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Abstract
We study the computational complexity of planar valued constraint satisfaction problems

(VCSPs). First, we show that intractable Boolean VCSPs have to be self-complementary to
be tractable in the planar setting, thus extending a corresponding result of Dvořák and Kupec
[ICALP’15] from CSPs to VCSPs. Second, we give a complete complexity classification of conser-
vative planar VCSPs on arbitrary finite domains. As it turns out, in this case planarity does not
lead to any new tractable cases, and thus our classification is a sharpening of the classification
of conservative VCSPs by Kolmogorov and Živný [JACM’13].
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1 Introduction

The valued constraint satisfaction problem (VCSP) is a far-reaching generalisation of many
natural satisfiability, colouring, minimum-cost homomorphism, and min-cut problems [18, 21].
It is naturally parametrised by its domain and a valued constraint language. A domain D

is an arbitrary finite set. A valued constraint language, or just a language, Γ is a (usually
finite) set of weighted relations; each weighted relation γ ∈ Γ is a function γ : Dar(γ) → Q,
where ar(γ) ∈ N+ is the arity of γ and Q = Q ∪ {∞} is the set of extended rationals.

An instance I = (V,D,C) of the VCSP on domain D is given by a finite set of n variables
V = {x1, . . . , xn} and an objective function C : Dn → Q expressed as a weighted sum
of valued constraints over V , i.e. C(x1, . . . , xn) =

∑q
i=1 wi · γi(xi), where γi is a weighted

relation, wi ∈ Q≥0 is the weight and xi ∈ V ar(γi) the scope of the ith valued constraint.
Given an instance I, the goal is to find an assignment s : V → D of domain labels to the
variables that minimises C. Given a language Γ, we denote by VCSP(Γ) the class of all
instances I that use only weighted relations from Γ in their objective function.

We now provide a few examples of languages on D = {0, 1}. If Γnae = {ρ} with
ρ(x, y, z) =∞ if x = y = z and ρ(x, y, z) = 0 otherwise, then VCSP(Γnae) captures precisely
the NAE-3-Sat (Not-All-Equal 3-Satisfiability) problem. If Γcut = {γ} with γ(x, y) = 1
if x = y and γ(x, y) = 0 otherwise, then VCSP(Γcut) captures precisely the Min-UnCut
problem. If Γis = {ρ, γ} with ρ(x, y) = ∞ if x = y = 1 and ρ(x, y) = 0 otherwise, and
γ(x) = 1− x, then VCSP(Γis) captures precisely the Maximum Independent Set problem.
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39:2 Planar Valued CSPs

Minimisation of bounded-arity submodular functions (or equivalently, submodular pseudo-
Boolean polynomials of bounded degree) corresponds to VCSP(Γsub) for Γsub consisting of
all weighted relations γ that satisfy γ(min(x,y)) + γ(max(x,y)) ≤ γ(x) + γ(y), where min
and max are applied componentwise.

We will be concerned with exact solvability of VCSPs. A language Γ is called tractable if
VCSP(Γ′) can be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ,
and Γ is called intractable if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance, Γsub
is tractable [8] whereas Γnae, Γcut, Γis are intractable [15].

1.1 Contribution
Languages on a two-element domain are called Boolean. The complexity of Boolean valued
constraint languages is well understood and eight tractable cases have been identified [8].
Suppose that a Boolean language Γ is intractable. We are interested in restrictions that can
be imposed on input instances of VCSP(Γ) that make the problem tractable. A natural way
is to restrict the incidence graph of the instance (the precise definition is given in Section 2).
In this paper we initiate the study of the planar variant of the VCSP.

We denote by VCSPp(Γ) the class of instances I of VCSP(Γ) with planar incidence graph
(with an additional requirement that leads to a finer classification, as discussed in detail in
Section 2). Language Γ is called planarly-tractable if VCSPp(Γ′) can be solved (to optimality)
in polynomial time for every finite subset Γ′ ⊆ Γ, and it is called planarly-intractable if
VCSPp(Γ′) is NP-hard for some finite Γ′ ⊆ Γ. For instance, while Γnae, Γcut, and Γis are
intractable, it is known that Γnae and Γcut are planarly-tractable [28, 17] whereas Γis is
planarly-intractable [14]. The problem of classifying all intractable languages as planarly-
tractable and planarly-intractable is challenging and open even for Boolean valued constraint
languages.

A Boolean valued constraint language Γ is called self-complementary if every γ ∈ Γ satisfies
γ(x) = γ(x) for every x ∈ Dar(γ), where x = (1− x1, . . . , 1− xar(γ)) for x = (x1, . . . , xar(γ)).
As our first contribution, we show in Section 3 that intractable Boolean valued constraint
languages that are not self-complementary are planarly-intractable. We prove this by carefully
constructing planar NP-hardness gadgets for any intractable Boolean valued constraint
language that is not self-complementary, relying on the fact that all tractable Boolean valued
constraint languages are known [8]. Our result subsumes the analogous result obtained for
{0,∞}-valued languages [10]. We remark that focusing on Boolean languages is natural
as it avoids a number of difficulties intrinsic to the planar setting. Let Γcol = {γ} with
γ(x, y) = 0 if x 6= y and γ(x, y) = ∞ otherwise. Then Γcol on domain D with |D| = 3 is
planarly intractable (since VCSPp(Γcol) captures precisely the 3-Colouring problem on
planar graphs) [15] but is tractable on D with |D| = 4 for highly nontrivial reasons, namely
the Four Colour Theorem.

