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Abstract
In recent years the study of probabilistic transition systems has shifted to transition relations over
distributions to allow for a smooth adaptation of the standard non-probabilistic apparatus. In this
paper we study transition relations over probability distributions in a setting with internal actions.
We provide new logics that characterize probabilistic strong, weak and branching bisimulation.
Because these semantics may be considered too strong in the probabilistic context, Eisentraut
et al. recently proposed weak distribution bisimulation. To show the flexibility of our approach
based on the framework of van Glabbeek for the non-deterministic setting, we provide a novel
logical characterization for the latter probabilistic equivalence as well.
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1 Introduction

Labeled transition systems (LTS) are a standard way of modeling processes. To verify
processes, process theory has embraced two related lines of research, viz. behavioral equi-
valences and modal logics. Behavioral equivalences state when two processes present the
same behavior. Corresponding minimization algorithms facilitate, e.g., state space reduction.
On the other hand, modal logics allow to express extensional properties of processes to be
used, for example, in formal specification and verification of systems. In classical cases, a
logic characterizes a particular equivalence; two processes are equivalent precisely when they
satisfy the same logical formula. In such a situation, when two processes are not equivalent,
the logic has a formula that is only satisfied by one of the processes. In a way, the particular
formula provides an explanation why the two processes do not have the same behavior.

The introduction of probabilistic transition systems called for an extension of the results
known for the non-probabilistic context to the probabilistic one. In [10], Hennessy takes “a
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fresh look at strong probabilistic bisimulation for processes which exhibit both non-determinism
and probabilistic behavior”. In his view a process is not in a single state of a probabilistic LTS,
but control is spread over a distribution of states. Operationally, this makes sense, because
after the execution of an action, a process reaches a set of states with a particular distribution.
Thus, transitions of the shape s a−→ µ are replaced by transitions of the shape µ a−→ µ′, where
s is a state and µ and µ′ are distributions over states. This underlies the smooth adaptation
of many results for strong bisimulation to probabilistic strong bisimulation in [10].

In this paper we study transitions over distributions in the context of weak semantics,
i.e. semantics that allow to abstract from internal actions, and the logical characterization
of these semantics. We present two concrete enhancements w.r.t. earlier works. First, we
do not require processes to be divergence-free, i.e. processes may execute infinite τ -actions.
Second, we do not focus our attention on weak simulation and bisimulation only; our goal is
provide a framework to deal with more general weak semantics. Key for this development
is to define what constitutes a transition between two distributions. Following [14, 9], we
opt for hyper-transitions. Different alternatives and variations of hyper-transitions appear
in the literature, e.g. [6, 20, 5, 2]. In [2] also provides a comparison. Given a notion of
transitions over distributions, there is a natural way to adapt the relational definition of
a semantics from the state-based context to the distributions-based context: just take the
standard definition and replace states by distributions.

We discuss probabilistic strong bisimulation, probabilistic weak bisimulation and probabil-
istic branching bisimulation. For each semantics we propose a logical characterization. These
characterizations follow the set-up for the non-deterministic context of van Glabbeek presen-
ted in [21]. However, we add in particular the modal operator [ · ]≥q to measure probabilities.
Because probabilistic weak bisimulation, as one can argue, may be considered too strong,
[9] introduces a variant of weak bisimulation, so-called weak distribution bisimulation. We
also introduce a logical characterization for this semantics. The peculiarity of this logic is the
way probabilities are measured, for which the modal operator ⊕q is used as introduced in [10].
However, the semantics of [ · ]≥q and ⊕q are rather different: [ · ]≥q governs the support of a
distribution, while ⊕q concerns decomposition of a distribution.

Related work on logics for distributions includes [17, 7, 18, 10, 2]. In [17, 2], the idea
of transitions over sets of states or distributions does not appear. There, the semantics
of the prefix operator depends on the actions that can be executed by the states in the
support of the distribution rather than the distribution itself. In addition, in [17] the
relational characterization is given for a probabilistic LTS and not for transition relation over
distributions. Inspired by the different logics, [2] introduces relations over distributions. On
the other hand, [10] takes into account the idea of transitions over set of states but it only
focuses on probabilistic strong bisimilarity. Also [7, 18] deal with logics over distributions.
The logics introduced in [7] are variants of the probabilistic µ-calculus. Two of these variants,
that do not use fix-point operators, characterize weak and strong bisimulation. In [18]
only extensions of HML logics are considered. The main difference between [7, 18] and our
work lies in the definition of hyper-transitions; in [7, 18], only divergence-free processes are
considered. Moreover, they only consider logics to characterize weak (bi)similarity and the
approach cannot be uniformly extended other weak semantics as in our case. Specific details
on the relation relating to the work mentioned are discussed throughout the paper.

Since the seminal work of [13] on the logical characterization of probabilistic strong
bisimulation many extensions have been presented. Work on the logical characterization
of weak bisimulation in the probabilistic setting includes [8, 19]. In [8], Desharnais et al.
prove that, for the alternating model, PCTL∗ is sound and complete with respect to weak
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bisimulation. Song et al. do a similar study taking into account probabilistic automata,
see [19]. First, they show that the logic is sound but not complete for strong bisimulation. For
this reason, they introduce a variant of the semantics such that PCTL∗ is complete too. This
new semantics relaxes the transfer property: existence of a matching (combined) transition
is replaced by existence of a transition of at least the same weight on downward closed sets.
Along the same lines a variant for weak bisimulation is obtained. A counterexample in [19]
shows that the results for the alternating model in [8] do not hold for probabilistic automata.

