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Abstract
The Chain Pair Simplification problem (CPS) was posed by Bereg et al. who were motivated by
the problem of efficiently computing and visualizing the structural resemblance between a pair
of protein backbones. In this problem, given two polygonal chains of lengths n and m, the goal
is to simplify both of them simultaneously, so that the lengths of the resulting simplifications
as well as the discrete Fréchet distance between them are bounded. When the vertices of the
simplifications are arbitrary (i.e., not necessarily from the original chains), the problem is called
General CPS (GCPS).

In this paper we consider for the first time the complexity of GCPS under both the discrete
Fréchet distance (GCPS-3F) and the Hausdorff distance (GCPS-2H). (In the former version, the
quality of the two simplifications is measured by the discrete Fréchet distance, and in the latter
version it is measured by the Hausdorff distance.) We prove that GCPS-3F is polynomially solv-
able, by presenting an Õ((n+m)6 min{n,m}) time algorithm for the corresponding minimization
problem. We also present an O((n + m)4) 2-approximation algorithm for the problem. On the
other hand, we show that GCPS-2H is NP-complete, and present an approximation algorithm
for the problem.
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1 Introduction

Polygonal curves play an important role in many applied areas, such as 3D modeling, map
matching, and protein backbone structural alignment and comparison. There exist many
methods for comparing curves in these (and in many other) applications, where one of the
more prevalent methods is the Fréchet distance.
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37:2 On the General Chain Pair Simplification Problem

The Fréchet distance between two curves is often described through the man-dog analogy.
Imagine a man and a dog connected by a leash, each walking along his own curve from its
starting point to its end point. Both of them can control their speed, but they can only move
forward. The Fréchet distance between the two curves is the length of a minimum-length
leash that allows them to reach the end point of their curves.

In the discrete Fréchet distance we are given finite sequences of points instead of continuous
curves. The same rules apply, but now the man and the dog are hopping between the points
of their sequence. The discrete Fréchet distance is a simpler version, and is considered a
good approximation of the continuous distance.

Recently, the discrete Fréchet distance was used to align and compare protein backbones,
yielding favorable results in many instances [11, 12]. A protein backbone may consists of as
many as 500∼600 α-carbon atoms, which are the vertices (i.e., points) of our chain. Thus,
a natural approach to accelerate computations is to use a simplification of the chain. In
general, given a chain A of n vertices, a simplification of A is a chain A′ such that A′ is
“close” to A and the number of vertices in A′ is significantly smaller than n. The vertices of
the simplification A′ can be arbitrary, or restricted to the vertices of A (in order).

Simplifying two aligned chains independently does not necessarily preserve the resemblance
between them. Thus, the following question arises: Is it possible to simplify both chains
in a way that will retain the resemblance between them? This question has led Bereg et
al. [3] to pose the Chain Pair Simplification problem (CPS). In this problem, the goal is
to simplify both chains simultaneously, so that the discrete Fréchet distance between the
resulting simplifications is bounded. More precisely, given two chains A and B of lengths n
and m, respectively, an integer k and three real numbers δ1,δ2,δ3, one needs to find two chains
A′,B′ with vertices from A,B, respectively, each of length at most k, such that d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3 (d1 and d2 can be any similarity measures and ddF is the
discrete Fréchet distance).

When the chains are simplified using the Hausdorff distance, i.e., d1, d2 is the Hausdorff
distance (CPS-2H), the problem becomes NP-complete [3]. When the chains are simplified
using the Fréchet distance, i.e., d1, d2 is the Fréchet distance (CPS-3F), the problem is
polynomially solvable, as shown by Fan et al. [9] who presented an O(m2n2 min{m,n})-time
algorithm for the minimization problem of CPS-3F.

In this paper we consider, for the first time, the problem where the vertices of the
simplifications A′, B′ may be arbitrary points, Steiner points, i.e., they are not necessarily
from A,B, respectively. Since this problem is more general, we call it General CPS, or
GCPS for short. Our main contribution, see below, is a (relatively) efficient polynomial-time
algorithm for GCPS, or more precisely, for its corresponding optimization problem. As
a first step towards devising such an algorithm, we had to characterize the structure of
a solution to the problem. This was quite difficult, since on the one hand, we have full
freedom in determining the vertices of the simplifications, but, on the other hand, the
definition of the problem induces an implicit dependency between the two simplifications.
The second challenge in devising such an algorithm, is to reduce its time complexity (which is
unavoidably high), by making some non-trivial observations on the combinatorial complexity
of an arrangement of complex objects that arises, and by applying some sophisticated tricks.

Since the time complexity of our algorithm is still rather high, it makes sense to resort to
more realistic approximation algorithms. See below for a detailed description of our results
in this direction and of the rest of our results.
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Related work

The Fréchet distance and its variants have been studied extensively in the past two decades.
Given two polygonal curves of lengths m and n, Alt and Godau [2] gave an O(mn logmn)-
time algorithm for computing the Fréchet distance between them. This result in the plane was
recently improved by Buchin et al [6]. The discrete Fréchet distance was originally defined
by Eiter and Mannila [8], who also presented an O(mn)-time algorithm for computing it. A
slightly sub-quadratic algorithm was given recently by Agarwal et al. [1]. Bringmann [4], and
later Bringmann and Mulzer [5], presented a conditional lower bound implying that strongly
subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in the
one-dimensional case and even if the solution may be approximated up to a factor of 1.399.

