
Complexity of Constraint Satisfaction Problems
over Finite Subsets of Natural Numbers
Titus Dose

Julius-Maximilians-Universität, Würzburg, Germany
dose@informatik.uni-wuerzburg.de

Abstract
We study the computational complexity of constraint satisfaction problems that are based on
integer expressions and algebraic circuits. On input of a finite set of variables and a finite set of
constraints the question is whether the variables can be mapped onto finite subsets of N (resp.,
finite intervals over N) such that all constraints are satisfied. According to the operations allowed
in the constraints, the complexity varies over a wide range of complexity classes such as L, P,
NP, PSPACE, NEXP, and even Σ1, the class of c.e. languages.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational complexity, Constraint satisfaction problems, Integer
expressions and circuits

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.32

1 Introduction

The problems investigated in this paper are motivated by constraint satisfaction problems
and integer expressions. We first introduce these notions and then explain their connection.

Constraint satisfaction problems. A constraint satisfaction problem (CSP) is a computa-
tional problem that on input of a finite set of variables and a finite set of constraints asks
whether there is a mapping from the variables to some fixed domain such that all constraints
are satisfied.

An example of a classical CSP is 3-Colorability, i.e., the question of whether there is
a mapping α from a graph’s vertices onto {0, 1, 2} such that for adjacent nodes u and v it
holds that α(u) 6= α(v).

The set of relations permitted in the constraints is called constraint language. Obviously
CSPs over finite domains permitting arbitrary constraints belong to NP. The question of
which constraint languages lead to CSPs even decidable in polynomial time has been a topic
of intensive research over the past decades.

Feder and Vardi [4] conjectured a dichotomy for CSPs over finite domains such that these
CSPs are either in P or NP-complete. This conjecture is still open.

In the past years there has been an increasing interest in CSPs over infinite domains.
Here much higher complexities are obtained, and some problems are even undecidable.

Integer expressions and algebraic circuits. In 1973, Meyer and Stockmeyer [14] asked for
the complexity of decision problems regarding so-called integer expressions. An integer
expression is a term built by singleton sets of natural numbers, the pairwise addition, and
set operations like union, intersection, or complement. Meyer and Stockmeyer investigated
the membership problem, i.e., the question of whether a given natural number is contained

© Titus Dose;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

in the subset of N described by an integer expression. Moreover, they studied the inequality
problem, i.e., the question of whether two given integer expressions describe the same subset
of N.

For some constant m ∈ N the integer expression (0 ∪ 21) + (0 ∪ 22) + · · · + (0 ∪ 2m−1)
describes the set of all even natural numbers < 2m in a succinct way. Note that here the
natural number n is an abbreviation for the set {n}.

McKenzie and Wagner [11] considered generalized integer expressions and the complexity
of membership problems for circuits over finite subsets of N.

Here a circuit is a directed, acyclic graph with two kinds of nodes: on the one hand,
there are input nodes containing a single natural number. On the other hand all remaining
nodes, so-called operation nodes, perform one of the following operations: union, intersection,
complement, pairwise addition, and pairwise multiplication. Each operation node has an
indegree equal to the number of operands required by the operation.

So each of the nodes computes a set of natural numbers: the input nodes compute
singletons, and each operation node computes the corresponding set obtained from its
predecessors. The set computed by the circuit overall is defined as the set computed by some
fixed output node.

In contrast to integer expressions, these circuits are able to store intermediate results
and reuse them several times. Thus, it is possible to describe large numbers and sets in a
succinct way.

Similar to Meyer and Stockmeyer, who investigated the inequality problem for integer
expressions, Glaßer et al. [5] considered the equivalence problem for circuits.

Moreover, Glaßer et al. [7] studied the satisfiability problem for circuits where the
corresponding circuits are allowed to have unassigned input nodes. Now the problem is to
decide for a given natural number b whether there exists an assignment for the input nodes
such that b is contained in the set computed by the circuit. This modification makes the
circuits even more similar to CSPs.

Consider the following circuit. Goldbach’s conjecture fails if and only if there is an
assignment for the ?-node in the circuit below such that the set computed by the rightmost
node contains 0. Note that 1× 1 ∩ 1 = P where P is the set of all primes.

1 × ∩ +

?

∩

++

×

0+

Hence, if the satisfiability problem for circuits is decidable, then Goldbach’s conjecture can
be proven or refuted. Up to now it is not known whether this is possible.1

Connection of circuits and CSPs. Glaßer et al. [6] combined CSPs and integer circuits,
and investigated CSPs over the domain of singletons of natural numbers and with operations
from {+,×,∪,∩, }.

1 Knuth [9] even assumes that Goldbach’s conjecture is a problem that will never be solved. He mentions
that “it might very well be that the conjecture happens to be true, but there is no rigorous way to prove
it”.

T. Dose 32:3

As we will see later, each CSP-instance can be represented by a primitive positive fo-
sentence such as ∃X (X +X + 4) ∩

(
P + P

)
= 0 ∩ 1, where P can be expressed by 1× 1 ∩ 1.

Here we use natural numbers as abbreviations for singletons. Since each variable stands for
a singleton, this sentence is true if and only if Goldbach’s conjecture fails.