The remainder of the paper is organized as follows. In Section 2, following [9], we review
probabilistic automata, the model used to formalize probabilistic LTS, and transitions between
two distributions, so-called hyper-transitions, taking into account both visible and internal
actions. In Section 3, we introduce the relational characterizations of the various semantics
and their logical characterization. Section 4 collects concluding remarks.

2 Preliminaries

For a set X, we denote by SubDisc(X) the set of discrete sub-probability distributions over X.
Given % ∈ SubDisc(X), we denote by spt(%) the support of %, i.e. the set { x ∈ X | %(x) > 0 },
by %(⊥) the value 1− %(X), for a distinguished symbol ⊥ 6∈ X. For x ∈ X, we use δ(x) to
denote the Dirac distribution of x given by δ(x)(y) = 1 for y = x, 0 otherwise; δ⊥ represents
the empty distribution with δ⊥(X) = 0. We call a distribution a probability distribution
if %(X) = 1. The set of all discrete probability distributions over X is denoted by Disc(X).
Given {x1, . . . , xn} ⊆ X and p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1, we write

∑n
i=1 pixi

to denote the distribution that assigns probability pi to xi, for i = 1, . . . , n. In addition, given
distributions µ1, . . . , µn ∈ Disc(X), the distribution

∑n
i=1 piµi is called a convex combination

of µ1 to µn. If n = 2, we may write µ1 ⊕p µ2 where p = p1 instead of p1µ1 + p2µ2.
We reserve the symbol τ to denote the silent action. For a set X with τ /∈ X we write

Xτ for X ∪ {τ}.

I Definition 1. A probabilistic automaton or PA A is a tuple (S,Στ , D), where S is the
finite set of states, Στ is the set of actions, and D ⊆ S × Στ × Disc(S) is the transition
relation.

For the rest of the paper we assume that a PA A = (S,Στ , D) is given. Moreover, A is
image-finite, i.e. for all a ∈ Στ and s ∈ S, the set { µ | (s, a, µ) ∈ D } is finite. We write
s

a−→ µ for (s, a, µ) ∈ D. We write D(a) for the set of transitions with label a and D(s) for
the set of transitions with source s.

An execution fragment α = s0 a1s1a2s2 . . . of A is a finite or infinite alternating sequence
of states and actions such that for each i > 0 there exists a transition (si−1, ai, µi) ∈ D
with µi(si) > 0. We say, α is starting from fst(α) = s0, and in case the sequence is finite,
ending in `st(α). We use frags(A) to denote the set of execution fragments of A, and by
ffrags(A) the set of finite execution fragments of A. An execution fragment α is a prefix of
an execution fragment α′, notation α 4 α′, if the sequence α is a prefix of the sequence α′.
The trace trace(α) of α is the subsequence of non-silent actions of α. We use ε to denote the
empty trace. Thus, trace(a) = a for a ∈ Σ and trace(τ) = ε.

A scheduler for A is a map σ : ffrags(A)→ SubDisc(D) with σ(α) ∈ SubDisc(D(`st(α)))
for every finite execution fragment α. The scheduler is deterministic if for every α, σ(α) is
a Dirac distribution or δ⊥. Note that by using sub-probability distributions, it is possible
that with non-zero probability no transition is chosen after α, that is, the computation stops
after α with probability σ(α)(⊥). Given a scheduler σ and a finite execution fragment α, the
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Figure 1 Example probabilistic automaton A.

distribution σ(α) describes how transitions are chosen to move on from `st(α). A scheduler σ
and a state s induce a probability distribution µσ,s over execution fragments as follows.

The cone Cα of a finite fragment α is the set { α′ ∈ frags(A) | α 4 α′ }. Given a
scheduler σ and states s and t, the distribution µσ,s on cones Cα is recursively defined by

µσ,s(Ct) = δ(s)(t) µσ,s(Cαat) = µσ,s(Cα) ·
∑
`st(α)

a−→µ
σ(α)

(
`st(α) a−→ µ

)
· µ(t)

For a finite execution fragment α, the probability µσ,s(α) of executing α (and stop) based on
σ and s is defined as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥).

A state s can execute a combined weak transition for an action a ∈ Σ if there is a
scheduler σ such that with probability 1 the action a is executed once while no other
visible action is executed. After a is executed, a state t will be reached with probability
µσ,s({ α ∈ ffrags(A) | `st(α) = t }). If a = τ , we have a similar definition but with
probability 1 no visible action is executed. Definition 2 takes both cases into account. As
usual, â = a if a ∈ Σ and â = ε if a = τ

I Definition 2. Let s ∈ S and a ∈ Στ . A transition s
â=⇒c µ is called a weak combined

transition if there exists a scheduler σ such that µσ,s satisfies the following:
1. µσ,s(ffrags(A)) = 1,
2. for each α ∈ ffrags(A), if µσ,s(α) > 0, then trace(α) = trace(a),
3. for each state t, µσ,s({ α ∈ ffrags(A) | `st(α) = t }) = µ(t).