Bereg et al. [3] were the first to study simplification problems under the discrete Fréchet
distance. They considered several versions of the problem, and presented polynomial-
time exact algorithms. Driemel and Har-Peled [7] presented an algorithm for finding an
approximate simplification in near linear time.

Our results

In Section 3, we show that GCPS-3F is polynomially solvable by presenting a sophisticated
polynomial-time algorithm for the corresponding optimization problem. In Section 4 we give
an O(m+ n)4-time 2-approximation algorithm for the problem. In Section 5 we consider the
1-sided version of the problem and present a simpler and more efficient algorithm for this
problem. Finally, in Section 6 we investigate GCPS-2H, showing that it is NP-complete and
presenting an approximation algorithm for the problem.

2 Preliminaries

There are several equivalent definitions for the discrete Fréchet distance. In this paper, we
use the one that is based on the notion of a paired walk, following [10], [3] and [7].

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd. We denote
by d(a, b) the distance between two points a, b ∈ Rd. For 1 ≤ i ≤ j ≤ n, we denote by A[i, j]
the subchain ai, ai+1, . . . , aj of A.

A paired walk along A and B is a sequence of pairs (or matchings) W = {(Ai, Bi)}k
i=1,

such that A = A1 ·A2 · · ·Ak and B = B1 ·B2 · · ·Bk, and for any i it holds that |Ai| = 1 or
|Bi| = 1 (where |Ai|, |Bi| ≥ 1). The cost of a paired walk W along A and B is dW

dF (A,B) =
max

i
max

(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance between A and B is ddF (A,B) = min
W

dW
dF (A,B). A Fréchet

walk along A and B is a paired walk W along A and B for which dW
dF (A,B) = ddF (A,B).

A δ-simplification of A w.r.t. distance d1, is a sequence of points A′ = (a′1, . . . , a′k), such
that k ≤ n and d1(A,A′) ≤ δ. The points of A′ can be arbitrary (the general case), or a
subset of the points in A appearing in the same order as in A, i.e., A′ = (ai1 , . . . , aik

) and
i1 ≤ · · · ≤ ik (the restricted case).

The different versions of the chain pair simplification problem are defined as follows.

I Problem 1.
Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively, an
integer k, and three real numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′,B′, each of at most k vertices, such that A′

MFCS 2016
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is a δ1-simplification of A w.r.t. d1 (d1(A,A′) ≤ δ1), B′ is a δ2-simplification of B w.r.t. d2
(d2(B,B′) ≤ δ2), and ddF (A′, B′) ≤ δ3?

When the vertices of the simplifications are from A and B (restricted simplifications), the
problem is called CPS, and when the vertices of the simplifications are not necessarily
from A and B (arbitrary simplifications), we call the problem GCPS. For each problem, we
distinguish between two versions:
1. When d1 = d2 = dH , the problems are called CPS-2H and GCPS-2H, respectively.
2. When d1 = d2 = ddF , the problems are called CPS-3F and GCPS-3F, respectively.

I Remark. We sometimes say that a set D of disks of radius δ covers a chain C. By this we
mean that there exists a partition of C into consecutive subchains C = C1 · C2 · · ·Ct, such
that for each 1 ≤ i ≤ t there exists a disk in D that contains all the points of Ci.

3 GCPS under the Fréchet distance

In order to solve GCPS-3F, we consider the optimization problem: Given a pair of polygonal
chains A and B of lengths n and m, respectively, and three real numbers δ1, δ2, δ3 > 0, what
is the smallest number k such that there exist a pair of chains A′,B′, each of at most k
(arbitrary) vertices, for which ddF (A,A′) ≤ δ1, ddF (B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

We begin by describing some properties that are required from an optimal solution to the
problem. Then, based on these properties, we are able to refine our search for the optimal
solution.

3.1 What does an optimal solution look like?
Let (A′, B′) be an optimal solution, that is, let A′ and B′ be two arbitrary simplifications
of A and B respectively, such that ddF (A,A′) ≤ δ1, ddF (B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3, and
max{|A′|, |B′|} is minimum. Moreover, we assume that the shorter of the chains A′, B′ is as
short as possible.

Let WA′B′ = {(A′i, B′i)}t
i=1 be a Fréchet walk along A′ and B′. Notice that, by definition,

for any i it holds that |A′i| = 1 or |B′i| = 1.
Let WAA′ be a Fréchet walk along A and A′. Notice that unlike in regular (one-sided)

simplifications, the pairs in WAA′ may match several points from A′ to a single point from
A, because A′ does not depend only on A but also on B′ and B. Similarly, let WBB′ be a
Fréchet walk along B and B′ (see Figure 1).

