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Abstract
We continue the study of preprocessing under uncertainty that was initiated independently by
Assadi et al. (FSTTCS 2015) and Fafianie et al. (STACS 2016). Here, we are given an instance of
a tractable problem with a large static/known part and a small part that is dynamic/uncertain,
and ask if there is an efficient algorithm that computes an instance of size polynomial in the
uncertain part of the input, from which we can extract an optimal solution to the original
instance for all (usually exponentially many) instantiations of the uncertain part.

In the present work, we focus on the matroid intersection problem. Amongst others we
present a positive preprocessing result for the important case of finding a largest common inde-
pendent set in two linear matroids. Motivated by an application for intersecting two gammoids
we also revisit maximum flow. There we tighten a lower bound of Assadi et al. and give an
alternative positive result for the case of low uncertain capacity that yields a maximum flow
instance as output rather than a matrix.
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1 Introduction

Recently, Assadi et al. [2] and, independently, Fafianie et al. [12] initiated a study of problems
where part of the input is dynamic or uncertain. While the introduced concepts are differently
named, i.e., dynamic sketching [2] and preprocessing under uncertainty [12], and are rooted
in different areas, i.e., streaming algorithms and parameterized complexity respectively, the
fundamental goal is the same: Given an instance x that is largely static/known and a small
specified part, say of k bits, that is dynamic/uncertain. Can we extract from x in polynomial
time an instance (or just any string) x′ of size polynomial in k such that optimal solutions
for x for any instantiation of the k bits of dynamic/uncertain part can also be computed just
from x′ and the k bits? Since there are 2k instantiations of k bits this is clearly nontrivial,
as we can afford neither the time nor the space to simply precompute and store 2k solutions,
even for polynomial-time solvable problems (which are the focus of this work). Arguably,
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35:2 Preprocessing Under Uncertainty: Matroid Intersection

this parallel development of essentially the same goal in different contexts speaks to the
generality and importance of the question. Let us anyway recall some of the motivation.1

We are often faced with inputs that appear over time or that are subject to changes.
The areas of online algorithms and streaming algorithms deal with the extreme case that
the entire input is only revealed right before or during the computation, or that the data is
continuously changing. What if we already hold “most” of the input and there is only a small
amount of data that is uncertain or subject to changes? Can we do better than under the
strict settings of online or streaming algorithms? Canonical examples are machine scheduling
in a factory with only few irregularly occurring jobs, or routing in a network when there is
a small set of links that are frequently congested. Unlike online algorithms, the goal is to
obtain optimal solutions rather than approximate ones. To make this possible, we do not
insist on committing to (parts of) a solution without knowing the uncertain part and only
require to preprocess and shrink the given part to size polynomial in the amount of uncertain
information. In other words, we do not desire a solution that is (approximately) robust to
uncertainty, but to do as much work as possible before receiving the uncertain part (and
then compute a solution). In the introduction of [12] this is sketched for the simple case of
computing a shortest s, t-path in a road network when the transit times of some k roads is
not known in advance; let us discuss a different straightforward example for illustration.

Consider the Closest Pair problem where we are given a set P of points in the Euclidean
plane such that for k points P ′ ⊆ P it is not known beforehand whether they appear in the
final input. For any instantiation of availability of points in P ′ we know that the closest pair
of points is either contained entirely in P \P ′ or P ′, or one point is in P \P ′ while the other
is in P ′. Accordingly, it suffices to store the closest pair in P \ P ′, the set P ′, and for each
point p′ ∈ P ′ its closest point in P . Thus, we obtain an equivalent instance with at most
2|P ′|+ 2 points such that, after removing any subset of P ′, the closest pair of points has the
same distance as it would have in the input instance.

The example shows that such a preprocessing can be quite simple and fast, and be feasible
even for larger amounts of uncertain data. On the other end of the spectrum, there are
problem settings where even an arbitrary amount of preprocessing time does not suffice to
obtain a polynomially large sketch of the instance. Conveniently, the lower bound proofs
do not require any complexity assumptions, but rely on fundamental information-theoretic
arguments that are implicit in the well-known lower bound for the membership game:
Therein, Alice holds any subset S ⊆ [n] unknown to Bob, whereas Bob holds an integer
i ∈ [n] unknown to Alice, and communication is only allowed from Alice to Bob. How
many bits of information does Alice need to send to Bob in order for Bob to be able to
answer whether i ∈ S? The answer is that n bits are necessary and (obviously) sufficient.
Note that the sent information necessarily works for all i ∈ [n] that Bob could hold, and
hence must represent the entire set S. In other words, the lower bound also gives us an
incompressibility argument for n bits of information. Fafianie et al. [12] give lower bounds
for small connected vertex cover and linear programming under various forms of
uncertainty by showing that the existence of an efficient preprocessing algorithm would lead
to a violation of the aforementioned bounds.