Occasionally we want to make reference to the scheduler σ underlying a weak combined
transition s â=⇒c µ. We do so by writing s â=⇒σ µ. For execution fragment α, let `gt(α) = n

in case α = s0a1s1, . . . ansn is finite, and `gt(α) =∞ if α is infinite. We define the length of
a scheduler σ with respect to a state s by `gts(σ) = sup{ `gt(α) | fst(α) = s, σ(α) = δ⊥ }.

I Example 3. Let A be the PA in Fig. 1. The state s1 can execute the following weak
combined transitions:
(i) s1

ε=⇒c ν0 with ν0(s1) = 0.5, ν0(s2) = 0.25 and ν0(s3) = 0.25;
(ii) s1

a=⇒c ν1 with ν1(s4) = 0.75 and ν1(s5) = 0.25;
(iii) s1

a=⇒σ ν2 with ν2(s4) = 0.75, ν2(s5) = 0.05 and ν2(s6) = ν2(s7) = 0.1, where σ stops
at state s5 with probability 0.2 and selects the transition s5

τ−→ µ5 with probability 0.8;
(iv) s7

ε=⇒σ δ(s8) where σ is such that `gt(σ) =∞.
Notice there is no combined transition from s1 that executes an action c, since from s1, there
is no scheduler that allows to execute this action with probability 1.

A weak hyper-transition is a linear combination of weak combined transitions with the
same label, see [9]. The weight of each weak combined transition is defined by a distribution µ.
The notion of a weak hyper-transition allows to work with transitions over distributions.
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I Definition 4. Given µ, µ′ ∈ Disc(S) and a ∈ Στ , there is a weak hyper-transition µ â=⇒c µ
′

if there exists a family of weak combined transitions {s â=⇒c µs}s∈spt(µ) such that µ′ =∑
s∈spt(µ) µ(s) · µs.

Given a scheduler σ, the scheduler σn is such that σn(α) = σ(α) if `gt(α) 6 n, otherwise
σn(α) = δ⊥. For a ∈ Στ , we write s a−→c µ if there is a scheduler σ of length 1 such that
s

â=⇒σ µ. Schedulers of length 1 induce the notion of a one-step transition.

I Definition 5. Let µ, µ′ ∈ Disc(S) and a ∈ Στ . For a 6= τ , a one-step transition µ
a−→c µ

′

is a weak hyper-transition µ a=⇒c µ
′ for {s a=⇒c µs}s∈spt(µ) such that s a−→c µs. A one-step

transition µ
τ−→c µ

′ is a weak hyper-transition µ ε=⇒c µ
′ for {s ε=⇒c µs}s∈spt(µ) such that

either µs = δ(s) or s τ−→c µs, for s ∈ spt(µ), and s τ−→c µs for at least one s ∈ spt(µ).

The definition of a one-step transition for a visible action requires that each state in the
support of µ executes the visible action. On the other hand, if the action is not visible, we
require that at least one state executes a τ -transition.

I Example 6. Consider again Example 3. Because of s1
a−→c ν1 and s2

a−→c µ2, 0.5δ(s1) +
0.5δ(s2) a−→c 0.5ν1 +0.5µ2. Since s1

τ−→c 0.5δ(s1)+0.5µ1, we have δ(s1) ε−→c 0.5δ(s1)+0.5µ1.
Notice that this target distribution cannot be reached from δ(s1) by a one-step transition
with a deterministic scheduler. Definition 5 does not allow to split the state s1. Finally,
notice that δ(s1) ε=⇒c δ(s1) but δ(s1) τ−→c δ(s1) is not a valid one-step hyper-transition.

We have used the notion of a hyper-transition of [14] to define transitions over distributions
because of its clear operational intuition.

3 Semantics for Transitions Over Distributions and their Logical
Characterizations

In this section we present four different semantics. First we treat probabilistic strong bisimu-
lation. Here we present the main results to deal with probabilities. The second semantics is
probabilistic weak bisimulation. The key point is how to define a logic that characterizes
the relation in such a way that the modal operators can be reused for characterizing other
semantics that abstract from internal behavior. For this we follow the framework defined by
van Glabbeek in [21]. Additionally, we have to introduce a number of properties satisfied by
our definitions of combined and hyper-transitions (Lemma 19). We also recall why probabil-
istic weak bisimulation may be considered too tight. Next we cover probabilistic branching
bisimulation. Defining a logic and proving that it characterizes the process equivalence is
straightforward given the definitions and results gathered already. We also provide a stutter-
ing lemma for the probabilistic context. Finally, we discuss weak distribution bisimulation [9]
and its logical characterization.

3.1 Probabilistic strong bisimulation
Generally, approaches to define behavioral equivalences for probabilistic transition systems
provide a relation over states and a lifting to distributions over states, by means of, for
example, weight functions [20] or closed sets [3]. We follow a different approach and will
directly define relations over distributions that satisfy the decomposability condition of [10].

I Definition 7. A symmetric relation R ⊆ Disc(S)×Disc(S) is decomposable if µR ν and
µ = µ1 ⊕p µ2 imply there are ν1, ν2 ∈ Disc(S) s.t. ν = ν1 ⊕p ν2, µ1 R ν1 and µ2 R ν2.

