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Abstract
We demonstrate some lower bounds for parameterized problems via parameterized classes cor-
responding to the classical AC0. Among others, we derive such a lower bound for all fpt-
approximations of the parameterized clique problem and for a parameterized halting problem,
which recently turned out to link problems of computational complexity, descriptive complexity,
and proof theory. To show the first lower bound, we prove a strong AC0 version of the planted
clique conjecture: AC0-circuits asymptotically almost surely can not distinguish between a ran-
dom graph and this graph with a randomly planted clique of any size ≤ nξ (where 0 ≤ ξ < 1).
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1 Introduction

For k ∈ N the k-clique problem asks, given a graph G, whether it contains a clique of size k.
In [20], Rossman showed that the k-clique problem has no bounded-depth and unbounded-
fan-in circuits of size O(nk/4). Therefore, there doesn’t exist a family (Cn,k)n,k∈N of circuits
such that for some functions d, f : N→ N,

every Cn,k has depth at most d(k) and size bounded by f(k) · nk/4,
an n-vertex graph G has a k-clique if and only if Cn,k(G) = 1.

If the constraint on the depth of the circuits could be removed, then we would immediately
obtain that the parameterized clique problem

p-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G contain a clique of size k?

cannot be solved in time f(k) ·nO(1). Thus, p-Clique would not be fixed-parameter tractable
and hence, FPT 6= W[1] since p-Clique is in the parameterized class W[1]. Therefore,
Rossman’s result may be viewed as an AC0 version of FPT 6= W[1], an inequality conjectured
by most experts in the field (recall that the complexity class AC0 contains all problems that
can be computed by bounded-depth and unbounded fan-in circuits of polynomial size).
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In [11] Elberfeld et al. introduced the parameterized class para-AC0 as the AC0 analog
of the class FPT: A problem is in para-AC0 if it can be computed by dlogtime-uniform
AC0-circuits after an (arbitrarily complex) precomputation [12] on the parameter. Later
in [3] it was shown that para-AC0 contains the parameterized vertex cover problem, one of
the archetypal fixed-parameter tractable problems. For various other problems the authors
of [3] also proved their membership in para-AC0. Concerning nonmembership, a result in [6]
shows that the parameterized st-connectivity problem (p-stConn), i.e., the problem of
deciding whether there is a path of length at most k between vertices s and t in a graph G,
parameterized by k, is not in para-AC0. It is worth noting that st-connectivity is solvable in
polynomial time, and hence, p-stConn ∈ FPT.

The class AC0 is one of the best understood classical complexity classes. Already in [1, 13]
it was shown that Parity, the problem of deciding whether a binary string contains an
even number of 1’s, is not in AC0. Since Parity has a very low complexity, for many other
problems, including Vertex-Cover and Clique, the AC0-lower bound can be easily derived
by reductions from Parity. Similarly, as p-Clique /∈ para-AC0, it is not very hard to
see, using some appropriate weak parameterized reductions, that many other parameterized
problems, including the dominating set problem, are not in para-AC0.

It is well known that the class AC0 is intimately connected to first-order logic (FO). In
fact, the problems decidable by a dlogtime-uniform AC0-family of circuits are precisely those
definable in FO(<,+,×), that is, in first-order logic for ordered structures with built-in
predicates of addition and multiplication.

Now we can also study various parameterized classes based on fragments of FO(<,+,×).
Let us emphasize that this is not merely an academic exercise. Logic and parameterized
complexity are surprisingly intertwined with each other, which, among others, is witnessed
by various algorithmic meta-theorems (see e.g. [15]). Moreover, the problem whether there
is a logic for PTIME, a central problem of descriptive complexity, turned out (see [9] for a
thorough discussion) to be related to the complexity of the parameterized halting problem

p-Halt
Instance: n ∈ N in unary and a nondeterministic Turing machine (NTM) M.

Parameter: |M|, the size of the machine M.
Problem: Does M accept the empty input tape in at most n steps?