Assadi et al. [2] explore graph problems where uncertainty is restricted to a set T of k
terminal vertices, e.g., their adjacency is uncertain. Their main positive result is on the
maximum matching problem. Using the Tutte matrix of the input graph with n vertices,
they show that storing only a 2k × 2k matrix whose entries are in Zp (p is any prime of

1 In the following we will stick to the terms as used in [12].
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magnitude Θ(nδ ) with 0 < δ < 1) and an integer suffices to extract the rank of the Tutte
matrix for each instantiation/change to the adjacency of the terminals; this yields the size
of a maximum matching of G. This result then gives rise to a cut-preserving sketch result
where the value of all (S, T \ S)-cuts in G is preserved for S ⊆ T in a sketch of size O(kC2)
where C is the total capacity of edges incident on T . They obtain this result by constructing
a bipartite graph and creating a dynamic sketch for the maximum matching problem. In
addition, they prove a lower bound of Ω(C/ logC) bits which implies a lower bound of 2Ω(k)

bits. Furthermore, they show how to obtain a sketch of size O(k4) for s, t-connectivity, by
again using the dynamic sketch for the maximum matching problem. These results extend
to maximum flow as well: it follows that the maximum flow problem has a sketch of size
O((k+C ′)4) (in the form of a 8(k+C ′)2 × 8(k+C ′)2) matrix); here C ′ is the total capacity
of edges between terminals, which is arguably an advantage over the dependency on C. They
also point out that the maximum flow problem has a 2Ω(k) lower bound on size of dynamic
sketches which follows from the lower bound for the cut-preserving sketch. Finally, they give
an O(k) size dynamic sketch for the minimum spanning tree problem.

The result for minimum spanning tree was obtained independently by Fafianie et
al. [12], where it is generalized to the problem of finding a minimum weight basis of a matroid
when the presence of k ground set elements is uncertain. (The MST problem is the same as
finding a minimum weight basis of a graphic matroid.) If the matroid is given by a matrix
respectively by oracle access then the output is a smaller matroid given by a (smaller) matrix
respectively by restricted access to the original oracle (e.g., smaller ground set). These results
work also in the more general setting where the weights of k edges/elements are not known
beforehand. Furthermore, for the bipartite matching problem with k uncertain vertices or
edges, Fafianie et al. [12] show how to efficiently reduce to a new graph G′ whose maximum
matchings, relative to availability of the uncertain vertices, differ from those of the input
graph G by a fixed (and known) amount. In other words, the output in all three cases is an
equivalent instance of the same problem.

The known results leave different directions for further study. The main direction would
be to study other polynomial-time solvable regarding preprocessing under uncertainty re-
spectively dynamic sketching. There were several positive results, but the lower bounds
for maximum flow and linear programming show limitations for more general prob-
lems. Among other fundamental polynomial-time problems there are certainly matroid
intersection, linear matroid parity, stable marriage, and problem families such as
string matching or scheduling. We note that the same problem may have several interesting
variants for making parts of its input uncertain. Due the importance of maximum flow
and linear programming also restrictions of the problems, e.g., restricted input graphs or
special types of LPs, seem reasonable in order to obtain positive results for them. Another
question would be how important it is to have the output be an instance of the same problem.
This is arguably beneficial for applications, especially if existing algorithms for the underlying
problem can be applied as-is. Likely, lower bounds will be unaffected by this decision since
we only know how to get lower bounds for the bit size of the encoding; this is similar to the
situation of lower bounds for kernelization in parameterized complexity (cf. [6, 10]).

Our work. We focus mainly on preprocessing under uncertainty for the matroid inter-
section problem (Section 4) and present three positive results, including the important
case of intersecting two linear matroids. We also revisit maximum flow (Section 3) where
we tighten a lower bound of Assadi et al. [2] and give a positive result that is used as a
subroutine for gammoid intersection. We conclude with a brief discussion and point out
some open problems (Section 5). Let us discuss the results in some more detail.
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35:4 Preprocessing Under Uncertainty: Matroid Intersection

Matroid Intersection. In the Matroid Intersection problem we are given as input two
matroids over the same ground set E, and the goal is to find a set of maximum cardinality
which is independent in both matroids. This is a classical optimization problem studied since
the early 1970s, e.g., in [1, 11, 18], and generalizes a wide range of concrete problems such
as the bipartite matching problem and the colorful spanning tree problem. There are also
applications of matroid intersection outside of combinatorial optimization [9, 20]. For many
algorithms the independent sets of a matroid are given by an independence oracle, i.e., a
blackbox algorithm which answers whether a given subset of the ground set is independent or
not. Another common way is to represent a matroid by a matrix over some field: Matroids
which can be represented in this way are called linear matroids. One can obtain more efficient
algorithms for linear matroid intersection that work directly on a matrix rather than via an
oracle; e.g., Gabow and Xu [13] make use of fast matrix multiplication. It is also possible to
provide matroids implicitly, e.g., by the underlying graphs (gammoids, graphic matroids).
Finding a maximum common independent set of two matroids is solvable in polynomial
time [11] but finding a maximum common independent set of three matroids is NP-hard;
e.g. the directed hamilton path problem can be formulated as the intersection of three
matroids [26]. We study the linear matroid intersection problem in the setting that the
presence of k elements in the ground set is uncertain. Solving all possible 2k instantiations
in polynomial time is impossible; but we will show how to construct a small encoding from
which we can compute the size of a maximum common independent set for all instantiations.

To get the result for linear matroid intersection we use a result of Harvey [15],
which determines the size of a maximum common independent set by computing the rank of a
matrix Z that contains the matrix representations of the two linear matroids as sub-matrices.
We use this matrix Z to compute a 2k×2k matrix and an integer from which we can compute
the size of a maximum common independent set for all 2k instantiations. The construction
of the 2k × 2k matrix uses similar ideas as the construction of the 2k × 2k matrix for the
dynamic sketching scheme for the maximum matching problem of Assadi et al. [2] and the
compression for the K-set-cycle problem of Wahlström [25]. However, we have to be much
more careful during row and column operations because our initial matrix has entire rows
and columns whose presence is uncertain in the final instance; the uncertain part in the
paper of Assadi et al. [2] is contained in a k × k sub-matrix of the initial matrix.