With each pair (A′i, B′i) ∈WA′B′ , we associate a pair of subchains Ai of A and Bi of B,
which we call a pair component. Assume A′i = A′[p, q], then Ai is defined as follows:
1. If p 6= q, then each a′k ∈ A′[p, q] appears as a singleton in WAA′ (since otherwise A′ can

be shortened). Let Ak be the subchain of A that is matched to a′k, i.e., (Ak, a′k) ∈WAA′ ,
for k = p, . . . , q. Then, we set Ai = ApAp+1 · · ·Aq.

2. If p = q and a′p appears as a singleton in WAA′ , then we set Ai = Ap.
3. If p = q and a′p belongs to some subchain of A′ of length at least two that is matched (in

WAA′) to a single element al ∈ A, we set Ai = al.
The subchains B1, . . . , Bt are defined analogously.

We need two observations. The first one is that Ai and Bi are indeed subchains (consec-
utive sets of points). This is simply because the matchings of the points from A′i and B′i in
WAA′ and WBB′ , respectively, are sub-chains, and by definition Ai = ApAp+1 · · ·Aq is also
a consecutive set of points. The second observation is that the subchains A1, . . . , At (resp.
B1, . . . , Bt) are almost-disjoint, in the sense that there can be only one point ax that belongs
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Figure 1 How does an optimal solution look like? a composition of pair-components: WA′B′ =
{({a′

1}, {b′
1, b

′
2}), ({a′

2, a
′
3}, {b′

3}), ({a′
4}, {b′

4, b
′
5}), ({a′

5}, {b′
6}), ({a′

6}, {b′
7})}

(A1 = A[1, 4], B1 = [1, 6]), (A2 = A[5, 12], B2 = B[7, 9]), (A3 = A[13], B3 = B[10, 11]), (A4 =
A[13], B4 = B[12, 13]), (A5 = A[13], B5 = B[14, 15]).

to both Ai and Ai+1, and in that case Ai = Ai+1 = (ax). This is because if there were more
than one point in common, or, if one of Ai, Ai+1 contained more points, then the sets in
WAA′ (resp. WBB′) were not disjoint.

So what does an optimal solution look like? It is composed of such almost-disjoint
pair-components. A pair-component is a pair of sub-chains, (Ai, Bi), Ai ⊆ A, Bi ⊆ B, such
that the points of Ai (resp. Bi) can be covered by one disk c of radius δ1 (resp. δ2), the
points of Bi (resp. Ai) can be covered by a set C of disks of radius δ2 (resp. δ1), and for any
c′ ∈ C, the distance between the center of c and c′ is at most δ3.

The idea of the algorithm is to compute all the possible components (and that there are
not too many of them), and then use dynamic programming to compute the optimal solution
that is composed of pair-components.

3.2 The algorithm

For any two sub-chains A[i, i′] and B[j, j′] there are two possible types of pair-components.
In the first type, there is only one disk that covers A[i, i′], and in the second type, there is
only one disk that covers B[j, j′].

We denote by PC1[i, i′, j, j′] the size of the minimum-cardinality set C of disks of radius
δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius δ1 that covers
A[i, i′], and for any c′ ∈ C, the distance between the centers of c and c′ is at most δ3.
Symmetrically, we define PC2[i, i′, j, j′]. For any 4-tuple of indices (i, i′, j, j′) we need to
compute PC1[i, i′, j, j′] and PC2[i, i′, j, j′].

Now, in order to compute an optimal solution, we need to combine pair-components in a
way that will result in a simplification of minimum size. We use dynamic programming.

Let OPT [i, j][r] be the minimum number of points in a simplification of B[1, j] in an
optimal solution for A[1, i], B[1, j] in which the number of points in the simplification of A[1, i]
is at most r. Then we have the following dynamic programming algorithm: OPT [1, 1][r] = 1
if and only if ||a1 − b1|| ≤ δ1 + δ2 + δ3, and

OPT [1, j][r] = min
q≤j
{OPT [1, q − 1][r − 1] + PC1[1, 1, q, j]},

MFCS 2016
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1
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Z1,3

(a)
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Y1,3

(b)
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Figure 2 The blue filled disks represent D(bj , δ2) and the empty dashed green disks represent
D(bj , δ2 + δ3). The small disks has radius δ3.

OPT [i, 1][r] = min
p≤i
{OPT [p− 1, 1][r − PC2[p, i, 1, 1]] + 1},

OPT [i, j][r] = min
p≤i,q≤j

{OPT [p− 1, q − 1][r − 1] + PC1[p, i, q, j],

OPT [i, q − 1][r − 1] + PC1[i, i, q, j],
OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1,
OPT [p− 1, j][r − PC2[p, i, j, j]] + 1}.

I Theorem 1. For any i,j and r, OPT [i, j][r] is the minimum number of points in a
simplification of B[1, j] in an optimal solution for A[1, i], B[1, j] in which the number of
points in the simplification of A[1, i] is at most r.