A valued constraint language Γ on D is called conservative if Γ contains all {0, 1}-valued
unary weighted relations. The complexity of conservative valued constraint languages is well
understood: a complete complexity classification has been obtained in [26], with a recent
simplification of both the algorithmic and the hardness part [35]. As our second contribution,
we give a complete complexity classification of conservative valued constraint languages on
arbitrary finite domains with respect to planar-tractability. In particular, we show that every
intractable conservative valued constraint language is also planarly-intractable. Hence there
are no new tractable cases in the conservative planar setting. This may seem unsurprising
but the proof is not trivial.

Note that for Boolean valued constraint languages that are conservative the claim follows
immediately from our first result: any intractable Boolean language containing both γ0(x) = x
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and γ1(x) = 1− x (guaranteed by the conservativity assumption) is not self-complementary,
and thus is planarly-intractable. This shows that Γ = Γcut ∪ {γ0, γ1} is intractable, a result
originally obtained in [1] since VCSPp(Γ) captures precisely the planar Min-UnCut problem
with unary weights. (In fact, the same argument shows that both Γcut ∪ {γ0} and Γcut ∪ {γ1}
are planarly-intractable.)

As it is common in the world of CSPs, dealing with non-Boolean domains is considerably
more difficult than the case of Boolean domains. For valued constraint languages we have a
Galois connection with certain algebraic objects [6, 13] but no Galois connection is known
for valued constraint languages in the planar setting. Moreover, it is unclear how to use the
recent relatively simple proof of the complexity classification of conservative valued constraint
languages [35] and make it work in the planar setting since the proof depends on linear
programming duality. (This is related to the lack of a Galois connection in the planar setting.
In particular, [35, Lemma 2], which relates (non-planar) expressibility and operator Opt, is
proved via LP duality, and it is unclear how to prove it in the planar setting.)

Our approach is to follow the original proof of the classification of conservative valued
constraint languages [26]. In order to adapt the proof for the planar setting, we significantly
simplify it and generalise necessary parts. Details on proof differences as well as challenges
that we needed to overcome to make the proof work are outlined in Section 4. We believe
that our proof techniques, and in particular the now simplified and generalised technique
from [26], will be useful in future work on planar (V)CSPs.

1.2 Related work
VCSPs with {0,∞}-valued weighted relations are just (ordinary) decision CSPs [11]. There
has been a lot of work on decision CSPs, see [5] for a recent survey. Most results have been
obtained for CSPs parametrised by a constraint language, see [2] for a recent survey. Some
of the algebraic methods developed for CSPs [3] have been extended to VCSPs [6, 34, 13, 27]
and successfully used in classifying various fragments of VCSPs [20, 25, 33, 23, 35]. However,
it is unclear how to use algebraic methods for instance-restricted classes of VCSPs (sometimes
called hybrid [5]), even though there are some recent investigations in this direction [24, 32].

Planar restrictions have been studied for Boolean (decision) CSPs [10], for Boolean
symmetric counting CSPs with real [4] and complex [16] weights, and also for Boolean CSPs
with respect to polynomial-time approximation schemes [22, 9].

2 Preliminaries

2.1 Planar VCSPs
Let I be a VCSP instance with variables V and valued constraints S. The incidence
graph of I is the bipartite multigraph with vertex set S ∪ V and edges (γ, xi) for every
γ(x1, . . . , xar(γ)) ∈ S and 1 ≤ i ≤ ar(γ).

We are interested in VCSP instances with planar incidence graphs. Following [10], we
additionally require the order of edges around constraint vertices in the plane drawing of
the incidence graph respect the order of arguments of the corresponding constraint. Note
that the variant without this additional restriction can be easily modelled by replacing each
weighted relation γ in a language by all weighted relations obtained from γ by permuting
the order of its inputs. Hence, this choice leads to a finer classification.

Following [10], rather than working with the incidence graph, we equivalently define the
problem in terms of a related plane graph where variables correspond to vertices and valued
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constraints to faces. We note that our graphs are allowed to have loops, possibly several at a
single vertex, and parallel edges.

For a connected plane graph G, we denote by F (G) the set of its faces. For any face
f ∈ F (G), let b(f) denote a closed walk bounding f , enumerated in the clockwise order
around f .

I Definition 1. A plane VCSP instance (I,G, φ) is given by a VCSP instance I with variables
V and objective function C with q valued constraints, a connected plane graph G over vertices
V , and an injective mapping φ : {1, . . . , q} → F (G) such that for every valued constraint
γi(x1, x2, . . . , xar(γi)) it holds b(φ(i)) = x1x2 . . . xar(γi)x1.

We note that the definition of a planar VCSP instance, in which case the graph G and
mapping φ are not given, is equivalent to Definition 1. This is because, as mentioned in [10],
checking whether a VCSP instance I has a planar representation, and if so then finding
(I,G, φ), can be done in polynomial time [19]. For simplicity of presentation, we will assume
that graph G and mapping φ are given.

We denote by VCSPp(Γ) the class of plane VCSP instances over the language Γ.

2.2 Planar Weighted Relational Clones
In this section, we define planar weighted relational clones, which are closures of valued
constraint languages that do not change the tractability of corresponding planar VCSPs.