However, the set of singletons of natural numbers is not closed under the mentioned
operations. As it can be seen in the example above, variables and constants are singletons,
whereas there are terms that describe bigger and even infinite sets. Therefore, we consider
CSPs over the domain Pfin(N) = {A ⊆ N | A is finite}, and replace the complement with
the set difference. Thus, compared to the CSPs considered by Glaßer et al. [6] we consider
problems that allow a straighter definition (i.e., variables and terms have the same domain),
but that is more distant to the satisfiability problem for circuits.

Some results of the mentioned papers can be translated to our situation, but in general
the questions for the enlarged domain turn out to be different ones.

Once an arithmetical and a set operation are permitted, we are not able to show the
(un)decidability of the corresponding problems.

Therefore, we also consider a restricted version of the described CSPs, in which the
domain is the set of all finite intervals over N, denoted by [N]. Note that this domain is not
closed under all permitted operations anymore, but in several cases it is easier to obtain
completeness results for this domain.

Our contribution. In the first part we consider all CSPs that only permit set operations.
Here, for each problem we are able to show the ≤log

m -completeness for one of the complexity
classes L, P, and NP. We observe that there is a case in which the problem over [N] is more
difficult than the corresponding problem over Pfin(N).

When also admitting arithmetical operations, the complexity is much higher. Each of
the problems is ≤log

m -hard for NP, and once both arithmetical operations are permitted, we
obtain Σ1-completeness.

The case with the addition as the only operation is particularly interesting. Here for
CSPs over arbitrary finite sets we obtain only NP-hardness and membership in NEXP, and
one of this paper’s open questions is to close this gap. In contrast, the corresponding CSP
over [N] turns out to be NP-complete. For the variant over Pfin(N) we even do not know
whether the problem admitting addition and intersection is decidable. The corresponding
problem over [N] is shown to be NP-complete again.

Furthermore, we consider the multiplication of intervals, and show that the CSP over [N]
permitting only multiplication belongs to Σp

3 . This result can be improved if the problem of
testing whether two products of intervals are equal can be shown to belong to some class of
the polynomial hierarchy lower than Πp

2 .

An overview over all results received in this paper can be found on pages 7 and 12. The
technical report [3] provides a more comprehensive version of this paper.

2 Preliminaries

Let N (resp., N+) denote the set of non-negative (resp., positive) integers. Pfin(N) is the
set of finite subsets of N. For A,B ∈ Pfin(N) we define A + B =def {a + b | a ∈ A, b ∈ B}
and A × B =def {ab | a ∈ A, b ∈ B}. By “−” we denote the set difference. Furthermore,
[N] denotes the set of finite intervals over N. An interval {x | a ≤ x ≤ b} for non-negative
integers a and b is represented by [a, b]. For a > b it holds that [a, b] = ∅.

MFCS 2016

32:4 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

The set f(A) = {f(x) | x ∈ A} for a function f : A→ B and arbitrary sets A and B is
also denoted by Wf .

We denote by L, P, NP, Σp
i and Πp

i for i ∈ N, PSPACE, and NEXP the standard
complexity classes whose definitions can be found in textbooks on computational complexity
[12]. The class of c.e. languages is denoted by Σ1.

Note that commonly known ≤p
m-complete problems for NP like SAT, 3SAT, or SOS

are even ≤log
m -complete for NP where ≤log

m (resp., ≤p
m) denotes the many-one reduction

computable in logarithmic space (resp., polynomial time).
We presume that finite subsets of natural numbers {a1, . . . , ak} for k ∈ N+ are encoded

such that the encoding’s length is in Θ(
∑k
i=1 |ak|), where |ak| denotes the length of the

binary representation of ak. An interval [a, b] for a < b is encoded such that the length of the
encoding is in Θ(|a|+ |b|). Note that all problems studied in this paper should be interpreted
as subsets of N although for the sake of simplicity problems might be defined differently.

We successively define the CSPs this paper deals with. Let O ⊆ {+,×,∪,∩,−} and X
be a variable or a constant, where constants are finite subsets of N.

Then X is a term. For terms β and γ as well as ⊕ ∈ {+,×,∪,∩,−} the expression
(β ⊕ γ) is a term. X = Y for terms X and Y is an atom.

Let a1 = (t1,1 = t1,2), . . . , am = (tm,1 = tm,2) for m ∈ N be atoms. Furthermore, let
X1, . . . , Xn be the variables in the mentioned atoms. Then ϕ = ∃X1 . . . ∃Xn a1 ∧ · · · ∧ am
(or more shortly ϕ = a1 ∧ · · · ∧ am) is an O-sentence. If O is apparent from the context, we
also write sentence instead of O-sentence.

Let Varϕ denote the set of variables in ϕ, and let Constϕ denote the set of constants in
ϕ. Moreover, we denote the set of all terms occurring in ϕ by Tϕ.

We define the semantics of terms. A mapping α : Tϕ → Pfin(N) is an assignment of
terms if the following conditions are satisfied.