Proof. The proof is by induction on i, j, and r. For i = 1 and j = 1 the theorem
holds by definition. Let A′ and B′ be an optimal solution for A[1, i], B[1, j], s.t. |A′| ≤ r.
Let [p, i, q, j] be the last pair-component in this solution. If [p, i, q, j] is of type 1, i.e.
there is one disk that covers A[p, i] and PC1[p, i, q, j] disks that cover B[q, j], then there
are two possibilities: if p = i and the pair-component that came before [p, i, q, j] is
[i, i, q′, q − 1] for some q′ ≤ q − 1, then OPT [i, j][r] = OPT [i, q − 1][r − 1] + PC1[i, i, q, j],
else, OPT [i, j][r] = OPT [p − 1, q − 1][r − 1] + PC1[p, i, q, j]. If [p, i, q, j] is of type 2,
i.e. there is one point that covers B[q, j] and PC2[p, i, q, j] points that cover A[p, i],
then again we have two possibilities, OPT [i, j][r] = OPT [p− 1, j][r − PC2[p, i, j, j]] + 1 or
OPT [i, j][r] = OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1. J

3.3 Computing the components
Let D(p, δ) denote the disk centred at p with radius δ.

Recall that PC1[i, i′, j, j′] is the size of a minimum-cardinality set C of disks of radius
δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius δ1 that covers
A[i, i′], and for any c′ ∈ C, the distance between the centers of c and c′ is at most δ3.

We show how to find PC1[i, i′, j, j′] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m

(PC2[i, i′, j, j′] is symmetric). We begin with a few observations to give an intuition for the
algorithm.

Consider PC1[i, i′, j, j′]. First, notice that the center of c is in the region Xi,i′ =⋂
i≤k≤i′

D(ak, δ1), because the distance from c to any point in A[i, i′] is at most δ1.

Any c′ ∈ C is covering a consecutive subchain of B[j, j′]. Thus, for any j ≤ t ≤ t′ ≤ j′,
the center of a disk c′ that covers the subsequence B[t, t′] (if exists) is in the region
Zt,t′ =

⋂
t≤k≤t′

D(bk, δ2) (see Figure 2(a)). There are O((j′ − j)2) = O(m2) such regions.
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1

2

3

5

6

Xi,i′

z

Figure 3 The arrangement A(DA). After computing SizeA(X1,4, j, j
′), we know that

SizeA(X1,3, j, j
′) is the minimum between SizeA(X1,4, j, j

′) and the values of the cells in O1,3.

Each such region is convex and composed of linear number of arcs. Any point placed
inside Zt,t′ can cover B[t, t′], and we need a point with distance at most δ3 to the center of c.
For each Zt,t′ , consider the Minkowski sum Yt,t′ = Zt,t′ ⊕ δ3 (see Figure 2(b)).

Now, consider the arrangement obtained by the intersection of Xi,i′ and the arrangement
of {Yt,t′ | j ≤ t ≤ t′ ≤ j′} (see Figure 3). Each cell in this arrangement corresponds to
a set of Yt,t′ ’s, each has some point with distance at most δ3 to the same points in Xi,i′ .
Each cell corresponds to a possible choice of the center of c, or, in other words, a possible
pair-component of type 1.

We now describe an algorithm for computing PC1[i, i′, j, j′] for all 1 ≤ i ≤ i′ ≤ n and
1 ≤ j ≤ j′ ≤ m. The algorithm is quite complex and has several sub-procedures.

Let X = {Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) | 1 ≤ i ≤ i′ ≤ n}. The number of shapes in X is O(n2).

Let Y = {Yj,j′ | 1 ≤ j ≤ j′ ≤ m, Zj,j′ 6= ∅}. The number of shapes in Y is O(m2), each
shape is of complexity O(m).

Consider the arrangement A(Y ) of the shapes in Y .

I Lemma 2. The number of cells in A(Y ) is O(m4).

Proof. Let P be the set of intersection points between the disks in {D(bj , δ2) | 1 ≤ j ≤ m}.
Consider the following set of disks: D = {D(bi, δ2 + δ3) | 1 ≤ i ≤ m} ∪ {D(p, δ3) | p ∈ P}.
Notice that the arcs and vertices of A(Y ) are a subset of the arcs and vertices of A(D) (see
Figure 2(c)). Since the number of points in P is O(m2), we get that the number of disks in
A(D) is O(m2), and thus the complexity of A(D) is O(m4). J

Notice that for any shape Yj,j′ ∈ Y and a cell z ∈ A(Y ) it holds that Yj,j′ ∩ z 6= ∅ if and
only if z ⊆ Yj,j′ . For each cell z ∈ A(Y ), let Yz be the set of O(m2) shapes from Y that
contain z. The algorithm has two main steps:
1. For each cell z ∈ A(Y ), and for any two indices 1 ≤ j ≤ j′ ≤ m, compute SizeB(z, j, j′) –

the minimum number of shapes from Yz needed in order to cover the points of B[j, j′].
Recall that a shape Yt,t′ ∈ Yz covers the subsequence B[t, t′], in other words, there exists
a point q in Yt,t′ s.t. d(q, bk) ≤ δ2 for any t ≤ k ≤ t′.