Relations can be seen as a special case of weighted relations with range {0,∞} (also called
crisp). For a weighted relation γ : Dr → Q, we denote by Feas(γ) = {x ∈ Dr | γ(x) <∞}
the underlying feasibility relation, and by Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤ γ(y) for every y ∈
Dr} the relation of minimal-value (or optimal) tuples. We also write Feas(γ) = 0 · γ and see
the Feas operator as scaling a weighted relation by zero, where we define 0 · ∞ =∞.

An assignment s : V → D for a VCSP instance (V,D,C) with V = {x1, . . . , xn} is called
feasible if C(s(x1), . . . , s(xn)) <∞.

I Definition 2. Let (I,G, φ) be a plane VCSP instance such that φ does not map any i to
the outer face fo of G, and let v = (v1, . . . , vr) be an r-tuple of variables from V such that
b(fo) = vrvr−1 . . . v1vr. We denote by πv(I) the r-ary weighted relation mapping any x ∈ Dr

to the minimum objective value obtained by feasible assignments s of I with s(v) = x, or ∞
if no such feasible assignment exists.

An r-ary weighted relation γ is planarly expressible from a valued constraint language Γ
if there exists a plane instance I over Γ and an r-tuple v of its variables such that πv(I) = γ.

I Definition 3. A planar weighted relational clone is a non-empty set of weighted relations
over the same domain that is closed under planar expressibility, scaling by non-negative
rational constants, addition of rational constants, and operator Opt. We will denote the
smallest planar weighted relational clone containing a valued constraint language Γ by
wClonep(Γ).

An analogous notion of weighted relational clones closed under general (i.e. not necessarily
planar) expressibility [6, 13] has been used to study the complexity of VCSPs.

I Lemma 4. For any domain D and language Γ on D, the binary equality relation ρ= on
D belongs to wClonep(Γ).

Proof. Relation ρ= is planarly expressible by a plane instance consisting of a single variable
x with two self-loops, and v = (x, x). J
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I Theorem 5. For any valued constraint language Γ, Γ is planarly-tractable if, and only if,
wClonep(Γ) is planarly-tractable, and Γ is planarly-intractable if, and only if, wClonep(Γ) is
planarly-intractable.

Proof. We show that VCSPp(wClonep(Γ)) is polynomial-time reducible to VCSPp(Γ). Given
an instance I over wClonep(Γ), we replace in it all weighted relations planarly expressible
from Γ by their plane instances. Scaling, which includes Feas, can be achieved by adjusting
the weights of the valued constraints. Adding a constant to a weighted relation affects the
value of every feasible assignment by the same amount, and therefore can be ignored.

Relation Opt(γ) can be simulated by scaling γ by a sufficiently large constant. Let W
equal an upper bound on the maximum objective value of a feasible assignment of I. Without
loss of generality, we may assume that no weighted relation of I assigns a negative value and
that the smallest value assigned by γ is 0. Let d equal the second smallest value assigned by
γ. We replace Opt(γ) with (W/d+ 1) · γ, so that any assignment of I that would incur an
infinite value from Opt(γ) has now objective value exceeding W . J

2.3 Algebraic Properties
For any r-tuple x ∈ Dr, we write xi for its ith component. We apply a k-ary oper-
ation f : Dk → D to k r-tuples componentwise; that is, if x1 = (x1

1, . . . , x
1
r),x2 =

(x2
1, . . . , x

2
r), . . . ,xk = (xk1 , . . . , xkr ), then

f(x1, . . . ,xk) = (f(x1
1, x

2
1, . . . , x

k
1), f(x1

2, x
2
2, . . . , x

k
2), . . . , f(x1

r, x
2
r, . . . , x

k
r )) .

The following notion is at the heart of the algebraic approach to decision CSPs [3].

I Definition 6. Let γ be a weighted relation on D. A k-ary operation f : Dk → D is a
polymorphism of γ (and γ is invariant under or admits f) if, for every x1, . . . ,xk ∈ Feas(γ),
we have f(x1, . . . ,xk) ∈ Feas(γ). We say that f is a polymorphism of a language Γ if it is a
polymorphism of every γ ∈ Γ. We denote by Pol(Γ) the set of all polymorphisms of Γ.

A k-ary projection is an operation of the form π
(k)
i (x1, . . . , xk) = xi for some 1 ≤ i ≤ k.

Projections are (trivial) polymorphisms of all valued constraint languages.
The following notion, which involves a collection of k k-ary polymorphisms, played an

important role in the complexity classification of Boolean valued constraint languages [8].

I Definition 7. Let γ be a weighted relation on D. A list 〈f1, . . . , fk〉 of k-ary polymorphisms
of γ is a k-ary multimorphism of γ (and γ admits 〈f1, . . . , fk〉) if, for every x1, . . . ,xk ∈
Feas(γ), we have

k∑
i=1

γ(fi(x1, . . . ,xk)) ≤
k∑
i=1

γ(xi) . (1)

We say that 〈f1, . . . , fk〉 is a multimorphism of a language Γ if it is a multimorphism of every
γ ∈ Γ.

It is known that weighted relational clones preserve polymorphisms and multimorphisms [6]
and thus planar weighted relational clones do as well.