MFCS 2016
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Figure 2 The decomposability condition is needed – Only considering deterministic schedulers is
too strong.

In Definition 8, we introduce the notion of a probabilistic strong bisimulation for transition
relations over probability distributions. Then we will explain why the decomposability
condition is needed. We also show that a variant of strong bisimulation for transitions over
distributions that only considers deterministic schedulers is too strong. For this reason we
will not consider one-step transitions for deterministic schedulers further.

I Definition 8. A decomposable relation R ⊆ Disc(S) × Disc(S) is called a probabilistic
strong bisimulation if, for every a ∈ Στ , µR ν and µ

a−→c µ
′ imply ν a−→c ν

′ and µ′ R ν′

for some ν′. Probabilistic strong bisimilarity, notation ≈ps, is defined as the union of all
probabilistic strong bisimulations.

Figure 2 illustrates the need for the decomposability condition. Suppose we remove
the condition, therefore µ1 and µ2 should be consider equivalent since they execute no
transition, see Def. 5; therefore δ(t1) and δ(t2) are also equivalent. The condition ensures
that distributions that are related by ≈ps assign the same weight to equivalence classes.
Note that µ1 = 0.6δ(u) + 0.4δ(u′) and there are no µ′2 and µ′′2 such that µ2 = 0.6µ′2 + 0.4µ′′2 ,
δ(u) ≈ps µ

′
2 and δ(u′) ≈ps µ

′′
2 . Thus µ1 6≈ps µ2 and therefore δ(t1) 6≈ps δ(t2).

We explain the problem with deterministic schedulers. Consider state t3, t′3 and t′′3 in
Figure 2. It is clear that δ(t3) ≈ps δ(t′3), δ(t′3) ≈ps δ(t′′3) and δ(t3) ≈ps δ(t′′3). If we would
consider only deterministic schedulers to define one-step transitions we have the transition
0.5δ(t′3) + 0.5δ(t′′3) b−→ 0.5µ3 + 0.5µ′3 and this transition cannot be mimicked by δ(t3) in the
restricted setting. However, since we consider arbitrary schedulers, δ(t3) b−→c 0.5µ3 + 0.5µ′3.

Definition 9 introduces a logic that characterizes ≈ps (Theorem 15).

I Definition 9. The logic Lps is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aψ | τψ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I. The satisfiability of an Lps-formula for
µ ∈ Disc(S) is defined by the following clauses:

(>) µ |= > for all µ

(∧) µ |=
∧
i∈I ψi if µ |= ψi for all i ∈ I

(¬) µ |= ¬ψ if µ 6|= ψ

(a) µ |= aψ if µ a−→c µ
′ and µ′ |= ψ

(τ) µ |= τψ if µ τ−→c µ
′ and µ′ |= ψ

(≥ q) µ |= [ψ]≥q if µ({s ∈ S | δ(s) |= ψ}) > q

We denote by |=ps the satisfiability relation of Lps.

Recall that a one-step transition with an action a different from τ requires that all states in
the support of the distribution execute the action a. This is not the case for a τ action. See
Definition 5.
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In [10], Hennessy introduces the logic pHML that also characterizes probabilistic strong
bisimulation. The difference with this logic is the modality used to measure probabilities.
The logic pHML uses a modal operator ⊕q and its validity, in contrast to [ψ]≥q, does not
depend on the support of the distribution. Instead, it depends on how the distribution can
be decomposed. The quantitative modal operators of [7, 18] are defined similarly. We do not
follow this approach because it does not fit well for weak semantics. We explain this in more
detail in the next subsection.

Parma and Segala [17] have introduced a distribution-based logic to characterize state-
based probabilistic strong bisimulation, the logic LNp . In this setting, states s and t are
bisimilar iff δ(s) and δ(t) satisfy the same set of formulas. If we compare |=ps with LNp , we
see that clause (a) of Definition 9 is different: they have µ |= aψ if for all s ∈ spt(µ), s a−→c µs
and µs |= ψ. In this case, the modal operator refers to the transitions that can be executed
by the states underlying the distribution instead of the transitions of the distribution itself.

Theorem 15 states that Lps characterizes ≈ps. To prove the theorem we need a number
of auxiliary results.

I Lemma 10. Let R be a decomposable relation. For all µ, ν with µR ν, there is a finite
index set K such that
1. µ =

∑
k∈K pk · δ(sk).

2. ν =
∑
k∈K pk · δ(tk).

3. δ(sk)R δ(tk) for all k ∈ K.

In the following three lemmas L indicates a sublogic (of the logic at hand, here Lps).

I Lemma 11. Let ŝ ∈ S and ψ ∈ L. If δ(ŝ) |= ψ then it holds that δ(ŝ)({ s | δ(s) |= ψ }) = 1.

Note that the last result does not work for arbitrary µ and ψ such that µ |=s ψ. Referring
to Figure 1, 0.5δ(s2) + 0.5δ(s3) |=s a[b]≥0.75. However, δ(s3) 6|=sa[b]≥0.75, and therefore it
holds that 0.5δ(s2) + 0.5δ(s3)({ s | δ(s) |= ψ }) < 1.

I Lemma 12. Let L be a logic containing ¬ and
∧
. Then there is a formula ψC for each

C ∈ {π | π ∈ Disc(S) is a Dirac distribution}/≈L s.t. for all s ∈ S, δ(s) |= ψC iff δ(s) ∈ C.