Since the output of our preprocessing is not an instance of linear matroid intersec-
tion, this poses the question of whether special cases of the problem permit a preprocessing
whose output is an equivalent instance of the same problem. We prove this for the fairly
general case of the intersection of two gammoids, which contains several classes of well-studied
matroids (e.g., transversal matroids) and for the Rooted Arborescence problem, where
we want to determine the existence of a rooted arborescence in a directed graph with some
uncertain arcs; note that the Rooted Arborescence problem can be described as the
intersection of a partition matroid and a graphic matroid. For the gammoid intersection
problem, we show how to compute two new gammoids over the same ground set of size
O(|T |3) and an offset value from which we can compute the size of a maximum common
independent set for all 2k instantiations. For the Rooted Arborescence problem we
compute a graph with k + 1 vertices from which we can decide for all 2k instantiations
whether the input instance has a rooted arborescence. We complement this by a lower bound
of
(

k
dk/2e

)
bits for the case of k uncertain vertices.

Maximum Flow. The problem of finding a maximum flow is one of the most important
problems besides the more general problem of solving linear programs and has been explicitly
studied in graph theory and combinatorial optimization. We show that if there is an arc set
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F of unit-capacity arcs whose presence is uncertain (equivalently: there is a total of |F | units
of uncertain capacity), while capacity of other arcs is arbitrary, then we can efficiently reduce
to an equivalent unit-capacity flow network with O(|F |3) vertices. If we are only interested
in any encoding of small size, then instead of the obvious O(|F |6) bits encoding size this
can also be represented as a gammoid, using O(|F |3) bits, which follows from results from
Kratsch and Wahlström [17]. This improves the upper bound of Assadi et al. [2] who give
a dynamic sketching scheme with sketch size O((k + C ′)4) for the maximum flow problem
(represented as a O((k +C ′)2)×O((k +C ′)2) matrix); since the size of a sketch is measured
by the number of machine words of length O(log(n)), their sketch needs O((k + C ′)4 log(n))
bits. Recall that C ′ is the total capacity of all edges between the k terminals; by small
modifications to the graph |F | and C ′ become comparable. We complement this by a lower
bound of 2k bits for the case of k uncertain arcs with large capacity which slightly improves
the lower bound of 2Ω(k) of Assadi et al. [2]. Furthermore we show that our lower bound is
tight, even when the encoding only preserves the parity of the maximum flows.

Further related work. Generally, apart from the areas of online and streaming algorithms,
there are several models of optimization problems on uncertainty, such as stochastic optimiz-
ation or robust optimization. We refer interested readers to some papers [3, 4, 5, 7] for more
information. Some ideas of our work come from the area of kernelization from parameterized
complexity, which is about preprocessing algorithms for NP-hard problems. Some particular
results from this field inspired our work, namely a result of Pilipczuk et al. [22] on Steiner
trees connecting terminals on the outer face of a plane graph, and a result of Kratsch and
Wahlström [16] on cut-covering sets (which is also used in Section 3).

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}. If U is a set, then
(
U
k

)
are all its subsets of size k.

We mostly use graph notation as given by Diestel [8]. For a graph G = (V,E) and set of
edges F ⊆ E, let V (F ) denote the vertices incident with F . For a vertex v ∈ V we denote by
δ(v) the set of edges that are incident to v; thus δ(v) = {e ∈ E | v ∈ e}. Let D = (V,A) be a
directed graph and v ∈ V be a vertex of D. For a vertex v ∈ V we denote by δ−(v) (resp.
δ+(v)) the set of arcs (u, v) ∈ A (resp. (v, u) ∈ A) with u ∈ V . Let N−(v) (resp. N+(v))
denote the in-neighbors (resp. out-neighbors) of v. If F is a subset of V then we use D−F to
denote the graph obtained from D by deleting all vertices in F and D[F ] to denote the graph
induced in D by F . If F is a subset of A then we use D−F to refer the graph obtained from
D by removing all edges in F . If f is a flow in D then we use |f | to denote the value of f .

We use standard matroid notation as given by Oxley [21]. A matroid is a pair (E, I),
where E is a finite set of elements, called ground set, and I is a family of subsets of E which
are called independent sets such that:
1. ∅ ∈ I.
2. If A ∈ I, then for every subset B ⊆ A we have B ∈ I.
3. If A and B are two independent sets in I and |A| > |B|, then there is an element e ∈ A\B

such that B ∪ {e} ∈ I.
Given a matroidM = (E, I) and F ⊆ E, we denote byM/F the matroid obtained fromM
by contracting F . The rank function corresponding toM is a function r : 2E → N which is
defined by r(S) : = max{|I| : I ⊆ S, I ∈ I}.