2. For each shape Xi,i′ ∈ X, and for any two indices 1 ≤ j ≤ j′ ≤ m, compute
SizeA(Xi,i′ , j, j′) = min

z∩Xi,i′ 6=∅
SizeB(z, j, j′).

Note that SizeA(Xi,i′ , j, j′) = PC1[i, i′, j, j′].

MFCS 2016
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Algorithm 1 SizeB(Yz)
For j from 1 to m:
1. Set counter ← 1
2. Set j′ ← j.
3. Set p← max{next(Yj,j′),max(j′ + 1)}.
4. While p 6= −∞:

For k from j′ to p: Set SizeB(z, j, k)← counter.
Set counter ← counter + 1
Set p← max{next(Yj′,k),max(k + 1)}.
Set j′ ← k.

Step 1
First we have to find the set Yz for each cell z ∈ A(Y ). We start by computing Y : for any
j, j′ we check whether

⋂
j≤k≤j′

D(bk, δ2) 6= ∅. If yes, we add Yj,j′ to Y . This can be done in

O(m3) time. Then we compute the arrangement A(Y ), while maintaining the lists Yz for
any cell z ∈ A(Y ). This can be done in O(m4) as the complexity of A(Y ) is O(m4).

Now, for each cell z ∈ A(Y ) we compute SizeB(z, j, j′) for all 1 ≤ j ≤ j′ ≤ m as follows:
Notice that the problem of finding a minimum cover to B[j, j′] from a set of subsequences,
is actually an interval-cover problem. We refer to the shapes in Yz as intervals (between 1
and m), and the goal is to find the minimum number of intervals from Yz needed in order to
cover the interval [j, j′].

First, for every 1 ≤ j ≤ n we find max(j) - the largest interval from Yz that starts at j.
This can be done simply in O(m2 logm) time, by sorting the intervals first by their lower
bound and then by their upper bound.

Next, for an interval Yt,t′ ∈ Yz, consider the intervals in Yz whose lower bound lies in
[t, t′] and whose upper bound is greater than t′. Let next(Yt,t′) be the largest upper bound
among the upper bounds of these intervals. We can find next(Yt,t′), for each Yt,t′ ∈ Yz, in
total time O(m2 logm), using a segment tree as follows: Let S = {s1, . . . , sn} be a set of
line segments on the x-axis, si = [ai, bi]. Construct a segment tree for the set S. With each
vertex v of the tree, store a variable rv, whose initial value is −∞. Query the tree with each
of the left endpoints. When querying with ai, in each visited vertex v with non-empty list
of segments do: if bi > rv, then set rv to bi. Finally, for each segment s, let next(s) be the
maximum over the values rv of the vertices storing s.

After computing next(Yt,t′) for all Yt,t′ ∈ Yz (assume next(Yt,t′) = −∞ for Yt,t′ /∈ Yz),
we use Algorithm 1 to compute SizeB(z, j, j′) for all 1 ≤ j ≤ j′ ≤ m. The running time of
Algorithm 1 is O(m2). Thus, computing SizeB(z, j, j′) for all cells z ∈ A(Y ) and all indices
1 ≤ j ≤ j′ ≤ m takes O(m6 logm) time.

Step 2
Recall that A(Y ) is the arrangement obtained from the shapes in Y . Let A(DA) be the
arrangement of the disks DA = {D(ak, δ1) | 1 ≤ k ≤ n}. The number of cells in A(DA) is
O(n2).

A trivial algorithm to compute the value SizeA(Xi,i′ , j, j′) is by considering the values
SizeB(z, j, j′) of O(m4) cells from A(Y ). Since there are O(n2) shapes Xi,i′ ∈ X and O(m2)
pairs of indices 1 ≤ j ≤ j′ ≤ m, the running time will be O(n2m6). We manage to reduce
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1

2

3

4

X1,4

O1,3

O1,2

O1,1

Figure 4 The arrangement A(DA). After computing SizeA(X1,4, j, j
′), we know that

SizeA(X1,3, j, j
′) is the minimum between SizeA(X1,4, j, j

′) and the values of the cells in O1,3.

the running time by a factor of O(n), using some properties of the arrangement of disks.
Let U be the arrangement of the shapes in Y and the disks in DA. Notice that U is a

union of the arrangements A(DA) and A(Y ).

I Lemma 3. The number of cells in U is O((m2 + n)2).

The proof is similar to the proof of Lemma 2.
We make a few quick observations:

I Observation 1. For any two cells w ∈ U , x ∈ A(DA), x ∩ w 6= ∅ if and only if w ⊆ x.
Similarly, for any cell z ∈ A(Y ), z ∩ w 6= ∅ if and only if w ⊆ z.

I Observation 2. For any cell x ∈ A(DA), if Xi,i′ ∩ x 6= ∅, then x ⊆ Xi,i′ .

I Observation 3. For any 1 ≤ i ≤ i′ ≤ n we have Xi,i′+1 ⊆ Xi,i′ .

Given w ∈ U , let zw be the cell from A(Y ) that contains w. We have SizeB(w, j, j′) =
SizeB(z, j, j′).