I Lemma 13. Let L be a logic containing
∧
, ¬, and [·]≥q for q ∈ Q. For all µ, ν ∈ Disc(S)

with µ ≈L ν there is a finite index set K such that
1. µ =

∑
k∈K pk · δ(sk).

2. ν =
∑
k∈K pk · δ(tk).

3. δ(sk) ≈L δ(tk) for all k ∈ K.

I Lemma 14. Suppose
∑
k∈K pk = 1 for some index finite set K. If µk ≈Lps νk for k ∈ K,

then
∑
k∈K pkµk ≈Lps

∑
k∈K pkνk.

I Theorem 15. Let µ, ν ∈ Disc(S), then µ ≈ps ν iff µ ≈Lps ν.

Sketch. To prove (⇒) we show that µ ≈ps ν and µ |=ps ψ implies ν |=ps ψ. This goes by
structural induction on ψ. Cases >,

∧
i∈I ψi, ¬ψ and aψ follow [21]. The case [ψ]≥q follows

by Lemmas 10 and 11. To prove (⇐) we show that ≈Lps is a probabilistic strong bisimulation.
The check of the transfer property follows [21]. To prove that ≈Lps is decomposable we use
Lemmas 13 and 14. J

MFCS 2016
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3.2 Probabilistic weak bisimulation
Transition relations over distributions allow to introduce straightforwardly a notion of weak
bisimulation. Moreover, the discussion of the previous subsection applies here as well. Then,
after the definition of weak bisimulation, we can focus on defining a corresponding logic.

I Definition 16. A decomposable relation R ⊆ Disc(S) × Disc(S) is a probabilistic weak
bisimulation if given µR ν, for every a ∈ Στ , µ

a−→c µ
′ implies there is ν′ such that ν â=⇒c ν

′

and µ′ R ν′. Probabilistic weak bisimilarity, notation ≈pw, is defined as the union of all
probabilistic weak bisimulations.

The logic that characterizes ≈pw uses many of the operators of the logic for ≈ps, but also
adds new features to deal with internal behavior. The logic Lpw will be defined using a new
modality ε, and two new clauses, (→ε) and (←ε) in the satisfiability relation. Because internal
transitions cannot be observed, the clause (τ) is removed. First, we introduce the syntax
and explain the intuition of the modality ε.

I Definition 17. The logic Lpw is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aεψ | εψ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I.

The modality ε is introduced to encode that internal behavior (zero or more τ ’s) can
happen. In addition, we shall assume that some internal behavior can happen before the
execution of any action. For example, ε[cε>]≥0.5 encodes that after some internal behavior,
with probability at least 0.5, an action c can be executed and the observation terminates;
because the assumption and the modality ε, before and after the execution of c, some internal
behavior can happen. This behavior is present in state s1 in Figure 1. Also in Figure 1,
notice that states s2 and s3 satisfy aε>. Because s1 can reach both states with probability 1
via internal behavior, then δ(s1) should also satisfy aε>. These ideas are modeled by clauses
(→ε) and (←ε), which follow a phrasing of [21], in the following definition.

I Definition 18. The satisfiability of an Lpw-formula is defined by the clauses (>), (
∧

), (¬),
[ · ]≥q, (a) together with the following two:

(→ε ) µ |= εψ if µ |= ψ. (←ε ) µ |= ψ if µ ε=⇒c µ
′, µ′ |= ψ and the outermost operator

of ψ is neither ¬,
∧

nor [ · ]≥q.

We write |=pw to denote the satisfiability relation of Lpw.

Figures 3 and 4, corresponding to the example in Figure 1, illustrates these clauses.
Moreover, Figure 4 shows their interaction. Notice that it is possible to infer that some
internal behavior can or cannot happen in a state. For instance, δ(s1) |= ε[cε>]≥0.5, but
δ(s1) 6|= [cε>]≥0.5. The two formulas confirm that an internal transition for s1 will change
the equivalence class of the process for s1 of Figure 1.

The condition “the outermost operators of ψ is not ¬,
∧

nor [ · ]≥q” of Definition 18 is
needed for (←ε) because operators ¬ and [ · ]≥q give information about the current distribution.
We use an example to explain this. See Figure 1: distribution µ1 is such that µ1 |=pw ¬bε>.
If the restriction is not present, given that δ(s1) ε=⇒ µ1, one has δ(s1) |=pw ¬bε>. This is
inconsistent with the fact that s1

b−→ . Similar reasoning is in place for the modality [ · ]≥q.
Operator

∧
is also restricted to take into account the recursive case, for example, ¬bε>∧>.
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1. δ(s2) |=pw aε> and δ(s3) |=pw aε>
2. 0.5δ(s2) + 0.5δ(s3) |=pw aε> by (a)
3. δ(s1) ε=⇒c 0.5δ(s2) + 0.5δ(s3)
4. δ(s1) |=pw aε> by (←ε) and 3.

Figure 3 (←ε ) allows to take into account the formula that are satisfied after an internal hyper-
transition with a probabilistic scheduler.