Let us recall some well-known types of matroids. For any matrix A over some field F
there is an associated matroidM on the set of columns with independence defined by linear
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35:6 Preprocessing Under Uncertainty: Matroid Intersection

independence of the column vectors. We then say that A represents M, and representable
matroids are also called linear matroids. Let U1, . . . , Um be a collection of pairwise disjoint
sets and d1, . . . , dm be integers with 0 ≤ di ≤ |Ui| for each i = 1, . . . ,m. If we set E = ∪mi=1Ui
and I = {I ⊆ E : |I ∩ Ui| ≤ di for all i = 1, . . . ,m} then (E, I) becomes a matroid, and
matroids of this form are called partition matroids. The family of forests in a graph G = (V,E)
forms a matroid on E. Matroids that can be represented in this way are called graphic
matroids. Let G = (V,E) be a graph and S and T be two subsets of V . In the set T , we
define a subset U ⊆ T to be independent if there are |U | vertex-disjoint paths from S onto U
in G. Then this constructs a matroid on T , and matroids of this type are called gammoids.

3 Maximum flow

In the maximum flow problem we are given a directed graph G = (V,A), capacities
c : A → N, and two vertices s, t ∈ V ; the task is to find a flow f : A → N of maximum
value. We consider preprocessing for the maximum flow problem for the case that capacity
respectively presence of arcs in a set F ⊆ A is not yet known. Results of this type were
previously obtained by Assadi et al. [2]. We tighten one of their lower bounds and give a
variant for the case of preserving the parity of the maximum flow. Moreover, we obtain a
positive result for the case of |F | uncertain arcs of unit capacity, which is a subroutine for our
result for gammoid intersection. Crucially, the output of the latter is again an instance
of maximum flow; it also implies a slightly improved encoding size in bits when represented
by a matrix. In this section all capacities are integers, implying that there always exists an
integral maximum flow. We tacitly assume that all considered maximum flows are integral.

I Theorem 1. There is no algorithm that, given an instance G = (V,A), c : A→ N+, and
vertices s, t ∈ V of maximum flow together with a set F ⊆ A, returns an encoding that
requires fewer than 2|F | bits, from which we can correctly extract the value of a maximum
s,t-flow in G− (F \ F ′) for all F ′ ⊆ F .

It can be checked that the theorem is tight for the family of graphs used for the lower
bound construction. The point is that the relevant information about each graph consists
only of 2|F | bits, and all flow values can be computed once the graph is known. In general,
the lower bound should not be seen as the question of outright storing the 2|F | results but
regarding any way of storing enough information to compute requested values.

For an arbitrary graph with uncertain arcs F it is not clear whether 2|F | bits are sufficient
information to compute all flow values. Nevertheless, it is clearly enough space to store the
parities of the maximum flows, and we can show that this is tight: By reinspecting our proof
we can see that it can be adapted to the parity question. The key point is that the matrix
used in the proof of Theorem 1 also has full rank over GF (2), which can be easily verified.

I Corollary 2. The lower bound of Theorem 1 is tight for maximum flow parity, i.e.,
given a graph G = (V,A), c : A → N+, and vertices s, t ∈ V , there is an encoding of 2|F |
bits, from which we can correctly extract the parity of the value of a maximum s,t-flow in
G− (F \ F ′) for all F ′ ⊆ F . There is no algorithm that returns a smaller encoding.

The construction in the proof of Theorem 1 relies on uncertain edges with a high capacity.
The following positive result shows that this is necessary since we can achieve an encoding to
size polynomial in |F |+ l where l is the maximum capacity of any uncertain edge. Moreover,
this also works if the capacity of edges in F can be instantiated to any value in {0, 1, . . . , l}.
The preprocessing can be performed by a randomized polynomial-time algorithm.
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Let us first observe that we may easily reduce this question to the case that l = 1, which
is equivalent to having a set F̂ of edges of capacity 1 each that may or may not be present in
the final instance: It suffices to replace each edge of F by l parallel edges of capacity 1 in
F̂ . Setting the capacity of some e ∈ F to a value c(e) ∈ {0, 1, . . . , l} is equivalent to making
exactly c(e) copies of e in F̂ available (We can avoid getting a multigraph by subdividing the
edges and putting one of the newly obtained edges in F̂ ). Note that we make no assumption
about the capacity of other edges, but the returned graph will have unit capacities.

I Theorem 3. Let G = (V,A) be a directed graph, s, t ∈ V , F ⊆ A, and c : A → N
be a capacity function such that c(F ) ≡ 1. There exists a randomized polynomial-time
algorithm that, given a network (G, s, t, c) and a set F ⊆ A as above, returns a network
(G′ = (V ′, A′), s, t, c′) with F ⊆ A′, c′ ≡ 1, |V ′| ∈ O(|F |3), and an integer α ∈ N such that
for any F ′ ⊆ F , the network (G− F ′, s, t, c|A\F ′) has a maximum s,t-flow of value β if and
only if the network (G′ − F ′, s, t, c′|A′\F ′) has maximum s,t-flow of value β′ = β − α. Here,
α is the value of a maximum s,t-flow in G− F .

As mentioned before, differing from the work of Assadi et al. [2] we are interested in
finding a small instance of the same problem. In the full version we discuss how our resulting
network (G′, s, t, c′) can be compressed into size O(|F |3) bits which improves upon the upper
bound of Assadi et al. [2].

The result is obtained by analyzing the residual graph with respect to any maximum flow
f of G− F , i.e., not using any arc of F . We transform this graph in such a way that the
cut-covering results of Kratsch and Wahlström [16] can be applied. Crucially, the residual
graph has a small minimum s,t-cut size and its maximum flow with respect to deletion of
F ′ ⊆ F is equal to the possible additional flow in G − F ′ as compared to f . Using the
cut-covering set, a small equivalent instance can be obtained. A special case of Theorem 3,
which is used for the gammoid intersection result, is the following.