For constants C it holds that α(C) = C.
For variables X it holds α(X) ∈ Pfin(N).
For ⊕ ∈ {+,×,∪,∩,−} and all terms X ⊕ Y it holds that α(X ⊕ Y) = α(X)⊕ α(Y).

ϕ is true if and only if there is an assignment of terms α with α(ti,1) = α(ti,2) for all
i = 1, . . . ,m. We call such an α satisfying.

The restriction of an assignment of terms to Varϕ (resp., in some cases Varϕ ∪Constϕ) is
called assignment of variables or assignment.

Moreover, an assignment of variables β is satisfying if the assignment of terms induced
by β is satisfying. Note that for each assignment of variables β there is exactly one assignment
of terms α such that β(X) = α(X) for all X ∈ Varϕ.

I Definition 1. Let O denote an arbitrary subset of {+,×,∪,∩,−}. Then we define
CSP

(
Pfin(N),O

)
=def {ϕ | ϕ is a true O-sentence}.

Furthermore, we define

CSP
(

[N],O
)

=def {ϕ |ϕ is an O-sentence, all constants in ϕ are intervals,

there is a satisfying assignment α with α(Varϕ) ⊆ [N]}.

Here all constants are encoded as intervals. Hence, the length of the encoding of a constant
[a, b] for a, b ∈ N and a ≤ b is in Θ(|a|+ |b|).

We also consider a slightly different problem. This enables us to simplify numerous proofs.

T. Dose 32:5

I Definition 2. Let O ⊆ {+,×,∪,∩,−}. We define

CSP′
(
Pfin(N),O

)
=def {ϕ |ϕ is true, and each atom in ϕ is of the form X ⊕ Y = Z

for X,Y, Z ∈ Constϕ ∪Varϕ and ⊕ ∈ O},

where we identify the atoms X ⊕ Y = Z and Z = X ⊕ Y . CSP′
(
[N],O

)
for O ⊆ {∩,+} is

defined analogously to CSP′
(
Pfin(N),O

)
.

The following lemma often allows us to presume that an input sentence is of the described
simpler form. This is so because we can resolve a bigger term into several smaller terms by
storing intermediate results in new variables. For CSPs over intervals, however, this works
only when the set [N] is closed under the permitted operations.

I Lemma 3. CSP′
(
Pfin(N),O

)
≡log

m CSP
(
Pfin(N),O

)
for O ⊆ {+,×,∪,∩,−}.

For O ⊆ {+,∩} it holds that CSP′
(
[N],O

)
≡log

m CSP
(
[N],O

)
.

3 CSPs Permitting Set Operations Exclusively

We firstly focus on CSPs permitting only set operations.
Here all problems belong to NP, which is not the case when also arithmetic operations

are allowed. In Section 4 we will see that some CSPs also permitting arithmetic operations
are hard for PSPACE or even Σ1.

Furthermore, when admitting only set operations it is much easier to prove CSPs to be
complete for particular complexity classes. For each O ⊆ {∪,∩,−} and forM ∈ {Pfin(N), [N]}
we show that CSP(M,O) is ≤log

m -complete for one of the classes L, P, and NP. Thus, all the
problems studied in this section are considered exhaustively.

It can be proven: if an O-sentence ϕ for O ⊆ {∪,∩,−} is true, then there is a satisfying
assignment α with Wα ⊆

⋃
C∈Constϕ

C. Hence, we obtain the following upper bound for all
CSPs admitting only set operations.

I Lemma 4. Let O ⊆ {−,∪,∩} and M ∈ {[N],Pfin(N)}. Then CSP
(
M,O

)
∈ NP.

If we do not allow any operations at all, the corresponding CSP belongs to L. This can
be proven by a Turing reduction to the problem USTCON, i.e., the question of whether
two nodes in an undirected, finite graph are connected. This problem was shown to be in L
by Reingold [13].

I Lemma 5. CSP
(
M, ∅

)
∈ L.

Thus, CSP(M, ∅) is trivially ≤log
m -complete for L. Nevertheless, we remark that the

reduction USTCON ≤log
m CSP(M, ∅) is simple. This shows that a direct proof of CSP(M, ∅) ∈

L is as difficult as a proof for USTCON ∈ L.

Problems admitting union only

I Theorem 6. CSP(Pfin(N), {∪}) is ≤log
m -complete for P.

Proof. We first show CSP(Pfin(N), {∪}) ∈ P. According to lemma 3 it is sufficient to decide
CSP′((Pfin(N), {∪}) in polynomial time.

The following algorithm decides whether there is a satisfying assignment of variables for
an input sentence ϕ of the form described in definition 2. For this purpose it successively
computes an assignment α. Let K =

⋃
C∈Constϕ

C.

MFCS 2016

32:6 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

1. For each constant C set α(C) = C. For variables X set α(X) = K.
2. Apply the following rules to every atom X ∪ Y = Z.

a. Set α(Z) = α(Z) ∩ (α(X) ∪ α(Y)).
b. Set α(X) = α(X) ∩ α(Z) and analogously α(Y) = α(Y) ∩ α(Z).
c. If α(C) for a constant C has been changed, return 0.