Let Oi,i′ be the set of cells w ∈ U s.t. w ⊆ Xi,i′ and w * Xi,i′+1.
For fixed 1 ≤ j ≤ j′ ≤ m and 1 ≤ i ≤ n, the idea is to compute the values

SizeA(Xi,n, j, j
′), SizeA(Xi,n−1, j, j

′), . . . , SizeA(Xi,i, j, j
′) in this order, so we can use the

value of SizeA(Xi,i′+1, j, j
′) in order to compute SizeA(Xi,i′ , j, j′), adding only the values

of the cells in Oi,i′ (see Figure 4). This way, any cell in U will be checked only once (for any
fixed 1 ≤ j ≤ j′ ≤ m and 1 ≤ i ≤ n), and the running time will be O(m2n(n+m2)2).

Now we have to show how to find the sets Oi,i′ .
First, for any cell x ∈ A(DA) we find all the cells w ∈ U such that w ⊆ x. There are

O(n2) cells in A(DA), but from Observation 1 we keep a total of O((m2 + n)2) cells from U .
Then, for any shape Xi,i′ ∈ X we find the set of cells Pi,i′{x ∈ A(DA) | x ⊆ Xi,i′}. There

are O(n2) shapes in X, and for each shape we keep O(n2) cells from A(DA).
Now we have Oi,i′ = Pi,i′ \ Pi,i′+1. The size of Pi,i′ is O(n2), so computing Oi,i′ for all

1 ≤ i ≤ i′ ≤ n takes O(n4) time.
The total running time for all PC1[i, i′, j, j′] is O(m6 logm+m2n(n+m2)2)

Total running time
For computing PC2[i, i′, j, j′] we get symmetrically a total running time of O(n6 logn +
n2m(m + n2)2), so the running time for computing all the components is
Õ((m + n)6 min{m,n}). Calculating OPT [i, j][r] takes O(m2n2 min{m,n}) time, all to-
gether takes Õ((m+ n)6 min{m,n}) time.
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Algorithm 2
Find Xi,i′ =

⋂
i≤k≤i′

D(ak, δ1).

Set R← R.
Set counter ← 1.
Set k ← j.
While k ≤ j′ and counter 6=∞:
1. Set R← R ∩D(bk, δ2).
2. If (Xi,i′ ⊕ δ3) ∩R 6= ∅, set APC1[i, i′, j, k]← counter.
3. Else,

Set R← D(bk, δ2).
If (Xi,i′ ⊕ δ3) ∩R 6= ∅, set counter ← counter + 1.
Else, set counter ←∞.
Set APC1[i, i′, j, k]← counter.

4. Set k ← k + 1.

4 Approximating GCPS

All the missing proofs of this section can be found in the full version of the paper.
To approximate GCPS, we use approximated pair-components which are easier to compute.
Let APC1[i, i′, j, j′] be the minimum number of disks with radius δ2 needed in order to

cover the points of B[j, j′] (in order), and whose centers are located in Xi,i′ ⊕ δ3. Similarly,
let APC2[i, i′, j, j′] be the minimum number of disks with radius δ1 needed in order to cover
the points of A[i, i′] (in order), and whose centers are located in Zj,j′ ⊕ δ3.

I Lemma 4. For any 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, APC1[i, i′, j, j′] ≤ PC1[i, i′, j, j′].

4.1 Computing the approximated components
We present a greedy algorithm that given 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, computes
APC1[i, i′, j, k] for all j ≤ k ≤ j′ (resp. APC2[i, k, j, j′] for all i ≤ k ≤ i′). The algorithm
runs in O((j′ − j)(j′ − j + i′ − i)) time (See Algorithm 2).

Running time

Finding Xi,i′ takes O(i′−i) time, and step 1 takes O(j′−j) time. Step 2 takes O(j′−j+i′−i)
time, since the complexity of Xi,i′ ⊕ δ3 is O(i′ − i), the complexity of R is O(j′ − j), and
both regions are convex. The while loop runs O(j′ − j) times, so the total running time is
O((j′ − j)(j′ − j + i′ − i)).

Computing all the approximated pair components using Algorithm 2 takes O(n2m2(m+n))
time. The idea of our algorithm is to compute only a small part of the components, and
then approximate the others using the ones that were computed.

I Lemma 5. Fix 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, then for any i ≤ x ≤ i′ and j ≤ y ≤ j′:
1. APC1[i, x, j, j′] ≤ APC1[i, i′, j, j′] and APC1[x, i′, j, j′] ≤ APC1[i, i′, j, j′].
2. APC1[i, i′, j, y] +APC1[i, i′, y, j′] ≤ APC1[i, i′, j, j′] + 1.
3. APC1[i, x, j, y] +APC1[x, i′, y, j′] ≤ APC1[i, i′, j, j′] + 1.