I Corollary 4. There exists a randomized polynomial-time algorithm that, given a directed
graph D = (V,A), two vertices s, t ∈ V and a set F ⊆ V \ {s, t}, returns a directed graph
D′ = (V ′, A) with F ⊆ V ′, |V ′| ∈ O(|F |3) and an integer α ∈ N such that F ∪ {s, t} ⊆ V ′

and for any F ′ ⊆ F , the maximum number of internally vertex-disjoint s,t-paths in D − F ′
is β if and only if the maximum number of internally vertex-disjoint s,t-paths in D′ − F ′ is
β − α. Here, α is the maximum number of vertex-disjoint paths in D − F .

4 Matroid intersection

In this section, we consider the well-known Matroid Intersection problem. In this
problem, we are given two matroidsM1 = (E, I1) andM2 = (E, I2) over the same ground
set E. Our task is to determine the largest size of a set I ⊆ E which is independent in both
M1 andM2. We are interested in the case where the availability of a set of elements F ⊆ E
is uncertain and we want to know how much we can compress the input without knowing
F . We obtain a positive result for the linear matroid intersection problem, where
we construct a matrix from which we can compute the size of a common independent set.
Furthermore, for two special cases of matroid intersection, gammoid intersection
and rooted arborescence, we show how to obtain small instances of the same problem.

4.1 Linear matroid intersection
In this section we discuss preprocessing for the intersection problem of linear matroids over
the same ground set E = {e1, e2, . . . , em} with respect to a set F = {e1, e2, . . . , ek} ⊆ E of
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35:8 Preprocessing Under Uncertainty: Matroid Intersection

elements whose presence in the final instance is uncertain. Throughout, we will refer to the
two matroids in question as M1 and M2, and let A and B be r ×m matrices over some field
F that represent M1 and M2; here r ≤ m is an upper bound on the ranks of M1 and M2.

In previous work, e.g., for minimum spanning tree, it was possible to compute for each
F ′ ⊆ F an optimal solution that avoids F ′: The preprocessing would identify a set X ⊆ E
such that there exist solutions X ∪ YF ′ for each F ′ ⊆ F where YF ′ can be obtained from
the outcome of the preprocessing. Unfortunately, this can be easily ruled out for linear
matroid intersection: Let G = (A∪̇B,E) be a bipartite graph and M1 = (E, I1) and
M2 = (E, I2) be two linear matroids over E with I1 = {E′ ⊆ E : |δ(v)∩E′| ≤ 1∀v ∈ A} and
I2 = {E′ ⊆ E : |δ(v) ∩ E′| ≤ 1∀v ∈ B}. It can be checked that a set E′ is independent in
M1 and M2 if and only if E′ is a matching in G. Consider the bipartite graph that is a cycle
of length 2n. This graph has two disjoint maximum matchings E1 and E2. Let F = {e1, e2}
with e2 ∈ E1 and e1 ∈ E2. Now, the unique maximum common independent set in M1−{ei}
and M2 − {ei} is Ei for i = 1, 2. Thus, we cannot hope to identify X ⊆ E that is shared by
optimal solutions. Generally, the size of E cannot be bounded in terms of |F | and as just
seen the union of two maximum independent sets in two different instantiations can be the
set E; hence we cannot hope to report for each F ′ ⊆ F a largest common independent set
I ⊆ E \ F ′ from any preprocessed instance of size bounded in terms of |F |.

Instead, we will show that the size of a maximum common independent set in M1 − F ′
and M2−F ′, for all F ′ ⊆ F , can be computed from (the rank of) an appropriate 2|F | × 2|F |
matrix M that is derived from A and B, which represent M1 and M2. To construct M we
use a theorem due to Harvey [15]. Before stating the theorem, we need to introduce some
notation. For each J ⊆ E we define an |E| × |E| matrix T (J) by

T (J)ij :=
{

0 if i 6= j or i = j ∈ J ,
ti if i = j /∈ J ,

where each ti is an indeterminate. Next we define the matrix Z(J) as

Z(J) :=
(

0 A

BT T (J)

)
.

By λ(J) we denote the maximum cardinality of a set that is independent in the contracted
matroids M1/J and M2/J . Later we consider these two matrices for the case that J = ∅; we
define the shorthands T = T (∅), Z = Z(∅), and λ = λ(∅).

I Theorem 5 (Harvey [15]). Let M1 and M2 two linear matroids of rank r over the same
ground set E. Let A (resp. B) be the r × m matrix that represents M1 (resp. M2). Let
r1 : E → N and r2 : E → N the rank functions of M1 (resp. M2). For any J ⊆ E, we have
rank(Z(J)) = m+ r1(J) + r2(J)− |J |+ λ(J).

To determine the maximum cardinality of a set that is independent in M1 and M2, we use
Theorem 5 for the case where J = ∅. For this case it implies rank(Z) = m+λ. For J = ∅, this
result was also obtained by Geelen [14] and it follows from the connection between matroid
intersection and the Cauchy-Binet formula [24] (see also Murota [20, Remark 2.3.37]).

During the construction of the desired 2|F | × 2|F | matrix M , we will perform many
elementary row and column operations. This can lead to entries which are polynomials of
large degree, because matrix T contains m indeterminates. To avoid this we replace some
indeterminates by random elements from a field F; this was also used in previous work [2, 25].
Performing row and column operations on the resulting matrix can cause elements to vanish
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over F, which can reduce the rank and thus lead to a wrong result. We bound the resulting
error probability by using the Zippel-Schwartz lemma [23, 27].