I Example 8. The class of submodular functions on D = {0, 1} [30] can be defined as the
valued constraint language Γsub that admits 〈min,max〉 as a multimorphism; that is, for
every γ ∈ Γsub, we have γ(min(x,y)) + γ(max(x,y)) ≤ γ(x) + γ(y).
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39:6 Planar Valued CSPs

3 Boolean Valued CSPs

In this section, we will consider only languages on a Boolean domain D = {0, 1}. Our first
result is that self-complementarity is necessary for planar-tractability of intractable Boolean
languages.

I Theorem 9. Let Γ be a Boolean valued constraint language that is intractable. If Γ is not
self-complementary then it is planarly-intractable.

We start with some notation for important operations on D. For any a ∈ D, ca is the
constant unary operation such that ca(x) = a for all x ∈ D. Operation ¬ is the unary
negation, i.e. ¬(0) = 1 and ¬(1) = 0. Binary operation min (max) is the minimum (maximum)
operation with respect to the order 0 < 1. Ternary operation Mn (Mj) is the unique minority
(majority) operation.

Next we define some useful relations. For any a ∈ D, we denote by ρa the unary con-
stant relation {(a)}. Relation ρ 6= is the binary disequality relation, i.e. ρ 6= = {(0, 1), (1, 0)}.
Ternary relation ρ1-in-3 corresponds to the 1-in-3 Positive 3-Sat problem, i.e. ρ1-in-3 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Weighted relations γ0, γ1, γ6= are defined as soft-constraint vari-
ants of ρ0, ρ1, ρ6= assigning value 0 to allowed tuples and 1 to disallowed tuples.

Note that Γ is self-complementary if, and only if, Γ admits multimorphism 〈¬〉. The
proof of Theorem 9 is based on the following four lemmas.

I Lemma 10. Let Γ be a valued constraint language that admits neither of the multimorphisms
〈c0〉, 〈c1〉. Then ρ0, ρ1 ∈ wClonep(Γ) or ρ 6= ∈ wClonep(Γ).

I Lemma 11. Let Γ be a valued constraint language that admits neither of the multimorphisms
〈min,min〉, 〈max,max〉, 〈min,max〉. If ρ0, ρ1 ∈ wClonep(Γ), then ρ 6= ∈ wClonep(Γ).

I Lemma 12. Let Γ be a valued constraint language that does not admit multimorphism 〈¬〉.
If ρ 6= ∈ wClonep(Γ), then ρ0, ρ1 ∈ wClonep(Γ).

I Lemma 13. Let Γ be a valued constraint language that admits neither of the multi-
morphisms 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. If ρ0, ρ1, ρ6= ∈ wClonep(Γ), then
ρ1-in-3 ∈ wClonep(Γ).

Proof (of Theorem 9). Since Γ is intractable we know, by [8, Theorem 7.1], that Γ admits
neither of the multimorphisms 〈c0〉, 〈c1〉, 〈min,min〉, 〈max,max〉, 〈min,max〉, 〈Mn,Mn,Mn〉,
〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. By assumption, Γ is not self-complementary and hence does not
admit the 〈¬〉 multimorphism.

By Lemmas 10, 11, and 12, we have ρ0, ρ1, ρ6= ∈ wClonep(Γ) and hence by Lemma 13
ρ1-in-3 ∈ wClonep(Γ). Planar 1-in-3 Positive 3-Sat problem is NP-complete [29], and
therefore Γ is planarly-intractable by Theorem 5. J

4 Conservative Valued CSPs

A valued constraint language Γ is called conservative if Γ includes all {0, 1}-valued unary
weighted relations. As our second result, we prove that planarity does not add any tractable
cases for conservative valued constraint languages.

I Theorem 14. Let Γ be an intractable conservative valued constraint language. Then Γ is
planarly-intractable.
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Consequently, we obtain a complexity classification of all conservative valued constraint
languages in the planar setting, thus sharpening the classification of conservative valued
constraint languages [26, 35]. As mentioned in Section 1, for Boolean domains Theorem 14
follows from Theorem 9. Thus, the only tractable Boolean conservative languages in the
planar setting are given by the multimorphisms 〈min,max〉 and 〈Mj,Mj,Mn〉 [8].

We now define certain special types of multimorphisms.
A k-ary operation f : Dk → D if called conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk}

for every x1, . . . , xk ∈ D. A multimorphism 〈f1, . . . , fk〉 is called conservative if applying
〈f1, . . . , fk〉 to (x1, . . . , xk) returns a permutation of (x1, . . . , xk).

I Definition 15. A binary multimorphism 〈f, g〉 of Γ is called a symmetric tournament pair
(STP) if it is conservative and both f and g are commutative operations.

It was shown in [7] that languages admitting an STP multimorphism are tractable.
A ternary operation f : D3 → D is called a majority operation if f(x, x, y) = f(x, y, x) =

f(y, x, x) = x for all x, y ∈ D, and aminority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) =
y for all x, y ∈ D.

I Definition 16. A ternary multimorphism 〈f, g, h〉 is called an MJN if f and g are (possibly
equal) majority operations and g is a minority operation.

It was shown in [26] that languages admitting an MJN multimorphism are tractable.