3. If α(X) for an X ∈ Varϕ has been changed in step 2, execute step 2 again.
4. Return 1.
Since the sets α(X) are decreased monotonically regarding the inclusion relation, there are
at most Varϕ · |K| changes of values α(X) for variables X. Hence, the algorithm can be
executed in polynomial time. Moreover, it can be proven that the algorithm returns 1 if and
only if ϕ is true.

It remains to prove that CSP(Pfin(N), {∪}) is ≤log
m -hard for P: let MCVE be the problem

of whether a monotone Boolean circuit, i.e., a Boolean circuit with solely OR- and AND-gates,
outputs 1 on some fixed input. According to Greenlaw et al. [8] this problem is ≤log

m -complete
for P.

We simulate such a circuit by a {∪}-sentence such that the set {1} stands for the truth
value 1, and ∅ stands for the truth value 0.

Each OR-gate can be simulated by an atom X ∪ Y = Z where X and Y stand for the
gate’s inputs, and Z stands for the gate’s output.

Now we describe how AND-gates can be simulated. For an AND-gate consider the atoms
Z ∪H = X ∧Z ∪H ′ = Y where X and Y stand for the gate’s inputs, Z stands for the gate’s
output, and H and H ′ are auxiliary variables. These atoms are satisfied by an assignment
α only if α(Z) = {1} ⇒ (α(X) = {1} ∧ α(Y) = {1}). Note that there might indeed be
an assignment of terms β with β(Z) = ∅ and β(X) = β(Y) = {1}. But as the circuit is
monotone, this is no problem.

Finally, if G is the variable standing for the circuit’s output value, we add the atom
G = {1}. This completes the proof. J

Contrary to expectation the problem CSP([N], {∪}) is – in case P 6= NP – more difficult
than the problem CSP(Pfin(N), {∪}). Since the CSP over [N] might appear to be a restriction
of the CSP over Pfin(N), one might at first view rather expect the opposite. The {∪}-sentences
over [N] are indeed a restricted version of sentences over Pfin(N) because the constants belong
to a strict subset of Pfin(N).

However, since for the CSP over [N] also the variables are mapped onto intervals only, we
obtain greater expressive power in this specific situation.

For instance, the atom {0} ∪ {2} = X ∪ Y expresses that X is mapped onto {0} (resp.,
{2}) by a satisfying assignment if and only if Y is mapped onto {2} (resp., {0}). Furthermore,
for X,Y ∈ {{0}, {2}} the atoms {0} ∪X ∪ Y = {0} ∪Z ∧Z ∪Z ′ = {0} ∪ {2} express that Z
is mapped onto {2} by any satisfying assignment if and only if X or Y is mapped onto {2}.
Otherwise Z is mapped onto {0}. Hence, interpreting {2} (resp., {0}) as the truth value 1
(resp., 0), the logical disjunction and negation can be expressed. Thus, 3SAT is reducible to
CSP([N], {∪}) and we obtain the following theorem.

I Theorem 7. CSP([N], {∪}) is ≤log
m -complete for NP.

Further CSPs admitting set operations only. The methods and results for all other CSPs
permitting only set operations are similar.

T. Dose 32:7

So we obtain the P-completeness for CSP(Pfin(N), {∩}). Yet, as [N] is not closed under
union, but under intersection, CSP([N], {∩}) is – in contrast to CSP([N], {∪}) – not NP-
complete, but P-complete.

I Theorem 8. CSP(Pfin(N), {∩}) and CSP([N], {∩}) are ≤log
m -complete for P.

By use of sentences in CSP(Pfin(N), {∪,∩}) and CSP([N], {∪,∩}) arbitrary propositional
formulas can be described. Thus we obtain the following theorem.

I Theorem 9. CSP(Pfin(N), {∪,∩}) and CSP([N], {∪,∩}) are ≤log
m -complete for NP.

As X = A ∪ B can be expressed by (X − A) − B = ∅ ∧ A −X = ∅ ∧ B −X = ∅, and
as X = A ∩B holds if and only if X = (A− (A−B)), we obtain the first statement of the
following theorem.

I Theorem 10. Let O ⊆ {−,∩,∪} with − ∈ O.
1. CSP

(
Pfin(N), O

)
is ≤log

m -complete for NP.
2. CSP

(
[N], O

)
is ≤log

m -complete for NP.

Overview. The following table provides an overview over the results obtained in this section.

CSP
(
M,O

)
with M = Pfin(N) M = [N]

≤log
m -hard for belongs to ≤log

m -hard for belongs to

O = ∅ L L, 5 L L, 5
O = {∪} P, 6 P, 6 NP, 7 NP, 4
O = {∩} P, 8 P, 8 P, 8 P, 8
O = {∪,∩} NP, 9 NP, 4 NP, 9 NP, 9
O ⊇ {−} NP, 10 NP, 4 NP, 10 NP, 4

For each of the problems the ≤log
m -completeness for one of the complexity classes L, P,

and NP is proven.
Additionally, it can be seen that in both situations we receive the same results for all

O ⊆ {∪,∩,−} but O = {∪}. If it holds P 6= NP, then O = {∪} is the only case throughout
this paper where deciding a problem over [N] is more difficult than deciding the corresponding
problem over Pfin(N). Contrary to that, in Section 4 there is an example for which – under
the assumption PSPACE 6= NEXP – the opposite is true.