Essentially, the idea of the proof is to derive an equivalent matrix whose rank can easily
be computed from the rank of a couple of submatrices, where one of the submatrices is small
and captures the uncertainty. Thus, we only need to keep the latter and store the rank of
the other submatrices. A similar idea is used by Wahlström [25] and by Assadi et al. [2]. In
the dynamic sketching scheme of Assadi et al. they have as initial matrix the Tutte matrix,
where the uncertainty is contained in a k × k sub-matrix that contains indeterminates which
can be set to zero in the final instance. In our case the initial matrix the is matrix Z which
contains the sub-matrices A and BT . The crucial difficulty is that we need the matrix Z
from Harvey’s theorem for each choice of F ′ ⊆ F (or at least a matrix of same rank relative
to an offset). Since each F ′ corresponds to a deletion of pairs of rows and columns, this is
not simply handled by a small number of indeterminates that can be set to zero. Also, we
cannot avoid using elements of these rows and columns for cancellation. We have to prove
that our construction is independent of the choice of F ′ ⊆ F . This means, that taking the
matrix Z for the matroids without elements of F ′ (which is same as deleting those rows and
columns from Z) and applying our transformation yields the same result as first applying
the transformation and then deleting rows and columns corresponding to F ′.

To formally state our theorem and to describe the transformation steps let us denote by
W [F ′C , F ′C ] the sub-matrix of W that contains all rows and columns that do not correspond
to elements in F ′ ⊆ F , where W is the matrix in the current step; this means we delete the
rows and columns that contain an indeterminate ti with ei ∈ F ′.

I Theorem 6. Let M1 and M2 be two linear matroids of rank r over the same ground
set E = {e1, e2, . . . , em}. Let A and B be r × m matrices over the same field F with
|F| ≥ N = 2p(r + k)2k that represent M1 and M2. Let F = {e1, e2, . . . , ek} ⊆ E be the set
of uncertain elements. There exists a randomized polynomial-time algorithm that, given the
representations A and B of matroidsM1 andM2 and F ⊆ E, returns a 2k×2k matrixM , and
α ∈ N such that with probability at least 1−2−p for all F ′ ⊆ F , the maximum cardinality of a
set that is independent in M1−F ′ and M2−F ′ is equal to rank(M [F ′C , F ′C ]) +α−|F \F ′|.

Proof sketch. In our case columns of A (resp. B) correspond to elements in E. For a set
X ⊆ E we denote by A[X, ·] (resp. BT [·, X]) the matrix that contains the columns (resp.
rows) that correspond to set X. Note that both row i and column i of matrix T correspond
to the element ei ∈ E, since T [i, i] = ti. Therefore, by T [X,X] we denote the submatrix of T
that is induced by the rows an columns that correspond to the set X. To make sure that our
preprocessing works for all choices of F ′ ⊆ F we have to treat columns from A and B that
correspond to elements in F differently from the remaining ones. To this end let AF = A[·, F ],
AE\F = A[·, FC ], BF = B[·, F ], BE\F = B[·, FC ], TF = T [F, F ] and TE\F = T [FC , FC ],
i.e., A = (AF AE\F ), B = (BF BE\F ) and T = diag(TF , TE\F ). We construct the matrix
M in five steps, which we outline below. Due to space constrains, we only show how the
construction of matrix M looks like; the crucial point of the proof, which is to show that the
construction is independent on the choice of F ′ ⊆ F , is deferred to full version.
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Z =

 0 AF AE\F
BTF TF 0
BTE\F 0 TE\F

 step 1−−−−→ Z1 =
(
TF BTF
AF −AE\FT−1

E\FB
T
E\F

)

step 2−−−−→ Z2 =
(
TF BTF
AF X̃

)
step 3−−−−→ Z3 =

(
TF BF

TC

RAF D

)
step 4−−−−→ Z4 =

(
TF −B′TA′ B′′

T

A′′ 0

)
step 5−−−−→ Z5 =

(
TF −B′TA′ B̃T

Ã 0

)

Step 1 In the first step, we reduce Z to an (r+k)×(r+k) matrix Z1 such that the uncertain
rows and columns remain unaffected; furthermore it holds that the rank of matrix Z
equals the rank of matrix Z1 plus m−k. We obtain matrix Z1 by zeroing out the matrices
AE\F and BTE\F using the invertible matrix TE\F . Afterwards, we delete the rows and
columns that contain matrix TE\F ; this reduces the rank by m− k.

Step 2: We replace the indeterminate ti for k < i ≤ m by random elements to avoid
polynomials of large degree; the entries of matrix Z1 are polynomials of degree at most
one and this leads to an error probability of at most 2−p. Denote the resulting sub-matrix
by X̃ and the complete matrix by Z2. Note that we could replace the indeterminates
before Step 1; but then we have to choose elements from a set of size at least 2p(r+m)2k
to obtain the same error probability (instead of a set of size N = 2p(r + k)2k).