I Theorem 17 ([26]). Let Γ be a conservative valued constraint language on D. Then either Γ
admits a conservative binary multimorphism 〈f, g〉 and a conservative ternary multimorphism
〈f ′, g′, h′〉 and there is a family M of 2-element subsets of D, such that

for every {a, b} ∈M , 〈f, g〉 restricted to {a, b} is a symmetric tournament pair, and
for every {a, b} 6∈M , 〈f ′, g′, h′〉 restricted to {a, b} is an MJN multimorphism,

in which case Γ is tractable, or else Γ is intractable.

The idea of the proof of Theorem 17 is as follows: given a conservative valued constraint
language Γ, we define a certain graph GΓ whose vertices are pairs of different labels from
D and an edge (a, b)− (c, d) is present if there is a binary weighted relation γ ∈ wClone(Γ)
that is “non-submodular with respect to the order a < b and c < d”. The edges of GΓ are
then classified as soft and hard. It is shown that a soft self-loop implies intractability of
Γ. Otherwise, the vertices of GΓ are partitioned into M ∪M , where M denotes the set of
loopless vertices and M denotes the rest (i.e. vertices with hard loops). It is then shown that
GΓ restricted to M is bipartite, which is in turn used to construct a binary multimorphism
and a ternary multimorphism of Γ such that the binary multimorphism is an STP on M
and the ternary multimorphism is an MJN on M . (Proving that the constructed objects are
multimorphisms of Γ is the most technical part of the proof.) Any such language is then
tractable via an involved algorithm from [26] that relies on [7], or by an LP relaxation [35].

Our approach is to follow the above-described proof and adapt it to the planar setting.
It is natural to replace wClone(Γ) by wClonep(Γ) in the definition of GΓ. But this simple
change does not immediately yield the desired result. There are two main obstacles. First,
the proof of Theorem 17 from [26] heavily relies on [31], which guarantees the existence
of a majority polymorphism. However, this is proved in [31] using (functional) clones and
depends on the Galois connection between clones and relational co-clones; such a connection
is not known for planar expressibility! Second, some of the gadgets (and in particular the
“i-expansion” from [26, Section 6.4]) are not necessarily planar.

MFCS 2016



39:8 Planar Valued CSPs

To avoid these obstacles, we modify, significantly simplify, and generalise the proof so
that it works in the planar setting. The key changes are the following. (i) We use a closure
of a language, denoted Γ∗ below, that is a subset of the planar weighted relational clone
of a conservative language. (ii) We do not rely on Takhanov’s result on the existence of a
majority polymorphism [31] but instead prove directly without using [31] that (the closure of)
Γ is 2-decomposable. (iii) We define different STP and MJN multimorphisms that allow us
to simplify the proof that these are indeed multimorphisms of Γ. In particular, we will prove
modularity of weighted relations on M and show that the ternary multimorphism satisfies
Inequality (1) with equality, thus obtaining a better structural understanding of tractable
languages. The main simplification is that we define MJN as close to projection operations
as possible, and in particular not depending on the STP multimorphism as in [26].

We now define a few operations on weighted relations.

I Definition 18. Let γ be an r-ary weighted relation on D. A domain restriction of γ to D′ ⊆
D at coordinate i is the r-ary weighted relation defined as γ′(x1, . . . , xr) = γ(x1, . . . , xr) +
ρD′(xi), where ρD′(x) = 0 if x ∈ D′ and ρD′(x) =∞ otherwise. A pinning of γ to a ∈ D at
coordinate i is the (r − 1)-ary weighted relation defined as γ′(x1, . . . , xi−1, xi+1, . . . , xr) =
minxi∈D γ(x1, . . . , xr) + ρ{a}(xi). A minimisation of γ at coordinate i is the (r − 1)-ary
weighted relation defined as γ′(x1, . . . , xi−1, xi+1, . . . , xr) = minxi∈D γ(x1, . . . , xr).

A join of two binary weighted relations γ1 and γ2 is the weighted relation γ(x, y) =
minz∈D γ1(z, x) + γ2(z, y).

We will make use only of a limited subset of wClonep(Γ), which is defined below.

I Definition 19. For a conservative valued constraint language Γ on D, we define Γ∗ to be
the smallest set containing Γ, all unary weighted relations and the binary equality relation
on D, and closed under operators Feas and Opt, addition of unary weighted relations to
weighted relations of arbitrary arity, minimisation, and join.

Note that Γ∗ ⊆ wClonep(Γ), as any unary weighted relation can be obtained from the
set of all {0, 1}-valued unary weighted relations by addition of unary weighted relations,
scaling, addition of constants, and operator Opt. It is easy to show that addition of unary
weighted relations, minimisation, and join are planarly-expressible. Set Γ∗ is also closed
under domain restriction and pinning, as these operations can be achieved by adding unary
weighted relations and minimisation. By Theorem 5, Γ∗ has the same complexity as Γ.

I Definition 20. Let Γ be a conservative language. We define an undirected graph GΓ on
vertices (a, b) for all a, b ∈ D, a 6= b. For any vertex v = (a, b), we will denote by v vertex
(b, a). Graph GΓ is allowed to have self-loops. It contains edge (a1, b1)− (a2, b2) if there is a
binary weighted relation γ ∈ Γ∗ such that (a1, b2), (b1, a2) ∈ Feas(γ) and

γ(a1, b2) + γ(b1, a2) < γ(a1, a2) + γ(b1, b2) . (2)

If there exists such a weighted relation γ with at least one of (a1, a2), (b1, b2) belonging to
Feas(γ), we will call the edge soft, otherwise the edge is hard. We denote by M and M the
set of vertices with and without self-loops respectively.