4 CSPs Permitting Arithmetic Operations

Before we move to the consideration of some concrete problems, we prove an upper bound
for all CSPs investigated in this paper:

I Lemma 11. Let M ∈ {Pfin(N), [N]} and O ⊆ {+,×,∪,∩,−}. Then CSP(M,O) ∈ Σ1.

Proof. The set {(ϕ, α) | ϕ ∈ CSP(M,O), α is a satisfying assignment of variables for ϕ} is
decidable. Hence, the problem CSP(M,O) is a projection of a decidable set. J

4.1 CSPs over a Single Arithmetical Operation
In this section we consider the problems CSP(Pfin(N), {+}) and CSP([N], {+}) as well as
CSP(Pfin(N), {×}) and CSP([N], {×}). All these problems turn out to be ≤log

m -hard for NP.
This shows that all CSPs permitting an arithmetical operation are ≤log

m -hard for NP.

MFCS 2016

32:8 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

I Definition 12. Let MSOS =def {x1, . . . , xn, b | ∃a1, . . . , an ∈ N :
∑n
i=1 aixi = b}.

I Lemma 13 ([1]). MSOS is ≤log
m -complete for NP.

Let M ∈ {Pfin(N), [N]}. In order to see that MSOS ≤log
m CSP(M, {+}), consider a

{+}-sentence in which the factors ai are guessed. Using the shift-and-add technique it can be
made sure that some variable Si in that sentence is mapped onto {aixi} by each satisfying
assignment. Obviously (x1, . . . , xn, b) ∈MSOS if and only if the ai can be chosen such that∑n
i=1 Si = {b}.∑

i∈I aixi = b is equivalent to
∏n
i=1 2aixi = 2b. Thus, with a similar approach using the

square-and-multiply technique MSOS ≤log
m CSP(M, {×}) can be shown.

I Theorem 14. The following statements hold:
1. CSP(Pfin(N), {+}) and CSP([N], {+}) are ≤log

m -hard for NP.
2. CSP(Pfin(N), {×}) and CSP([N], {×}) are ≤log

m -hard for NP.

Yet we find different upper bounds. The problems over Pfin(N) belong to NEXP, whereas
CSP([N], {×}) ∈ Σp

3 and even CSP([N], {+}) ∈ NP hold. We start with the consideration of
CSPs that permit the addition only.

At first we show: if there is a satisfying assignment of variables for a given {+}-sentence
ϕ, then there is also a satisfying assignment for ϕ that is “small” in some sense.

I Lemma 15. Let ϕ ∈ CSP′
(
M, {+}

)
for M ∈ {Pfin(N), [N]} and n =def |ϕ|. Furthermore,

let x = max(
⋃
C∈Constϕ

C ∪ {0}). Then there is a satisfying assignment of variables α for ϕ
with ∀X ∈ Varϕ : max(α(X) ∪ {0}) ≤ x2n.

Proof. The following non-deterministic algorithm successively constructs an assignment α.
1. Set α(C) = C for each constant C.
2. For each variable X with undefined α(X) occurring in an atom Y + Z = X such that

α(Y) and α(Z) are already defined, set α(X) = α(Y) + α(Z).
3. For each variable X with undefined α(X) occurring in an atom X + Z1 = Z2 such

that α(Z2) is defined and unequal to ∅, guess a set S ∈M with max{S} ≤ max(α(Z2))
non-deterministically, and set α(X) = S.

4. If there is a variable X such that α(X) has been defined in the last execution of the steps
2 and 3, then go to step 2.

5. For all variables X with undefined α(X) set α(X) = ∅.
6. If α is a satisfying assignment, then return α.
It can be shown inductively that on at least one computation path the algorithm returns a
satisfying assignment. Let X1, . . . , X|Varϕ| denote the variables such that for i < j the value
α(Xi) is defined before α(Xj). Then it holds max(α(Xi)) ≤ x · 2i for 1 ≤ i ≤ |Varϕ|. J

Through this result we can proceed as follows: guess all assignments whose range is
a subset of the power set of {0, 1, . . . , x · 2n}. Test whether the respective assignment is
satisfying, and return the corresponding return value.

Note that for CSPs over [N] only assignments with range ⊆ {[a, b] | a, b ≤ x · 2n} have to
be considered. Hence, we obtain the following results.

I Theorem 16. It holds that
1. CSP(Pfin(N), {+}) ∈ NEXP
2. CSP([N], {+}) ∈ NP.

T. Dose 32:9

I Remark. It is also possible to show CSP([N], {+}) ∈ NP by using ILP (the problem of
whether an integer linear program has a solution) as an oracle. With that approach one can
even show CSP([N], {+,∩}) ∈ NP (theorem 24).

Now we consider CSP([N], {×}). Contrary to CSP([N], {+}) we are only able to show
CSP([N], {×}) belonging to Σp

3 . The reason for this difference is that [N] is not closed under
multiplication. In particular, we may not assume that the input sentences are of the simplified
form described in definition 2.