(i) δ(s2) |=pw cε>.
(ii) 0.5δ(s2) + 0.5δ(s3) |=pw [cε>]≥0.5 by (≥ q)
(iii) 0.5δ(s2) + 0.5δ(s3) |=pw ε[cε>]≥0.5 by (→ε)
(iv) δ(s1) |=pw ε[cε>]≥0.5 by (←ε), 3. and 3

Figure 4 (→ε ) concerns the current probability measure. Then (←ε ) can be used for backward
propagation. Notice δ(s1) 6|=pw [cε>]≥0.5.

In addition, in the following sections, we will use the same definition to define other logics
that characterize other weak semantics.

In [17], Parma and Segala also introduce a logic that characterizes probabilistic weak
bisimulation, the logic LNw . This logic is the logic LNp where the modality a is replaced by a
modality that considers weak combined transitions. Similarly, [7, 18] consider weak hyper-
transitions. In comparison with other logics characterizing probabilistic weak bisimulation,
Lpw looks more complex because of the modalities ε and the clauses (←ε) and (→ε). This
complexity is needed to extend the logic to other semantics. See the next section.

It has been argued that probabilistic weak bisimulation is too strong [9, 5]: Consider
Figure 5 and assume that states and are such that 6≈pw . State s1 does not add
any behavior to the system represented by the state s, and the probabilities of reaching
states and from s are, respectively, 0.25 and 0.75. Then it is plausible to consider the
distributions δ(s) and δ(t) weakly bisimilar, but in fact they are not. Notice there is no
matching for the transition δ(s) τ−→ µs. In [9], a variant of weak bisimulation is introduced to
deal with this problem. We study the logic characterization of this variant in Subsection 3.4.

We explain why the approach of Hennessy [10] to define the measure modality does not
fit well for weak bisimilarity. Let ψ and ψ be the characteristic formula of and . Then

δ(s1) |=pw ε([ψ ]≥0.5 ∧ [ψ ]≥0.5) δ(s) |=pw ε([ε([ψ ]≥0.5 ∧ [ψ ]≥0.5]≥0.5 ∧ [ψ ]≥0.5))

Let ψ̂ be the last formula, then δ(t) 6|=pwψ̂. In case we had used the approach used by
Hennessy [10], we would replace the measure modality [ · ]≥q by ⊕q with clause

(⊕) µ |= ψ1 ⊕q ψ2 if µ = µ1 ⊕q µ2 and µi |= ψi for i = 1, 2
In the new setting, the formula analogous to ψ̂ is ε((ε(ψ ⊕0.5 ψ )) ⊕0.5 ψ ). This

formula is satisfied by δ(t) because µt = ( ⊕0.5 )⊕0.5 . Then δ(s) and δ(t) would not be
distinguished by the logic in the new setting.

Theorem 21 states Lpw characterizes ≈pw. To prove the result, we reuse the results for
probabilistic strong bisimulation regarding probabilities. In addition, we need to introduce
technical properties of weak transitions, see Lemma 19, and to recast Lemma 14 for Lpw.

I Lemma 19. Let s ∈ S, µ, µ′, ν, µi, µ′i ∈ Disc(S), where i ∈ I, and σ be a scheduler. Then
1. µ

ε=⇒c ν and ν ε=⇒c µ
′ imply µ ε=⇒c µ

′. [14, Prop. 3.6]
2. s

â=⇒c µi, i ∈ I, a ∈ Στ and
∑
i∈I pi = 1 imply s â=⇒c

∑
i∈I piµi [14, Prop. 3.4].
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s µs

s1 µ

τ
0.5
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τ

0.5
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t µt
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0.75
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Figure 5 Probabilistic weak bisimulation is too strong.

3. µi
â=⇒c µ

′
i, i ∈ I, a ∈ Στ and

∑
i∈I pi = 1 imply

∑
i∈I piµi

â=⇒
∑
i∈I piµ

′
i.

4. For a ∈ Σ, µ a=⇒c µ
′ iff there are ν, ν′ ∈ Disc(S) such that µ ε=⇒c ν

a−→c ν
′ ε=⇒c µ

′.
5. σ = limn→∞ σn pointwise. Moreover, µs,σ(α) = limn→∞ µs,σn

(α) [20, Prop. 5.3.22].
6. If `gt(σ) > n, s ε=⇒σn µn and s ε=⇒σn+1 µn+1 then µn

τ−→c µn+1.
7. If µ ≈pw ν and µ ε=⇒c µ

′, there is ν′ ∈ Disc(S) such that ν ε=⇒c ν
′ and µ′ ≈pw ν′.

8. For a ∈ Σ, if µ ≈pw ν and µ a=⇒c µ
′, there is ν′ ∈ Disc(S) such that ν a=⇒c ν

′ and
µ′ ≈pw ν′.

I Lemma 20. Suppose
∑
k∈K pk = 1, for some finite index set K. If µk ≈Lpw

νk for k ∈ K,
then

∑
k∈K pkµk ≈Lpw

∑
k∈K pkνk.

I Theorem 21. Let µ, ν ∈ Disc(S). Then µ ≈pw ν iff µ ≈Lpw
ν.