We only compute APC1[i, i, j, j′],APC2[i, i, j, j′] for all 1 ≤ i ≤ n and 1 ≤ j ≤ j′ ≤ m,
and APC1[i, i′, j, j],APC2[i, i′, j, j] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ m. This takes
O(nm3 + n2m2) time using Algorithm 2.
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4.2 Composing the approximated solution
Let AAPC1[i, i′, j, j′] = APC1[i, i, j, j′] +APC1[i, i′, j′, j′]. By Lemma 5(3), choosing x = i

and y = j′, we have APC1[i, i, j, j′]+APC1[i, i′, j′, j′] ≤ APC1[i, i′, j, j′]+1, and by Lemma 4
we have AAPC1[i, i′, j, j′] ≤ PC1[i, i′, j, j′] + 1.

Now let APX[i, j] be the approximate solution for A[1, i] and B[1, j]. We set

APX[i, j] = min
p<i,q<j

APX[p, q] + min{AAPC1[p+ 1, i, q + 1, j], AAPC2[p+ 1, i, q + 1, j]}

Obviously, given the values of AAPC1 and AAPC2, APX[n,m] can be computed in O(m2n2)
time.

I Lemma 6. Let OPT be the size of an optimal solution, i.e. OPT is the smallest number
such that there exists a pair of chains A′,B′ each of at most OPT (arbitrary) vertices, such
that d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3. Then APX[n,m] ≤ 2 ·OPT .

Thus we have the following theorem:

I Theorem 7. A 2-approximation for GCPS can be computed in O(nm3 + n2m2 + n3m)
time.

I Remark. Notice that we do not have to actually compute a solution to GCPS, just to
return the minimum k. A solution of size 2 · OPT can be computed as follows: for each
approximated component APC1[i, i′, j, j′] (or APC2[i, i′, j, j′]) keep the set C1 of centers of
disks that are located in Xi,i′ ⊕ δ3. For each such center c1 ∈ C1, find a point c2 in Xi,i′ s.t.
d(c1, c2) ≤ δ3, and put c2 in a new set C2. If our solution APX[n,m] uses the approximated
component APC1[i, i′, j, j′], then the points of C1 will be used to cover B[j, j′] and the points
of C2 will be used to cover A[i, i′].

5 1-Sided GCPS

As in [9], we consider the 1-sided variant of GCPS. In this variant we can imagine there are
two dogs, one is walking on a path A and the other on a path B, and a man has to walk both
of them, one with a leash of length δ1 and the other with a leash of length δ2. We have to
find a minimum-size polygonal path for the man, such that he can walk both dogs together.

I Problem 2 (1-Sided General Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively, an
integer k, and two real numbers δ1, δ2 > 0.
Problem: Does there exist a chain C of at most k (arbitrary) vertices, such that ddF (A,C) ≤
δ1 and ddF (B,C) ≤ δ2?

Denote Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) and Zj,j′ =

⋂
j≤k≤j′

D(bk, δ2) as before.

For any 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m, let I[i, i′, j, j′] =
{

1, Xi,i′ ∩ Zj,j′ 6= ∅
0, otherwise

.

Notice that I[i, i′, j, j′] = 1 if and only if there exists one point that covers both A[i, i′] and
B[j, j′]. The values of I[i, i′, j, j′] can be computed in O((n+m)4) time (the details can be
found in the full version of the paper).

Now we use a dynamic programming algorithm as follows: Let OPT [i, j] be the length of
the minimum-length sequence C such that ddF (A[1, i], C) ≤ δ1 and ddF (B[1, j], C) ≤ δ2. Fix
i, j > 1, we have OPT [i, j] = min

p,q:I[p,i,q,j]=1
{OPT [p− 1, q − 1] + 1}.
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Running time

The values of I[i, i′, j, j′] can be computed in O((n+m)4) time. For each i, j > 1, we have
O(mn) values to check. Thus, the running time is O((m+ n)4).

6 GCPS under the Hausdorff distance

The Hausdorff distance between two sets of points A and B is defined as follows:

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

As mentioned above, the chain pair simplification under the Hausdorff distance (CPS-2H)
is NP-complete. In this section we investigate the general version of this problem. We prove
that it is also NP-complete, and give an approximation algorithm for the problem.

6.1 GCPS-2H is NP-complete
We show that GCPS under Hausdorff distance (GCPS-2H) is NP-complete, we use a simple
reduction from geometric set cover: Given a set P of n points, and a radius δ, find the
minimum number of disks with radius δ that cover P .

Let the sequence A be the points of P in some order (the order does not matter), and the
sequence B be one point b with distance 2δ from P . Let δ1 = δ2 = δ and δ3 = 4δ + diam(P ).
Now a simplification for B is just one point anywhere in D(b, δ), and finding a simplification
for A is equivalent to finding the minimum-cardinality set of disks that covers P .

I Theorem 8. GCPS-2H is NP-complete.

6.2 An approximation algorithm for GCPS-2H
Consider the variant of GCPS-2H where d1 = d2 = dH and the distance between the
simplifications A′ and B′ is measured with Hausdorff distance and not Fréchet distance (i.e.
dH(A′, B′) ≤ δ3 instead of ddF (A′, B′) ≤ δ3). We call this variant GCPS-3H, and show that
GCPS-3H=GCPS-2H.

I Lemma 9. Given two sets of points A and B, if dH(A,B) ≤ δ, then there exist an ordering
A′ of the points in A and an ordering B′ of the points in B, such that ddF (A′, B′) ≤ δ.