Nevertheless, by investigating the multiplication of intervals we find some properties that
significantly simplify deciding CSP([N], {×}).

I Lemma 17. Let A1, . . . , Am, B1, . . . , Bn be finite intervals over N such that it holds
∅ 6=

∏m
i=1Ai =

∏n
i=1Bi 6= {0}.

Then
∏

1≤i≤m,|Ai|=1Ai =
∏

1≤i≤n,|Bi|=1Bi and
∏

1≤i≤m,|Ai|6=1Ai =
∏

1≤i≤n,|Bi|6=1Bi.

I Lemma 18. Let A1, . . . , Am, B1, . . . , Bn be intervals with at least two elements each such
that max(A1) ≤ max(A2) ≤ · · · ≤ max(Am) and max(B1) ≤ max(B2) ≤ · · · ≤ max(Bn).
Let furthermore

∏m
i=1Ai =

∏n
i=1Bi. Then max(Am) = max(Bn).

Proof. Let L =def
∏m
i=1Ai and R =def

∏n
i=1Bi. In addition, let the greatest elements of Ai

(resp., Bi) be denoted by ai (resp., bi). Because of L = R the second greatest elements of L
and R are equal. Thus max(L− {max(L)}) = max(R− {max(R)}).

We show max(L − {max(L)}) =
(∏m−1

i=1 ai
)
· (am − 1) = max(L) −

∏m−1
i=1 ai: the

right equation is obvious. Furthermore, it apparently holds that
(∏m−1

i=1 ai
)
· (am − 1) ∈

L− {max(L)}.
Let x ∈ L− {max(L)}. There are xi ∈ Ai for i = 1, . . . ,m such that x =

∏m
i=1 xi. Due

to x 6= max(L) there is a j such that xj < aj . Then

x ≤
(∏

1≤i≤m,i6=j
ai
)
· (aj − 1) = max(L)−

∏
1≤i≤m,i6=j

ai ≤ max(L)−
m−1∏
i=1

ai.

Analogously it can be seen that max(R− {max(R)}) = max(R)−
∏n−1
i=1 bi. Hence

max(L)−
∏m−1
i=1 ai = max(L− {max(L)}) = max(R− {max(R)}) = max(R)−

∏n−1
i=1 bi.

Because of max(L) = max(R) we obtain
∏m−1
i=1 ai =

∏n−1
i=1 bi and as a consequence

am = max(L)∏m−1
i=1

ai

= max(R)∏n−1
i=1

bi

= bn. J

We roughly describe a non-deterministic polynomial time algorithm satisfying the following
properties: on input of a CSP([N], {×})-instance the algorithm simplifies this sentence until no
variables are left, and finally returns it. If and only if the input sentence is in CSP([N], {×}),
then there is a computation path on which a true sentence is returned.

After some preprocessing we obtain a possibly modified sentence and may neglect the
sets ∅ and {0} henceforth. Then we guess which variables stand for singletons. According to
lemma 17 each atom can be split in two atoms: one for the “singleton variables and constants”
and one for the other variables and constants. Hence, we obtain two sets of atoms, which
can be considered independently.

For singletons we only store the exponents occurring in the prime decomposition. Two
singletons are multiplied by adding the vectors of exponents componentwise. Hence, testing
whether there is a satisfying assignment for the “singleton-atoms” can be done the same
way as deciding CSP([N], {+}), which we have shown to be in NP. If there is a satisfying
assignment, all “singleton-atoms” can be deleted. Otherwise return [0, 1] = [1, 2] for instance.

MFCS 2016

32:10 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

Now consider the remaining atoms. Without loss of generality there is an atom A1 ×
· · · ×Am = B1 × · · · ×Bn such that all Ai are constants (if for each atom there are variables
on both sides, then the remainig sentence is obviously true). For each variable Bj we guess
an interval whose upper endpoint is ≤ max(

⋃m
i=1Ai), and replace each occurrence of Bj

with this interval. This approach is backed up by lemma 18 and can be repeated until no
variable is left.

I Lemma 19. There is a non-deterministic polynomial time algorithm A satisfying the
following properties:

As input A receives a {×}-sentence ϕ whose constants are intervals.
On each computation path A returns a {×}-sentence ψ without any variables such that
all constants are finite intervals with at least two elements each.
If and only if ϕ ∈ CSP([N], {×}), then on at least one computation path A returns a
sentence ψ ∈ CSP([N], {×}).

Since A is a polynomial time algorithm, it holds that |ψ| ∈ O(p(|ϕ|)) for each ψ returned by
the algorithm and some polynomial p.
It remains to test whether two products of intervals are equal.

I Definition 20. Let EPI be the set

{(([a1, a
′
1], . . . , [ak, a′k]), ([b1, b′1], . . . , [bn, b′n])) | ai < a′i, bi < b′i,

k∏
i=1

[ai, a′i] =
n∏
i=1

[bi, b′i]} .

I Lemma 21. EPI ∈ Πp
2 .