Step 3: Let h = rank(X̃). We apply elementary row and column operations to turn X̃ into a
diagonal matrix D = diag(1, . . . , 1, 0, . . . , 0) with only h non-zero entries. It is well known
that there exist two matrices R and C such that D = RX̃C, where R is the product of
all row operations and C the product of all column operations. Let Z3 be the matrix
after applying these row and column operations to Z2. Matrix Z2 and Z3 have the same
rank, because we only apply elementary row and column operations. Note that neither
matrix R nor matrix C depend on the choice of F ′ ⊆ F , because X̃ does not depend
on the choice of F ′ ⊆ F . One can show that a column j of R ·AF (resp. CT ·BF ) only
depends on entries of column j of AF (resp. BF ) and matrix entries that do not depend
on the choice of F ′ ⊆ F ; thus this transformation is independent on the choice of F ′ ⊆ F .

Step 4: Let A′ = (R ·AF )[[h], ·] and let A′′ = (R ·AF )[{h+ 1, h+ 2, . . . , r}, ·], i.e. R ·AF =(
A′ A′′

)T . Analog we define the h× k sub-matrix B′ and the (r − h)× k sub-matrix
B′′ of BTF · C, i.e. BTF · C =

(
B′T B′′T

)
. Note that A′ (resp. B′T ) correspond to the

rows (resp. columns) where matrix D has a non-zero entry. We zero-out matrices A′
and B′T using the identity matrix Ih. Afterwards, we delete the rows and columns that
contain matrix Ih. We denote the resulting matrix by Z4. By a well-known fact from
linear algebra we have that matrix Z4 has rank l if and only if matrix Z3 has rank l + h.

Step 5: Since A′′ (resp. B′′) is an (r−h)×k matrix, at most k rows can be linear independent.
We pick a maximum set of linear independent rows from A′′ (resp. B′′); if less than k
rows are independent, then we arbitrarily pick from the remaining rows or add zero rows
until we have k rows. Denote this matrix by Ã (resp. B̃). This results in the 2k × 2k
matrix Z5. Note that matrix Z4 and matrix Z5 have the same rank, because deleting
rows that are dependent on the rows in Ã (resp. columns in B̃T ) corresponds to row (resp.
column) operations that zero-out these rows (resp. columns) and this does not change
the rank of a matrix.

Altogether, we have constructed a 2|F | × 2|F | matrix M = Z5 and, as we show in the full
version, for all F ′ ⊆ F the equation rank(M [F ′C , F ′C ]) + β = rank(Z[F ′C , F ′C ]) holds with
an error probability of at most 2−p where β = h+m− k. Since the matroid M1 − F ′ (resp.
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the matroid M2−F ′) is represented by the matrix A[·, F ′C ] (resp. the matrix B[·, F ′C ]), and
the matroids M1 and M2 are defined over the same ground set of size m−|F ′| it follows from
Theorem 5 that rank(Z[F ′C , F ′C ]) = (m − |F ′|) + λF ′ , where λF ′ denotes the maximum
cardinality of a set that is independent in M1 − F ′ and M2 − F ′. Combining these two
equations result in equation λF ′ = rank(M [F ′C , F ′C ]) +h− |F \F ′|. All operations required
to obtain the matrixM can be performed in polynomial time and the matrixM together with
integer α = h satisfy the required properties in Theorem 6. This completes the proof. J

4.2 Gammoid intersection
In this section, we consider the Matroid Intersection problem for the case that both
matroids are gammoids. Since gammoids are also linear matroids (cf. [19]) we could apply
Theorem 6 to obtain an encoding of size polynomial in the uncertain part. We show how
to compute an instance of the gammoid intersection problem instead of an arbitrary
encoding. In the same way, the following preprocessing result for the problem of intersecting
two gammoids can also be applied to special cases of gammoids such as transversal matroids
and partition matroids, but extra work would be needed to ensure that the output is again,
e.g., a pair of transversal matroids rather than general gammoids.

I Theorem 7. There exists a randomized polynomial-time algorithm that, given two gammoids
M1 = M(G1, S1, T ) and M2 = M(G2, S2, T ) together with a subset F ⊆ T , returns two
new gammoidsM′1 =M(G′1, S′1, T ′) andM′2 =M(G′2, S′2, T ′) over a ground set T ′ of size
O(|F |3) together with an integer α ∈ N such that F ⊆ T ′ and for every F ′ ⊆ F , M1 − F ′
andM2 −F ′ have a maximum common independent set of size l if and only ifM′1 −F ′ and
M′2 − F ′ have a maximum common independent set of size l − α.

Proof. Because T appears in both graphs, G1 and G2, for each vertex v ∈ T we rename it
in G1 by v1 and G2 by v2 respectively. We obtain two sets T1, T2 where Ti = {vi : v ∈ T}
plays the role of T in Gi andMi. In order to apply Corollary 4, we construct a graph G as
follows. We first reverse all arcs in G2 to obtain ←−G2 and take the union of G1 and ←−G2. For
each v ∈ T , we create a new vertex in G, also named v, and add two arcs (v1, v), (v, v2) to G.
Then we create a source s and a sink t together with arcs from s to each vertex in S1 and
arcs from each vertex in S2 to t. Thus, we obtain a graph G = (V,E) such that T ⊆ V is an
(s, t)-cut and there is no arc from ←−G2 to G1 in G.

I Claim 1. For all F ′ ⊆ F , the maximum cardinality of a common independent set of
M1−F ′ andM2−F ′ is equal to the maximum number of internally vertex-disjoint s, t-paths
in G− F ′.