We will show in Theorem 25, proved in Section 5, that if GΓ has a soft self-loop then Γ is
planarly-intractable. Our goal, assuming GΓ has no soft self-loops, is to prove the following.

I Theorem 21. If GΓ has no soft self-loop, then Γ admits a binary multimorphism 〈u,t〉
that is an STP on M , and a ternary multimorphism 〈Mj1,Mj2,Mn3〉 that is an MJN on M .
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5 Proof of Theorem 21

We will need the following definition.

I Definition 22. Let ρ be an r-ary relation. For any i, j ∈ {1, . . . , r}, we will denote by
Pri,j(ρ) the projection of ρ on coordinates i and j, i.e. the binary relation defined as

(ai, aj) ∈ Pri,j(ρ) ⇐⇒ (∃x ∈ ρ) xi = ai ∧ xj = aj . (3)

Relation ρ is 2-decomposable if

x ∈ ρ ⇐⇒
∧

1≤i,j≤r
(xi, xj) ∈ Pri,j(ρ) . (4)

The following lemma will be useful in proving results about both Boolean and conservative
valued constraint languages. For any r-tuple z and a subset of coordinates I ⊆ {1, . . . , r}, we
denote by zI the projection of z onto I. For any partition of coordinates I, J ⊆ {1, . . . , r},
we then write · for the inverse operation, i.e. zI · zJ = z.

I Lemma 23. Let γ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of its
coordinates. If x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (5)

then there exist coordinates i ∈ I, j ∈ J and a binary weighted relation γi,j ∈ {γ}∗ such that
(xi, xj), (yi, yj) ∈ Feas(γi,j) and

γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) + γi,j(yi, xj) . (6)

Moreover, if every relation in {γ}∗ is 2-decomposable, then xI · yJ ∈ Feas(γ) implies
(xi, yj) ∈ Feas(γi,j) and yI · xJ ∈ Feas(γ) implies (yi, xj) ∈ Feas(γi,j).

The following lemma gives a useful alternative characterisation of an edge in GΓ.

I Lemma 24. Graph GΓ contains edge (a1, b1) − (a2, b2) if, and only if, binary relation
{(a1, b2), (b1, a2)} belongs to Γ∗. The edge is soft if, and only if, at least one of binary
relations {(a1, a2), (a1, b2), (b1, a2)}, {(b1, b2), (a1, b2), (b1, a2)} belongs to Γ∗.

I Theorem 25. If GΓ has a soft self-loop, language Γ is planarly-intractable.

Proof. Let (a, b) be a vertex of GΓ with a soft self-loop. Without loss of generality, we
have ρ = {(a, a), (a, b), (b, a)} ∈ Γ∗ by Lemma 24. We denote by γa, γb the unary weighted
relations defined as γa(a) = γb(b) = 0, γa(b) = γb(a) = 1, and γa(x) = γb(x) = ∞ for
x 6∈ {a, b}. Set Γ′ = {ρ, γa, γb} ⊆ Γ∗ can be viewed as a conservative language over a Boolean
domain {a, b}. Observe that Γ′ is intractable (via checking that it does not fall into either of
the two tractable cases for Boolean conservative valued constraint languages [8] corresponding
to the 〈min,max〉 and 〈Mj,Mj,Mn〉 multimorphisms) and not self-complementary (neither of
its weighted relations is self-complementary), and hence planarly-intractable by Theorem 9.
Alternatively, just take the obvious encoding of the planar Maximum Independent Set
problem as discussed in Section 1. J

In order to prove Theorem 21, we now introduce several lemmas. From now on we will
assume that GΓ has no soft self-loop.
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I Lemma 26. For any vertex v, graph GΓ contains edge v− v. There is no edge between M
and M , no odd cycle in M , and no soft edge in M .

Proof. As the binary equality relation belongs to Γ∗, we have edge v − v for all vertices v.
Consider any sequence of vertices v1, v2, v3, v4 such that there is an edge between every

two consecutive ones, and denote vi = (ai, bi). By Lemma 24, there exist binary relations
ρi = {(ai, bi+1), (bi, ai+1)} ∈ Γ∗ for i ∈ {1, 2, 3}. Their join equals {(a1, b4), (b1, a4)} ∈
Γ∗, and hence GΓ contains edge v1 − v4. If any of edges v1 − v2, v2 − v3, v3 − v4 is
soft, we can replace the corresponding relation ρi with {(ai, ai+1), (ai, bi+1), (bi, ai+1)} or
{(bi, bi+1), (ai, bi+1), (bi, ai+1)} to show that v1 − v4 is also soft.

Suppose that there is an edge between s ∈ M and t ∈ M . Then we have edges
s− t, t− t, t− s, and hence also self-loop s− s, which is a contradiction.

If there is an odd cycle inM , let us choose a shortest one and denote its vertices v1, . . . , vk
(k ≥ 3). We have a sequence of adjacent vertices vk, v1, v2, v3, and hence v3 and vk are
also adjacent. But that means there is a shorter odd cycle (or a self-loop) v3, . . . , vk; a
contradiction.

Finally, suppose that s, t ∈M and edge s− t is soft. Then we have edges s− t, t− t, t− s,
and hence a soft self-loop at s, which is a contradiction. J

I Lemma 27. Every relation in Γ∗ is 2-decomposable.

