x1, . . . , xm} ⊇
V0 ⊇ V1 ⊇ V2 ⊇ · · · . Let `0 be the smallest such that V`0 = V`0+1 (= V`0+2 = · · ·); hence
`0 ≤ m.

We can compute a number d (the “radius” for the below defined region that will be used
in the application of Prop. 5) so that within d transition-steps we can reach any variable
xi ∈ V`0 from both A(E1, . . . , Em)σ`0 and A(E1, . . . , Em)σ`0+1.

Suppose now that A(E1, . . . , Em)σkσ0 6∼ A(E1, . . . , Em)σωσ0 (i.e., G(w,k+1) σ0 6∼ Limσ0)
and k > `0; then by compositionality (Prop. 6) we deduce that xiσ

k−`0σ0 6∼ xiσ
ωσ0 for some

xi ∈ V`0 , and also xi′σk−`0−1σ0 6∼ xi′σωσ0 for some xi′ ∈ V`0 . In other words,

Eiσ
k−`0−1σ0 6∼ Eiσ

ωσ0, and Ei′σk−`0−2σ0 6∼ Ei′σωσ0 for some i, i′ such that xi, xi′ ∈ V`0 .

Since xi occurs in A(E1, . . . , Em)σ`0 and xi′ occurs in A(E1, . . . , Em)σ`0+1, we have that
both Eiσ

k−`0−1σ0 and Ei′σk−`0−2σ0 are in Region(G(w,k+1) σ0, d), for the above defined
“radius” d.

We would like to deduce that also G(w,k+2) σ0 6∼ Limσ0, using the fact that Eiσ
k−`0−1σ0

is in Region(G(w,k+2)σ0, d) (though maybe farther than previously but still within the
bound d). But this deduction is unsubstantiated in general.

Hence we recall Prop. 5, and compute the maximum MaxTEL in the set TEL(Limσ0, d, T)
where the test set is T = {Eiσ

ωσ0 | xi ∈ V`0}. (We can compute this set by Lemma 2.) Let

e = MaxTEL +m+ 3. Hence e ≥MaxTEL + `0 + 3.

MFCS 2016

52:10 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

If we return to the above analysis of the case A(E1, . . . , Em)σkσ0 6∼ A(E1, . . . , Em)σωσ0,
now assuming k ≥ e, then the fact that Eiσ

k−`0−1σ0 (for which Eiσ
k−`0−1σ0 6∼ Eiσ

ωσ0) is
also present in Region(G(w,k+2) σ0, d) indeed testifies that G(w,k+2) σ0 6∼ Limσ0.

(Since Eiσ
k−`0−1σ0 ∼k−`0−1 Eiσ

ωσ0, and k − `0 − 1 ≥ e − `0 − 1 > MaxTEL, the
value EqLv(Eiσ

k−`0−1σ0, Eiσ
ωσ0) is finite but bigger than MaxTEL; we thus must have

G(w,k+2) σ0 6∼ Limσ0 by Prop. 5.)
Then G(w,k+2) σ0 6∼ Limσ0 similarly entails that G(w,k+3) σ0 6∼ Limσ0, etc.
To finish a demonstration that the above e proves the claim, we note that G(w,e) σ0 ∼

Limσ0 entails that we have Eiσ
e−`0−1σ0 ∼ Eiσ

ωσ0 for all i (where xi ∈ V`0), since otherwise
the sets TEL(G(w,e)σ0, d, T) and TEL(Limσ0, d, T) would differ. Then G(w,k)σ0 ∼ Limσ0
for all k ≥ e by compositionality. J

3.2.3 Each bisim-infinite term has a simple witness
Once we show the next lemma, the proof of Theorem 1 will be finished.

I Lemma 9. For any grammar G and any bisim-infinite E0 there is a simple witness
satisfying the condition 2 in Lemma 8 (G(w,e)σ0 6∼ Limσ0 for the respective computable e).

We prove the lemma in the rest of this section. We assume a given grammar G = (N ,Σ,R)
and a term E0 that is bisim-infinite.