Proof. We construct a bipartite graph G(V = A ∪ B,E), where E = {(a, b) | a ∈ A, b ∈
B, d(a, b) ≤ δ}. Notice that since dH(A,B) ≤ δ, there are no isolated vertices. Now, while
there exists a path with three edges in the graph, delete the middle edge. The maximal
path in the resulting graph G′ has at most two edges, and there are still no isolated vertices
(because we only delete the middle edge). Let C1, . . . , Ct be the connected components of
G′. Notice that each Ci has exactly one point from A or exactly one point from B. Let A′
be the sequence of points C1 ∩ A, . . . , Ct ∩ A, and B′ be the sequence C1 ∩ B, . . . , Ct ∩ B.
We get that C1, . . . , Ct are a paired walk along A′ and B′ with cost at most δ. J

Since we can choose the order of points in the simplifications A′ and B′ in the GCPS-2H
problem, we get by the above lemma that any solution for GCPS-3H is also a solution for
GCPS-2H. Now, since for any two sequence P,Q we have dH(P,Q) ≤ ddF (P,Q), we get that
any solution for GCPS-2H is also a solution for GCPS-3H.

Let S1 = {p1, . . . , pk} be the smallest set of points such that for each ai ∈ A there
exists some pj ∈ S1 s.t. d(ai, pj) ≤ δ1 and for each pj ∈ S1 there exists some bi ∈ B s.t.
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d(pj , bi) ≤ δ2 + δ3. Notice that since S1 is minimum, we also know that for each pj ∈ S1
there exists some ai ∈ A s.t. d(ai, pj) ≤ δ1 (or, we can just delete the points of S1 that do
not cover any points from A).

We can find a c-approximation for S1, using a c-approximation algorithm for discrete unit
disk cover (DUDC). The DUDC problem is defined as follows: Given a set P of t points and
a set D of k unit disks on a 2-dimensional plane, find a minimum-cardinality subset D′ ⊆ D
such that the unit disks in D′ cover all the points in P . We denote by Tc(k, t) the running
time for a c-approximation algorithm for the DUDC problem with k unit disks and t points.

I Lemma 10. Given a c-approximation algorithm for the DUDC problem that runs in Tc(k, t)
time, we can find a c-approximation for S1 in Tc(n, (m+ n)2) +O((m+ n)2) time.

Proof. Compute the arrangement of {D(ai, δ1)}1≤i≤m ∪ {D(bj , δ2 + δ3)}1≤j≤n (there are
(m+ n)2 disjoint cells in the arrangement). Clearly, it is enough to choose one candidate
from each cell. Now we can use the c-approximation algorithm for the DUDC problem. J

Symmetrically, let S2 = {q1, . . . , ql} be the smallest set of points such that for each bi ∈ B
there exists some qj ∈ S2 s.t. d(bi, qj) ≤ δ2 and for each qj ∈ S2 there exists some ai ∈ A s.t.
d(qj , ai) ≤ δ1 + δ3.

For each point pj ∈ S1 there exists some bi ∈ B s.t. d(pj , bi) ≤ δ2 + δ3, so we can
find a point p′j such that d(p′j , bi) ≤ δ2 and d(p′j , pj) ≤ δ3. Denote S′1 = {p′1, . . . , p′k}.
We do the same for the points of S2, and find a set S′2 = {q′1, . . . , q′k} such that for any
q′j ∈ S′2,d(q′j , qj) ≤ δ3 and there exists some ai ∈ A s.t. d(q′j , ai) ≤ δ1.

Now, we know that for each ai ∈ A there exists some p ∈ S1 ∪ S′2 s.t. d(ai, p) ≤ δ1, and,
on the other hand, for each p ∈ S1 ∪ S′2 there exists some ai ∈ A s.t. d(ai, p) ≤ δ1. So we
have dH(A,S1 ∪ S′2) ≤ δ1. Similarly, we have dH(B,S2 ∪ S′1) ≤ δ2. We also know that for
each pj ∈ S1 we have a point p′j ∈ S′1 s.t. d(p′j , pj) ≤ δ3, and for each q′j ∈ S′2 we have
a point qj ∈ S2 s.t. d(q′j , qj) ≤ δ3. So we also have dH(S1 ∪ S′2, S2 ∪ S′1) ≤ δ3, and since
CPS-2H=CPS-3H, we get that S1 ∪ S′2 and S2 ∪ S′1 is a possible solution for CPS-2H.

The size of the optimal solution OPT is at least max{|S1|, |S2|}. Using a c-approximation
algorithm for finding S1 and S2, the size of the approximate solution will be c(|S1|+ |S2|) ≤
2cmax{|S1|+ |S2|} = 2c ·OPT .

I Theorem 11. Given a c-approximation algorithm for the DUDC problem that runs in
Tc(k, t) time, our algorithm gives a 2c-approximation for the GCPS-2H problem, and runs in
Tc(n, (m+ n)2) + Tc(m, (m+ n)2) +O((m+ n)2) time.
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