Proof. Let ρ ∈ Γ∗ be an r-ary relation. By definition, x ∈ ρ implies
∧

1≤i,j≤r(xi, xj) ∈
Pri,j(ρ) for every relation. We prove the converse implication by induction on r. If r ≤ 2,
relation ρ is trivially 2-decomposable. Let r = 3. Suppose for the sake of contradiction that
(x1, x2, x3) 6∈ ρ even though (y1, x2, x3), (x1, y2, x3), (x1, x2, y3) ∈ ρ for some y1, y2, y3 ∈ D.
Let ρ1 ∈ Γ∗ be the binary relation obtained from ρ by pinning it at the first coordinate
to label x1; we have (x2, y3), (y2, x3) ∈ ρ1, (x2, x3) 6∈ ρ1, and thus graph GΓ contains edge
(x2, y2)− (x3, y3). Analogously, the graph contains edges (x3, y3)− (x1, y1) and (x1, y1)−
(x2, y2). This is an odd cycle, so it must hold (x1, y1), (x2, y2), (x3, y3) ∈ M . Let γ be a
unary weighted relation with γ(x1) = 0, γ(y1) = 1 and γ(z) = ∞ for all z ∈ D \ {x1, y1}.
By adding γ to ρ at the first coordinate and then minimising over it we show that edge
(x2, y2)− (x3, y3) is soft, which is a contradiction.

It remains to prove the lemma for r ≥ 4. Let ρ1 ∈ Γ∗ be the relation obtained from ρ

by minimisation over the first coordinate. Relation ρ1 is 2-decomposable by the induction
hypothesis, so (x2, . . . , xr) ∈ ρ1, and hence (y1, x2, . . . , xr) ∈ ρ for some y1 ∈ D. Analogously,
we have (x1, y2, x3, . . . , xr), (x1, x2, y3, x4, . . . , xr) ∈ ρ for some y2, y3 ∈ D. Pinning ρ at
every coordinate k ≥ 4 to its respective label xk gives a ternary 2-decomposable relation ρ′
such that (xi, xj) ∈ Pri,j(ρ′) for all i, j ∈ {1, 2, 3}. Therefore, (x1, x2, x3) ∈ ρ′ and x ∈ ρ. J

The following lemma involves a generalisation of the definition of an edge in GΓ to
non-binary weighted relations.

I Lemma 28. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of
its coordinates. If x,y ∈ Feas(γ) and

γ(x) + γ(y) < γ(xI · yJ) + γ(yI · xJ) , (7)

then graph GΓ contains edge (xi, yi) − (yj , xj) for some i ∈ I, j ∈ J . If at least one of
xI · yJ ,yI · xJ belongs to Feas(γ), the edge is soft.

Proof. By Lemma 23, there are coordinates i ∈ I, j ∈ J and a binary weighted relation
γi,j ∈ Γ∗ such that (xi, xj), (yi, yj) ∈ Feas(γi,j) and γi,j(xi, xj) + γi,j(yi, yj) < γi,j(xi, yj) +
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γi,j(yi, xj), so graph GΓ contains edge (xi, yi)−(yj , xj). If xI ·yJ or yI ·xJ belongs to Feas(γ),
then (xi, yj) or (yi, xj) belongs to Feas(γi,j) (as Feas(γ) is 2-decomposable by Lemma 27),
and hence the edge is soft. J

I Lemma 29. Let γ ∈ Γ∗ be an r-ary weighted relation and I, J ⊆ {1, . . . , r} a partition of
its coordinates. If x,y,xI · yJ ,yI · xJ ∈ Feas(γ) and, for all i ∈ I, (xi, yi) ∈M , then

γ(x) + γ(y) = γ(xI · yJ) + γ(yI · xJ) . (8)

Proof. Suppose for the sake of contradiction that the equality does not hold. Without loss of
generality, we may assume that γ(x) + γ(y) < γ(xI · yJ ) + γ(yI · xJ ). By Lemma 28, graph
GΓ contains a soft edge incident to (xi, yi) for some i ∈ I, which contradicts Lemma 26. J

Graph GΓ does not have any odd cycle on vertices M . Therefore, there is a partition
of M into two independent sets M1,M2. (In fact, it can be shown that every connected
component of GΓ restricted to M is a complete bipartite graph but we do not need this fact
here.) Note that (a, b) ∈M1 if, and only if, (b, a) ∈M2, as every vertex v ∈M is adjacent
to v. We define multimorphism 〈u,t〉 as follows:

〈u,t〉(x, y) =


(x, y) if (x, y) ∈M1, (9a)
(y, x) if (x, y) ∈M2, (9b)
(x, y) otherwise. (9c)

By definition, 〈u,t〉 is commutative on M .

I Theorem 30. 〈u,t〉 is a multimorphism of Γ.

Proof. Let γ ∈ Γ be an r-ary weighted relation and x,y ∈ Feas(γ). Suppose for the
sake of contradiction that (1) does not hold. We partition set {1, . . . , r} into I and J :
Set J consists of all coordinates j such that case (9b) applies to (xj , yj); set I covers the
other two cases. For any i ∈ I, either xi = yi or (xi, yi) ∈ M1 ∪ M . For any j ∈ J ,
(xj , yj) ∈ M2 and hence (yj , xj) ∈ M1. 〈u,t〉 maps x,y to xI · yJ ,yI · xJ , so we have
γ(x)+γ(y) < γ(xI ·yJ )+γ(yI ·xJ ). By Lemma 28, graph GΓ contains edge (xi, yi)− (yj , xj)
for some i ∈ I, j ∈ J , which contradicts Lemma 26. J

The following definition corresponds to the “µ function” from [26, Section 6].