Proof. Let A1, . . . , Am, B1, . . . , Bn be non-empty intervals with |Ai|, |Bj | ≥ 2.
It holds
m∏
i=1

Ai =
n∏
i=1

Bi ⇔∀x1 ∈ A1 . . . ∀xm ∈ Am∀y1 ∈ B1 . . . ∀yn ∈ Bn

∃x′1 ∈ B1 . . . ∃x′n ∈ Bn∃y′1 ∈ A1 . . . ∃y′m ∈ Am
m∏
i=1

xi =
n∏
i=1

x′i ∧
n∏
i=1

yi =
m∏
i=1

y′i.

Thus EPI ∈ ∀p∃pP = Πp
2 . J

I Theorem 22. CSP([N], {×}) ∈ Σp
3 .

Proof. According to theorem 19 and lemma 21 the problem CSP([N], {×}) can be decided
by an NP-algorithm with Πp

2-oracle. J

I Remark. Our decision algorithm for EPI tests whether two products of intervals are equal
by considering all elements of the two products. Maybe this can be done more efficiently.
In lemma 18 we have shown that a necessary condition for the equality of two products of
intervals is that the greatest upper interval endpoint is the same in both products. If this
condition can be extended to a sufficient condition that can still be tested efficiently, we
would obtain a better upper bound for CSP([N], {×}).

For the variant over Pfin(N) we obtain membership in NEXP, which can be proven
similarly to CSP(Pfin(N), {+}) ∈ NEXP.

I Theorem 23. CSP(Pfin(N), {×}) ∈ NEXP.

T. Dose 32:11

4.2 Addition and Intersection
Whereas we are not able to show CSP(Pfin(N), {+,∩}) to be decidable, the NP-hardness for
the problem CSP([N], {+,∩}) can be proven by use of integer linear programs.

Furthermore, due to the NP-hardness of CSP([N], {+}) also CSP([N], {+,∩}) is NP-hard.

I Theorem 24. CSP([N], {+,∩}) is ≤log
m -complete for NP.

Proof. According to the lemmata 3 and 14 it suffices to show CSP′([N], {+,∩}) ∈ NP. Hence,
let ϕ be a {+,∩}-sentence whose constants are solely intervals such that each atom is of the
form X ⊕ Y = Z for X,Y, Z ∈ Varϕ ∪ Constϕ and ⊕ ∈ {+,∩}.

During a polynomial time computable preprocessing step ϕ is modified non-deterministi-
cally such that the following holds: ϕ ∈ CSP′([N], {+,∩}) if and only if on at least one
computation path a sentence ϕ′ satisfying the following conditions has been computed:
there is a satisfying assignment α for ϕ′ with ∅ /∈Wα, and if there is an atom X ⊕ Y = Z in
ϕ′ containing ∅ as a constant, then ⊕ = ∩, Z = ∅, and X,Y 6= ∅.

The problem of testing these conditions can be solved with the help of integer linear
programs (ILP). For each R ∈ (Varϕ ∪ Constϕ)− {∅} we introduce two ILP-variables r0, r1.
If R is a constant and R = [l, u], set r0 = l and r1 = u.
1. For each atom X + Y = Z we set up the equations x0 + y0 = z0 and x1 + y1 = z1.
2. For each atom X ∩ Y = Z with Z 6= ∅ use four further variables d, e, d′, e′. We express

z0 = max(x0, y0) and z1 = min(x1, y1):
On z0 = max(x0, y0): Add x0 ≤ z0, y0 ≤ z0, z0 = dx0 + ey0, and d+ e = 1.
On z1 = min(x1, y1): Add x1 ≥ z1, y1 ≥ z1, z1 = d′x1 + e′y1, and d′ + e′ = 1.

3. For each atom X ∩ Y = Z with Z = ∅ we want to express y1 < x0 ∨ x1 < y0. Hence, we
guess a bit b. If b = 0, we add the inequation y1 < x0. Otherwise we add x1 < y0.

4. Furthermore, for every two ILP-variables x0 and x1 that describe the lower and upper
endpoint of some interval we add the inequation x0 ≤ x1.

If and only if one of the ILPs has a solution, it holds ϕ ∈ CSP([N], {+,∩}). J

4.3 Lower Bounds for CSPs Permitting One Arithmetical and One Set
Operation

We present two lower bounds obtained from literature. It should be possible to improve
them in at least some cases.

By use of some results by Meyer and Stockmeyer [14] the following lower bound can be
proven.

I Theorem 25.
1. CSP(Pfin(N), {+,∪}) is ≤log

m -hard for Πp
2 .

2. CSP(Pfin(N), {×,∪}) is ≤log
m -hard for Πp

2 .

These results can be shown by a reduction not making use of CSP-variables. This yields
evidence that probably a better lower bound – such as the ≤log

m -hardness for Σp
3 – can be

proven.
If beside one arithmetical operation there is also one of the two operations intersection

and set difference available, we can revisit some results by McKenzie and Wagner [11] and
show the corresponding problem to be PSPACE-hard.

MFCS 2016

32:12 Complexity of Constraint Satisfaction Problems over Finite Subsets of N

I Theorem 26.
1. CSP(Pfin(N), {+,∩}) is ≤p

m-hard for PSPACE.
2. CSP(Pfin(N), {×,∩}) is ≤log

m -hard for PSPACE.
3. CSP(Pfin(N), {+,−}) is ≤log

m -hard for PSPACE.
4. CSP(Pfin(N), {×,−}) is ≤log

m -hard for PSPACE.