An infinite simple-stair sequence witnessing bisim-infiniteness. Let us fix an infinite path
E0

r1−→ E1
r2−→ E2

r3−→ · · · in Lr
G such that Ei 6∼ Ej (in La

G) for all i 6= j (recall Prop. 3); this
entails that there is no repeat, i.e., we have Ei 6= Ej for all i 6= j. Hence there must be the least
i0 ∈ N such that ri0+1ri0+2 . . . ri0+` is a stair for each ` ∈ N. (This obviously holds even if E0
is an infinite term, since it has only finitely many subterms due to its regularity.) Moreover,
given ij , there must be the least ij+1 such that ij < ij+1 and rij+1+1rij+1+2 . . . rij+1+` is a
stair for each ` ∈ N.

For each j ∈ N we put Hj = Eij
, and we present the suffix of the above path starting

with Ei0 as

H0
w1−→ H1

w2−→ H2
w3−→ · · · , denoting Hj = Aj(x1, . . . , xm)σjσj−1 · · ·σ0 (2)

where Aj(x1, . . . , xm) wj+1−→ Aj+1(x1, . . . , xm)σj+1. We also write Hj = Aj(x1, . . . , xm)σ′j .
The words wi are stairs; we can even assume that wi are direct stairs (i.e., we replace

them with the respective direct stairs if they are not direct stairs) while keeping the property
that Hi 6∼ Hj for all i 6= j. We thus assume that wi are direct stairs, which in our case
obviously implies that they are simple stairs.

A specific “keep-and-drown task” extracted from the bisim-infinite stair path. Prop. 10
captures a first step in demonstrating the existence of a simple witness induced by the path
H0

w1−→ H1
w2−→ H2

w3−→ · · · (2), related to a fixed grammar G = (N ,Σ,R).
A task T is a tuple (A,Drown,keep) where A ∈ N , Drown ⊆ {x1, . . . , xm}, and

keep ∈ [1,m], xkeep ∈ Drown. We put NotCare = {x1, . . . , xm}r Drown.
For a term G, by G |= (Drown, z), for z ∈ N ∪ {ω}, we denote that the depth of

each occurrence of xi ∈ Drown in G (if there is any) is at least z, which means that xi

does not occur in G when z = ω. By G |= keep we denote that xkeep occurs in G, and
G |= (Drown, z) ∧ keep denotes that we have G |= (Drown, z) and G |= keep.

P. Jančar 52:11

A task T = (A,Drown,keep) is satisfied for k ∈ N, which is denoted by |= (T, k), if
there is w ∈ R∗ and G such that A(x1, . . . , xm) w−→ G and G |= (Drown, k) ∧ keep. By
|= (T, ω) we denote that we have |= (T, k) for all k ∈ N.

A technical proof of the next proposition is given in the full arxiv-version.

I Proposition 10. There is a task T = (A,Drown,keep) and an infinite subsequence Seq
of the sequence 0, 1, 2, . . . such that |= (T, ω) and the following conditions hold in the path (2),
where we use the notation Hj = Aj(x1, . . . , xm)σ′j:
1. Aj = A for all j ∈ Seq;
2. for each xi ∈ NotCare we have xiσ

′
j1
∼ xiσ

′
j2

for all j1, j2 ∈ Seq;
3. for each xi ∈ Drown we have xiσ

′
j1
6∼ xiσ

′
j2

for any j1 6= j2 where j1, j2 ∈ Seq.

Witness schemes. For our fixed path H0
w1−→ H1

w2−→ H2
w3−→ · · · (2) we aim to show

that there are a stair u and an eligible stair w such that H0
u−→ w−→ is a simple witness

(of bisim-infiniteness of H0 and thus also of E0). We will also have that both u and w are
sequences of simple stairs, hence uw = w1w2 · · ·w` where A0(x1, . . . , xm) w1−→ w2−→ · · · w`−→,
each wi is a simple stair, and the sequence w = wjwj+1 . . . w` is marked as a pumping stair.
It is useful to make the following generalization (of simple witnesses).

A stair-scheme, or just a scheme for short, is a sequence W = w1, w2, . . . , w` of (com-
patible) simple stairs, where A(x1, . . . , xm) w1−→ w2−→ · · · w`−→ for A determined by the first
grammar-rule r1 in w1, and where any segment wiwi+1 . . . wj that is an eligible stair might
be marked as a pumping stair ; the pumping stairs can be “nested”, one can be contained in
another, but no pumping stair can start or end inside another pumping stair.

We use the notation of regular expressions with concatenation and iteration (star) to
denote such schemes; an example is u1((v1)∗u2(v2)∗)∗u3(v3)∗u4u5((v5)∗u6)∗ (where we have
six pumping stairs, namely v1, v2, v1u2v2, v3, v5, and v5u6).