The proofs of Lemma 20 and Theorem 21 strongly depend on the properties of Lemma 19.
The proof of these statements are intricate, because of the definitions of combined and
hyper-transitions considering schedulers of infinite length. These chedulers are needed, e.g.,
to distinguish between distributions δ(s7) and δ(s8) in Figure 1, i.e. δ(s7) ≈pw δ(s8). Note,
state s8 executes a transition with action b and this transition can be mimicked by s7 only
using a weak hyper-transition defined by a scheduler of infinite length. The variant of weak
bisimulation of [7, 18] does not relate δ(s7) and δ(s8), because the relation ε=⇒c is defined as
the reflexive and transitive closure of τ̂−→c. This way of defining hyper-transition is sufficient
in the context of [7, 18], because they deal with divergence-free PA. Notice, A in Figure 1 is
not divergence-free.

3.3 Probabilistic branching bisimulation
We discuss probabilistic branching bisimilarity and its logical characterization. We remark
that for the correspondence result we only need to add one new auxiliary result, a lemma
analogous to Lemma 20.

I Definition 22. A decomposable relation R ⊆ Disc(S)×Disc(S) is a probabilistic branching
bisimulation if given µR ν, for every a ∈ Στ , µ

a−→c µ
′ implies

a = τ and µ′ R ν, or
there are ν̃ and ν′ such that ν ε=⇒c ν̃

a−→c ν
′ with µR ν̃ and µ′ R ν′.

Probabilistic branching bisimilarity, notation ≈pb, is defined as the union of all probabilistic
branching bisimulations.

For the logic Lpb for probabilistic branching bisimulation we include binary operators
_a_, for a ∈ Σ, and _τ_ replacing aε and ε.
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I Definition 23. The logic Lpb is defined by
ψ := > |

∧
i∈I ψi | ¬ψ | ψaψ′ | ψτψ′ | [ψ]≥q

for a ∈ Σ, q ∈ Q and possibly infinite index sets I. The satisfiability of an Lpb-formula is
defined by the clauses (>), (

∧
), (¬), (≥ q), (←ε) and

(η) µ |= ψaψ′ if µ a−→c µ
′, µ |= ψ and µ′ |= ψ′.

(ητ ) µ |= ψτψ′ if, µ = µ′ or µ τ−→c µ
′, µ |= ψ and µ′ |= ψ′.

As in the non-probabilistic context [22, 21], the modality ψaψ′ (based on the notion of
η-replication) allows to observe ψ′ after an execution of action a that is preceded by the
observation of ψ. This modality generalizes aψ. A similar meaning for ψτψ′. These two
modalities allow to check the branching of a process. Notice that _a_ does not force using ε,
because of this, it is possible to check the branching after the execution of the action a.

I Lemma 24. Suppose
∑
k∈K pk = 1 for some finite index set K.

1. If µk ≈pb νk for k ∈ K, then
∑
k∈K pkµk ≈pb

∑
k∈K pkνk.

2. If µk ≈Lpb
νk for k ∈ K, then

∑
k∈K pkµk ≈Lpb

∑
k∈K pkνk.

I Theorem 25. Let µ, ν ∈ Disc(S), µ ≈pb ν iff µ ≈Lpb
ν.

3.4 Probabilistic weak bisimulation with sloppy probabilities
We have argued that weak bisimulation may be considered too strong. To deal with this
problem, Eisentraut and co-workers introduced in [9] a notion called weak distribution
bisimulation. We recall this process equivalence in Definition 27. Our presentation slightly
differs from the original because we build on the notion of a weak decomposable relation
(see Definition 26). In line with the nomenclature used in [21] for the global testing variants,
we refer to our notion as probabilistic weak bisimulation with sloppy probabilities. We will
motivate this further after the presentation of the logic that characterizes the semantics.

I Definition 26. A symmetric relation R ⊆ Disc(S)×Disc(S) is called a weak decomposable
relation if µR ν and µ = µ1 ⊕p µ2 implies there are ν1 and ν2 such that ν ε=⇒c ν1 ⊕p ν2,
µ1Rν1 and µ2Rν2.

Next we define for a weak decomposable relation when it is called a probabilistic weak
bisimulation with sloppy probabilities.

IDefinition 27. A weak decomposable relationR ⊆ Disc(S)×Disc(S) is a called probabilistic
weak bisimulation with sloppy probabilities if, for every a ∈ Στ , µRν and µ a−→c µ

′ imply
there is ν′ ∈ Disc(S) s.t. ν â=⇒c ν

′ and µ′ R ν′. Probabilistic weak bisimilarity with sloppy
probabilities, notation ≈spw, is defined as the union of all the probabilistic weak bisimulations
with sloppy probabilities.

The single difference of Definition 16 and Definition 27 is that the former uses a decom-
posable relation while the latter requires it to be weakly decomposable. However, this change
is sufficient to capture δ(s) ≈spw δ(t) in Figure 5. Notice, µs ≈spw µt and these distributions
are weakly decomposable because δ(s) ≈spw µ.

In Figure 5 we have seen how the modal operator [ · ]≥q can be used to distinguish δ(s)
and δ(t). We have argued that the approach of Hennessy does not differentiate between δ(s)
and δ(t). However, to characterize the new semantics we only need to push his approach
a little forward. The extra subtlety is this: Recall µs ≈spw µt and take into account the
operator ⊕p with clause (⊕). Then µt |= ψ ⊕0.25 ψ , but there are no µ1 and µ2 such that
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µs = µ1 ⊕0.25 µ2, µ1 |= ψ and µ2 |= ψ . On the other hand, µs
ε=⇒c 0.5µ+ 0.5δ( ) and

0.5µ + 0.5δ( ) |= ψ ⊕0.25 ψ . Therefore, in order to achieve µs |= ψ ⊕0.25 ψ , we will
allow a distribution to observe the measuring that is done after some internal behavior. This
can be arranged ‘for free’, because the constraint that “the outermost operator of ψ is not ¬,∧

nor [ · ]≥q” in the clause (←ε) does not concern the operator ⊕p.