In Section 3 we observed that under the assumption P 6= NP there are CSPs for which
the variant over [N] is more difficult than the variant over Pfin(N). Here we have the opposite
situation.

According to corollary 24 CSP([N], {+,∩}) belongs to NP. According to theorem 26,
however, CSP(Pfin(N), {+,∩}) is ≤p

m-hard for PSPACE. Hence, under the assumption NP 6=
PSPACE deciding CSP(Pfin(N), {+,∩}) is more difficult than deciding CSP([N], {+,∩}).

4.4 Undecidability Results

As soon as both addition and multiplication are permitted, we receive undecidable, but
computably enumerable problems.

More precisely, it can be shown that the problem of solving Diophantine equations, which
was proven to be undecidable by Matiyasevich [2, 10], can be reduced to CSP(M,O) for
M ∈ {Pfin(N), [N]} and {+,×} ⊆ O.

I Theorem 27. Let M ∈ {Pfin(N), [N]} and O ⊆ {∪,∩,−}. Then CSP
(
M, {+,×} ∪ O

)
is

≤log
m -complete for Σ1.

4.5 Overview

The following tables yield an overview over the results obtained in this section. For both
tables there are sets of operations which do not occur in the list. For these problems we
only know those bounds that follow directly from other entries in the corresponding tables
(recall that whenever the set difference is permitted, then one may assume without loss of
generality that also union and intersection are allowed).

The first table deals with the CSPs over Pfin(N).

CSP
(
Pfin(N),O

)
with hardness member of

O = {+} ≤log
m -hard for NP, 14 NEXP, 16

O = {×} ≤log
m -hard for NP, 14 NEXP, 23

O = {+,∪} ≤log
m -hard for Πp

2 , 25 Σ1, 11
O = {+,∩} ≤p

m-hard for PSPACE, 26 Σ1, 11
O = {+,−} ≤log

m -hard for PSPACE, 26 Σ1, 11
O ⊇ {+,×} ≤log

m -hard for Σ1, 27 Σ1, 11

The following tabular contains the results concerning CSPs over [N].

O = CSP
(
[N],O

)
with ≤log

m -hard for member of

O = {+} NP, 14 NP, 16
O = {×} NP, 14 Σp

3 , 22
O = {+,∩} NP, 14 NP, 24
O ⊇ {+,×} Σ1, 27 Σ1, 11

T. Dose 32:13

The bounds for CSPs over [N] are in general lower than those for the corresponding CSPs
over Pfin(N). If [N] is closed under all allowed operations, then we know the corresponding
CSP to be complete for one of the classes L, NP, and Σ1.

For the variant over Pfin(N) there are in almost all cases gaps between the lower and
upper bound. It seems to be difficult to close these gaps.

In contrast to the section before, here remain several open questions. The following are
particularly interesting:

Is CSP(Pfin(N), {+,∩}) decidable? Is CSP(Pfin(N), {+}) complete for some class between
NP and NEXP? Does EPI belong to some class of the polynomial hierarchy lower than Πp

2?

References
1 E. Böhler, C. Glaßer, B. Schwarz, and K. W. Wagner. Generation problems. Theor. Comput.

Sci., 345(2-3):260–295, 2005.
2 M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine

equations. Annals of Mathematics, 74(2):425–436, 1961.
3 T. Dose. Complexity of constraint satisfaction problems over finite subsets of natural

numbers. Technical Report 16-031, Electronic Colloquium on Computational Complexity
(ECCC), 2016.

4 T. Feder and M. Y. Vardi. The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, February 1999.

5 Christian Glaßer, Katrin Herr, Christian Reitwießner, Stephen D. Travers, and Matthias
Waldherr. Equivalence problems for circuits over sets of natural numbers. Theory Comput.
Syst., 46(1):80–103, 2010.

6 C. Glaßer, B. Martin, and P. Jonsson. Circuit satisfiability and constraint satisfaction
problems around skolem arithmetic. In Proceedings of the 12th International Conference on
Computability in Europe (CiE-2016), Lecture Notes in Computer Science. Springer Verlag,
2016. To appear.

7 C. Glaßer, C. Reitwießner, S. Travers, and M. Waldherr. Satisfiability of algebraic circuits
over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394 – 1403, 2010.

8 R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. A Compendium of Problems Complete for
P, 1991.

9 D. E. Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.
10 Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR, 191:279–

282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.
11 Pierre McKenzie and Klaus W. Wagner. The complexity of membership problems for

circuits over sets of natural numbers. Computational Complexity, 16(3):211–244, 2007.
12 C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,

1994.
13 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September

2008.
14 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary

report. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

MFCS 2016

	Introduction
	Preliminaries
	CSPs Permitting Set Operations Exclusively
	CSPs Permitting Arithmetic Operations
	CSPs over a Single Arithmetical Operation
	Addition and Intersection
	Lower Bounds for CSPs Permitting One Arithmetical and One Set Operation
	Undecidability Results
	Overview