For a scheme W (like above), by Pump(W, z), where z ∈ N ∪ {ω}, we denote the
sequence arising from w1w2 . . . w` by repeating each pumping stair z times. (In our example,
Pump(W, z) is u1((v1)zu2(v2)z)zu3(v3)zu4u5((v5)zu6)z.) In the case z = ω we get infinite
“words” whose ordinal lengths can be bigger than ω, but since all pumping stairs are eligible,
we can soundly define the terms G(W,z) by

A(x1, . . . , xm) Pump(W,z)−−−−−−−→ G(W,z); we also put LimW = G(W,ω).

We say that a scheme W , where A is the left-hand side nonterminal of the first rule in W , is
a (“non-simple”) witness (of bisim-infiniteness) for A(x1, . . . , xm)σ if G(W,k)σ 6∼ LimWσ for
infinitely many k ∈ N.

It is not difficult to generalize Lemma 8 for schemes (viewed as candidates for witnesses),
and to derive the next proposition (as is shown in the full version).

I Proposition 11. A term E0 has a simple witness (of bisim-infiniteness) iff there is a term
H = A(x1, . . . , xm)σ reachable from E0 for which there is (a scheme W that is) a witness.

It suffices that |= (T, ω) can be demonstrated by a scheme. We first show that Lemma 12
suffices for finishing the proof of Theorem 1, and then we sketch a proof idea for the lemma.

I Lemma 12. For any task T = (A,Drown,keep) where |= (T, ω) there is a scheme
W , starting from A(x1, . . . , xm), such that G(W,k) |= keep for all k ∈ N and G(W,ω) |=
(Drown, ω); for such W we have G(W,k) |= (Drown, k) ∧ keep for all k ∈ N.

MFCS 2016

52:12 Deciding Semantic Finiteness w.r.t. Bisimulation Equivalence

We consider a task T = (A,Drown,keep), where |= (T, ω), that can be extracted from
the path H0

w1−→ H1
w2−→ H2

w3−→ · · · (2) by Prop. 10; we also recall the respective sequence
Seq and the notation Hj = A(x1, . . . , xm)σ′j . Let W be a scheme guaranteed by Lemma 12
for T; we recall the notation LimW = G(W,ω). For all j ∈ Seq the terms LimW σ′j are from
the same bisim-class (by 2 in Prop. 10); let Lim be a term representing this class.

For the sake of contradiction we now suppose that W is not a witness for any Hj =
A(x1, . . . , xm)σ′j . Then there is some e ∈ N (determined by Lim) such that G(W,e)σ

′
j ∼ Lim

for all j ∈ Seq (due to the mentioned generalization of Lemma 8). Since there is d ∈ N
such that xkeepσ

′
j ∈ Region(G(W,e)σ

′
j , d) for all j ∈ Seq, all bisim-classes [xkeepσ

′
j]∼ for

j ∈ Seq must be in Region([Lim]∼, d) in the quotient-LTS (La
G)∼ (which follows from the

fact G(W,e)σ
′
j ∼ Lim). There are thus only finitely many bisim-classes [xkeepσ

′
j]∼ where

j ∈ Seq, which contradicts with the condition 3 of Prop. 10 that xkeepσ
′
j1
6∼ xkeepσ

′
j2

for any
j1 6= j2 in Seq (recall that xkeep ∈ Drown).

Hence W is a witness for some Hj = A(x1, . . . , xm)σ′j ; by Prop. 11 this proves Lemma 9
(and thus Theorem 1).

The fact |= (T, ω) can be demonstrated by a scheme. We now sketch a proof idea for
Lemma 12. If |= (T, ω), where T = (A,Drown,keep), then there is a collection of paths
A(x1, . . . , xm) wk−→ Gk where Gk |= (Drown, k) ∧ keep, for all k ∈ N. We can choose
shortest possible words wk; in fact, they are sequences of simple stairs.

Each path A(x1, . . . , xm) wk−→ Gk must be progressing to its goal, stepwise “drowning” the
(occurrences of) variables xi ∈ Drown, while keeping at least one occurrence of xkeep. For a
term F we can define its drown-quality as the function DQ(F) : Drown→ N ∪ {ω} where
DQ(F)(xi) is the smallest (shallowest) depth of an occurrence of xi in F (where DQ(F)(xi) =
ω means that xi does not occur in F). The keep-quality KQ(F) is one bit (1 ir 0) that captures
the fact if xkeep occurs in F . For each term H = B(F1, . . . , Fm) on a path A(x1, . . . , xm) wk−→
Gk we define its level-quality as LQ(H) = (B,DQ(F1), . . . ,DQ(Fm),KQ(F1), . . . ,KQ(Fm)).