We apply the algorithm given by Corollary 4 for G and F to compute a graph G′ = (V ′, A′)
with O(|F |3) vertices and an integer α′ ∈ N such that F ⊆ V ′ and for any F ′ ⊆ F , the
maximum number of internally vertex-disjoint s, t-paths in G − F ′ is l if and only if the
maximum number of internally vertex-disjoint s, t-paths in G′ − F ′ is l − α′. Using graph
G′ we construct the two new gammoidsM′1 andM′2. We obtain the graph G′1 by adding
two new vertices sv, v̂ as well as the arcs (sv, v), (sv, v̂) to G′ for all vertices v ∈ F . Let
SF := {sv : v ∈ F}, and let N+ (resp. N−) denote the out-neighbors of s (resp. in-neighbors
of t). The first gammoid M′1 = M(G′1, S′1, T ′) is defined by the graph G′1, the set of
sources S′1 = N+ ∪ SF and the ground set T ′ = N− ∪ F ∪ F̂ and the second gammoid
M′2 =M(G′2, S′2, T ′) is defined by the graph G′2 = (S′2 ∪ T ′, {(sv, v), (sv, v̂) : v ∈ F}), the
set of sources S′2 = SF ∪N− and the ground set T ′. For each F ′ ⊆ F , let F̂ ′ := {v̂ : v ∈ F ′}.

MFCS 2016



35:12 Preprocessing Under Uncertainty: Matroid Intersection

I Claim 2. For every F ′ ⊆ F , the maximum number of internally vertex-disjoint s, t-paths
in G′ − F ′ is h if and only if the maximum cardinality of a common independent set of
M′1 − F̂ ′ andM′2 − F̂ ′ is h+ |F |.

We conclude that for every F ′ ⊆ F , the maximum cardinality of a common independent
set in M1 − F ′ and M2 − F ′ is l if and only if the maximum cardinality of a common
independent set inM′1 − F̂ ′ andM′2 − F̂ ′ is l − α′ + |F |. Note that in the construction of
M′1 andM′2, F̂ is a copy of F , so if we identify F̂ with the set F in the input gammoids
and set α = α′ − |F |, then we obtain the desired result. J

4.3 Rooted arborescence
In this subsection we consider the Rooted Arborescence problem, where we are given a
directed graph D = (V,A) with root r and we need to determine whether there exists an
r-arborescence in D. An arborescence with root r ∈ V , or an r-arborescence, is an arc set
A′ ⊆ A such that A′ is a spanning tree if considered as an undirected subgraph and every
v ∈ V is reachable from r via arcs of A′, i.e., there is a directed path from r to v using
only arcs of A′. We are again interested in the case that there is uncertainty in the input,
more precisely, that there are some arcs or vertices whose presence is not known. Rooted
Arborescence can be considered as a special case of Matroid Intersection. Indeed, let
M1 be the graphic matroid defined on the undirected underlying graph corresponding to D
andM2 = (A, I) where I = {S ⊆ A : |S ∩ δ−(v)| ≤ 1 for all v ∈ V \ r}. It can be checked
that D has an r-arborescence if and only ifM1 andM2 have a common independent set
of size |V | − 1. Uncertainty of some elements in the two matroids corresponds to uncertain
appearance of some arcs in D. By constructing reduction rules based on a well-known
property of arborescences, we obtain the following result.

I Theorem 8. There exists a polynomial-time algorithm that, given a directed graph D =
(V,A) with a root r ∈ V and an arc set F ⊆ A, returns a directed graph D′ = (V (F )∪{r}, A′)
with F ⊆ A′ such that for every F ′ ⊆ F , the graph D − F ′ has an r-arborescence if and only
if D′ − F ′ has an r-arborescence.

In the next theorem, we consider the case that there are some uncertain vertices in our
input graph and prove a lower bound for it. The construction is similar to the one used
for maximum flow by Assadi et al. [2]. Note that this is not a special case of Matroid
Intersection with uncertainty about ground set elements.

I Theorem 9. There is no algorithm that, given an instance of Rooted Arborescence
with k uncertain vertices, returns an encoding that requires fewer than

(
k
dk/2e

)
bits from which

we can correctly extract the answer for all 2k instantiations of the input instance.

5 Conclusion

We have continued the study of preprocessing under uncertainty initiated by Assadi et al. [2]
(who called their notion dynamic sketching) and Fafianie et al. [12]. Our main focus was
on preprocessing for matroid intersection problems when the presence of certain ground set
elements is uncertain. We obtained positive results for (i) intersecting two linear matroids,
(ii) intersecting two gammoids, and (iii) the Rooted Arborescence problem. For the
latter two problems our preprocessing returns an instance of the respective problem; for
the former, the output is in form of a matrix. Additionally, we have revisited maximum
flow, also studied by Assadi et al. [2]. We have tightened a lower bound construction and
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gave a variant of the result for preserving the parity of maximum flows. Furthermore, we
obtained a positive result for the case that a small amount of capacity is uncertain, with
output again an instance of maximum flow, which is used for the gammoid intersection
result. Deriving a matrix encoding from this yields bitsize O(|F |3), improving slightly over
O((k + C ′)4 logn) [2].

It would be interesting whether our result for linear matroid intersection can be
generalized to the weighted case, possibly with uncertain weights. Similarly, one can try to
extend the result to arbitrary matroids that are given by an independence oracle. Generally,
preprocessing under uncertainty (or dynamic sketching) in the oracle setting is interesting,
as the presence of oracles precludes the lower bounds based on membership.
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