I Definition 28. The logic Lspw is defined by

ψ := > |
∧
i∈I

ψi | ¬ψ | aεψ | εψ | ψ1 ⊕q ψ2

for a ∈ Σ and q ∈ Q. The satisfiability of an Lspw formula is defined by clauses (>), (
∧

),
(¬), (a), (←ε), (→ε), and

(⊕) µ |= ψ1 ⊕p ψ2 if µ = µ1 ⊕p µ2 and µi |= ψi for i = 1, 2.

We write |=spw to denote the satisfiability relation of Lspw.

I Theorem 29. For µ, ν ∈ Disc(S), it holds that µ ≈spw ν iff µ ≈Lspw ν.

4 Concluding remarks

In this paper we studied various behavioral equivalences for transitions systems over distri-
butions in the presence of internal actions. An important contribution of our work is that we
have consider weak hyper-transitions that deal with schedulers of infinite length. This allows
to avoid the divergence-free condition for processes. Led by van Glabbeek’s framework for
the non-deterministic setting, we considered various ways to deal with τ -moves and provide
logical characterizations for distribution-based probabilistic bisimulations. Moreover, we
gave new characterization results following a uniform framework. The logics and axioms
derive from the step-based behaviour encounter in the transfer conditions of the underlying
bisimulation relation. The approach to prove correspondence results is the same for all notions
of bisimulations considered. Crucial is the technical treatment of decomposable relations
for weak combined and weak hyper-transitions (see Lemma 19). The uniform set-up allows
to extend the results presented here to other semantics of the probabilistic branching-time
spectrum without significantly more effort. Examples of this are η-bisimulation [1, 22] and
delay bisimulation [22, 20].

I Definition 30. Let R ⊆ Disc(S)×Disc(S) be a decomposable relation.
R is a probabilistic η-bisimulation if given µR ν, for every a ∈ Στ , µ

a−→ µ′ implies
1. a = τ and µ′ R ν, or
2. there are ν̃, ν̂ and ν′ such that ν ε=⇒c ν̃

a−→c ν̂
ε=⇒c ν

′ with µR ν̃ and µ′ R ν′.
R is a probabilistic delay bisimulation if given µRν, for every a ∈ Στ , µ

a−→ µ′ implies
1. a = τ and µ′ R ν, or
2. there are ν̃ and ν′ such that ν ε=⇒c ν̃

a−→c ν
′ with µ′ R ν′.

Probabilistic η-bisimilarity is defined as the union of all probabilistic η-bisimulations. Prob-
abilistic delay bisimilarity is defined as the union of all probabilistic delay bisimulations.

We claim that the logics that characterize probabilistic η-bisimilarity and delay bisimilarity
have the following syntax (using formulas ψ and ϕ for η and delay bisimulation, respectively).

ψ := > |
∧
i∈I ψi | ¬ψ | ψaεψ′ | ψτψ′ | [ψ]≥q ϕ := > |

∧
i∈I ϕi | ¬ϕ | aϕ | [ϕ]≥q

In the first logic, adding the modality ε in ψaεψ′ does not allow anymore to check the
branching of a process after the execution of a visible action. In the second logic, because the
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modalities ψaψ′ and ψτψ′ are removed, it is no longer possible to check the branching of a
process before the execution of a visible action. We also remark that the problem presented
in Figure 5 for probabilistic weak bisimulation is also present for these two new semantics.
Then, one may also consider variants of the semantics with sloppy probabilities.

A decomposable relation R ⊆ Disc(S)×Disc(S) straightforwardly induces a relation S
over states just by putting S = { (s, t) | δ(s)R δ(t) }. For distributions µ and ν with µRν
we can define a weight function w for µ and ν with respect to S using the decompositions
of µ and ν given by Lemma 10. Then the lifting of S to distributions agrees with R. On
the other hand, we expect that the approach based on preserving transitions used in [9] to
give a state-based characterization of weak bisimulation with sloppy probabilities can be
generalized to any weak decomposable relation. We have not studied this so far.

The probabilistic linear-time branching-time spectrum contains many more equivalences
besides the ones discussed above. In [20] different types of combined transitions have been
defined, each of which may potentially yield a new variant of a particular weak semantics.
Alternatively, one can relax the condition over distributions, such as the variant of weak
bisimulation of [19], or the variants of abstract probability bisimulation of [4]. The study of
transition relations over distributions with internal actions can also be extended in other
directions. We have considered image-finite relations, but this condition could be dropped,
cf. [12]. Another interesting direction of future work considers relations over distributions
with internal actions for uncountable state spaces, both regarding states and labels, as studied
in [11]. Finally, it would be interesting to study how other probabilistic logics (like PCTL∗ [19]
or variants of the probabilistic µ-calculus [15, 16]) behave in the distribution-based approach.
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