I Definition 31. For any a, b, c ∈ D, we say that ab|c holds if a, b, c are all different labels
and there exist (s, t) ∈M such that binary relation {(a, s), (b, s), (c, t)} belongs to Γ∗.

The intuition is that if ab|c holds, then any minority operation on M must map any
permutation of {a, b, c} to c.

I Lemma 32. For any a, b, c ∈ D, at most one of ab|c, ca|b, bc|a holds. If ab|c, then
(a, c), (b, c) ∈M .

Proof. Suppose that both ca|b and bc|a hold. Then there are (s1, t1), (s2, t2) ∈M and binary
relations ρ1, ρ2 ∈ Γ∗ such that ρ1 = {(c, s1), (a, s1), (b, t1)}, ρ2 = {(b, s2), (c, s2), (a, t2)}. We
construct binary relation ρ as ρ(x, y) = minz∈D ρ1(z, x) + ρ2(z, y). We have ρ ∈ Γ∗ and
ρ = {(s1, s2), (s1, t2), (t1, s2)}, which implies a soft edge in M and hence a contradiction.

If ab|c, then there are (s, t) ∈M such that {(a, s), (b, s), (c, t)} ∈ Γ∗. By restricting this
relation at the first coordinate to labels {a, c} we get edge (a, c)− (t, s) and thus (a, c) ∈M ;
analogously by restricting to {b, c} we get (b, c) ∈M . J
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We define multimorphism 〈Mj1,Mj2,Mn3〉 as follows:

〈Mj1,Mj2,Mn3〉(x, y, z) =


(x, y, z) if x = y ∧ (y, z) ∈M or xy|z, (10a)
(z, x, y) if z = x ∧ (x, y) ∈M or zx|y, (10b)
(y, z, x) if y = z ∧ (z, x) ∈M or yz|x, (10c)
(x, y, z) otherwise. (10d)

Note that the operations of 〈Mj1,Mj2,Mn3〉 are majorities and a minority on M . Also note
that in the subcase x = y ∧ (y, z) ∈ M of case (10a), the output has to be (x, y, z) for
〈Mj1,Mj2,Mn3〉 to be an MJN multimorphism of Γ on M (and similarly for the first subcase
of case (10b) and case (10c)). It is the other cases where there is some freedom and where
we differ from [26].

I Theorem 33. 〈Mj1,Mj2,Mn3〉 is a multimorphism of Γ.

We will actually prove that (1) holds with equality.

Proof. Suppose for the sake of contradiction this is not true for some r-ary weighted relation
γ ∈ Γ∗ and x,y, z ∈ Feas(γ); we choose γ so that it has the minimum arity among such
counterexamples. We denote the r-tuples to which 〈Mj1,Mj2,Mn3〉 maps (x,y, z) by (f ,g,h).

First we show that case (10b) does not occur. Let I be the set of coordinates i such that
case (10b) applies to (xi, yi, zi) and let J cover the remaining cases. Suppose that I is non-
empty, and note that fI = zI ,gI = xI ,hI = yI . For every i ∈ I, it holds (xi, yi), (zi, yi) ∈M
(directly or by Lemma 32), and either zi = xi or zixi|yi.

We claim that {xi, yi, zi} × {xj , yj , zj} ⊆ Pri,j(Feas(γ)) for all i ∈ I, j ∈ J . (A detailed
proof of the claim is given in the full version of this paper [12].)

Because Feas(γ) is 2-decomposable by Lemma 27, we have uI · vJ ∈ Feas(γ) for any
u,v ∈ {x,y, z}. It must hold

γ(yI · xJ) + γ(yI · yJ) + γ(yI · zJ) = γ(yI · fJ) + γ(yI · gJ) + γ(yI · hJ) , (11)

otherwise we would obtain a smaller counterexample by pinning γ at every coordinate i ∈ I to
its respective label yi. This gives yI · fJ ,yI ·gJ ,yI ·hJ ∈ Feas(γ) and hence uI ·vJ ∈ Feas(γ)
for any u,v ∈ {x,y, z, f ,g,h}. By Lemma 29, it holds

γ(xI · xJ) + γ(yI · gJ) = γ(xI · gJ) + γ(yI · xJ) , (12)
γ(zI · zJ) + γ(yI · fJ) = γ(zI · fJ) + γ(yI · zJ) . (13)

Adding (11), (12), and (13) shows that (1) holds as equality, which is a contradiction.
Therefore, case (10b) does not apply at any coordinate.

Suppose that case (10c) applies at some coordinate i. 〈Mj1,Mj2,Mn3〉 maps (y,x, z)
to (g, f ,h), which gives us another smallest counterexample to the theorem. However, at
coordinate i is now applied case (10b), which was proved impossible.

Finally, we have that only cases (10a) and (10d) may occur in a smallest counterexample.
But then 〈Mj1,Mj2,Mn3〉 maps (x,y, z) to (x,y, z), and hence the stated equality holds. J
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