By standard facts, in particular Dickson’s Lemma and König’s Lemma, in any sufficiently
long wk there is an eligible stair that keeps or increases the level-quality in each component
(where we put B ≤ B′ if B = B). This does not solve the problem completely, due to the
possible long segments with root-sticking depth-1 subterms. This subtle point is handled in
the full arxiv-version.

4 Additional Remarks

The mentioned deterministic case studied by Valiant [13] could be roughly explained as
follows: for a deterministic grammar, if an eligible stair is reachable from E0 where the
start and the end of the stair are non-equivalent, then E0 is bisim-infinite. Hence by
compositionality a bound on the size of the potential equivalent finite system can be derived,
and thus decidability of the full equivalence is not needed here.

In the case equivalent to normed pushdown processes, the regularity problem essentially
coincides with the boundedness problem, and is thus much simpler. (See, e.g., [11] for a
further discussion.)

Acknowledgements. This work has been supported by the Grant Agency of the Czech
Rep., project GAČR:15-13784S. I also thank Stefan Göller for drawing my attention to the
decidability question for regularity of pushdown processes, and for discussions about some
related works (like [13]).

P. Jančar 52:13

References
1 Michael Benedikt, Stefan Göller, Stefan Kiefer, and Andrzej S. Murawski. Bisimilarity of

pushdown automata is nonelementary. In Proc. LICS 2013, pages 488–498. IEEE Computer
Society, 2013.

2 Christopher H. Broadbent and Stefan Göller. On bisimilarity of higher-order pushdown
automata: Undecidability at order two. In FSTTCS 2012, volume 18 of LIPIcs, pages
160–172. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

3 Bruno Courcelle. Recursive applicative program schemes. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, pages 459–492. Elsevier, MIT Press,
1990.

4 Petr Jančar. Bisimulation equivalence of first-order grammars. In Proc. ICALP’14 (II),
volume 8573 of LNCS, pages 232–243. Springer, 2014.

5 Petr Jančar. Equivalences of pushdown systems are hard. In Proc. FOSSACS 2014, volume
8412 of LNCS, pages 1–28. Springer, 2014.

6 Petr Jančar and Jiri Srba. Undecidability of bisimilarity by defender’s forcing. J. ACM,
55(1), 2008. doi:10.1145/1326554.1326559.

7 Antonín Kučera and Richard Mayr. On the complexity of checking semantic equivalences
between pushdown processes and finite-state processes. Inf. Comput., 208(7):772–796, 2010.

8 Sylvain Schmitz. Complexity hierarchies beyond elementary. TOCT, 8(1):3, 2016.
9 Géraud Sénizergues. L(A)=L(B)? Decidability results from complete formal systems. The-

oretical Computer Science, 251(1–2):1–166, 2001.
10 Géraud Sénizergues. The bisimulation problem for equational graphs of finite out-degree.

SIAM J.Comput., 34(5):1025–1106, 2005.
11 Jiri Srba. Roadmap of infinite results. In Current Trends In Theoretical Computer Science,

The Challenge of the New Century, volume 2, pages 337–350. World Scientific Publishing
Co., 2004. Updated version at http://users-cs.au.dk/srba/roadmap/.

12 Colin Stirling. Deciding DPDA equivalence is primitive recursive. In Proc. ICALP’02,
volume 2380 of LNCS, pages 821–832. Springer, 2002.

13 Leslie G. Valiant. Regularity and related problems for deterministic pushdown automata.
J. ACM, 22(1):1–10, 1975. doi:10.1145/321864.321865.

MFCS 2016

http://dx.doi.org/10.1145/1326554.1326559
http://dx.doi.org/10.1145/321864.321865

	Introduction
	Basic Notions and Result
	Proof of Theorem 1
	Computability of eq-levels, and semidecidability of bisim-finiteness
	Semidecidability of bisim-infiniteness.
	Some facts on bisim-infiniteness, and compositionality
	Simple witnesses of bisim-infiniteness
	Each bisim-infinite term has a simple witness

	Additional Remarks