In fact, already in [19] it was shown that PTIME has a logic if p-Halt has an algorithm with
running time nf(|M|) for some function f . We get a family (Cn,k)n,k∈N of circuits such that

every Cn,k has depth 2 and size g(k) · n for some function g : N→ N,
an NTM M accepts the empty input tape in at most n steps if and only if Cn,|M|(n,M) = 1

by hard-wiring into Cn,k the NTMs of size k which halt on empty input in ≤ n steps.
Therefore, p-Halt belongs to a nonuniform version of para-AC0. The question arises
whether p-Halt ∈ para-AC0. A positive answer will yield that p-Halt ∈ FPT, which
is considered to be highly unlikely [9]. Hence, the goal is to show unconditionally that
p-Halt /∈ para-AC0. To the best of our knowledge, all existing AC0 lower bounds for natural
problems apply to both uniform and nonuniform circuits. Perhaps, in order to settle the
complexity of p-Halt with respect to para-AC0, a better understanding of the uniformity
conditions of circuits is really required.

1.1 Our work
In this paper, we investigate lower bounds in terms of para-AC0. We show that a number of
problems are not in this class or in some of its proper subclasses.
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Following the framework proposed in [12], we first compare two possible definitions of
para-AC0 depending on different ways to obtain parameterized classes from classical ones.
We already mentioned the first one, in which an arbitrary precomputation can be performed
on the parameter before a standard computation according to the corresponding classical
class. The second approach requires the parameterized problem to be in the classical class if
we restrict to instances where the parameter is far smaller than the size of the input. We
show that both views lead to the same para-AC0.

Then we derive a first set of lower bound results: We show that many natural W[1]-hard
problems are not in para-AC0 by arguing that the corresponding reductions from p-Clique
can be made in AC0. Among others, they include the weighted satisfiability problems for
classes of propositional formulas, which define the W-hierarchy.

We present a modeltheoretic tool, based on the color-coding method, which allows to
show membership in AC0 (similarly as done in [3] via circuits).

We generalize Rossman’s result mentioned at the beginning of this introduction and show
that any fpt-approximation of p-Clique is not in para-AC0. To get this result we prove that
AC0-circuits asymptotically almost surely can not distinguish between a random graph and
this graph with a randomly planted clique of any size ≤ nξ with 0 ≤ ξ < 1. Our first proof
of the last two results used the sophisticated machinery in [20]. Here we outline a proof,
suggested to us anonymously, which is directly built on Beame’s Clique Switching Lemma [5].
The fpt-approximation lower bound of p-Clique again can be transferred to the weighted
satisfiability problems, provided the propositional formulas are of odd depth.

Finally we turn to p-Halt. We are not able to show p-Halt /∈ para-AC0, however, using
the decidability of Presburger’s arithmetic we prove that p-Halt is not in para-FO(<,+),
not even in XFO(<,+). On the other hand, p-Halt ∈ nonuniform-para-FO(<,+).

Due to space limitations for some proofs we refer to the full version of the paper.

2 Preliminaries

By N we denote the set of nonnegative integers. For every n ∈ N we let [n] := {1, . . . , n}.
Let R be the set of real numbers, R+ := {r ∈ R | r > 0}, and R≥1 := {r ∈ R | r ≥ 1}. For any
set A and k ∈ N we define

(
A
k

)
as the class of k-element subsets of A, i.e., {S ⊆ A

∣∣ |S| = k}.
A (simple) graph G = (V (G), E(G)) (for short, G = (V,E)) is undirected and has no

loops and multiple edges. Here, V (G) is the vertex set and E(G) the edge set, respectively.
A subset C ⊆ V (G) is a clique of G if for every u, v ∈ C either u = v or {u, v} ∈ E(G). And
D ⊆ V (G) is a dominating set of G if for every v ∈ V (G) either v ∈ D or there exists u ∈ D
with {u, v} ∈ E(G).

2.1 Relational structures and first-order logic
A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or simply structure, consists of a finite set A called the universe,
and an interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . For example, a graph
G can be identified with a structure A(G) of vocabulary {E} with binary relation symbol E
such that A(G) := V (G) and EA(G) := {(u, v) | {u, v} ∈ E(G)}.

Formulas of first-order logic of vocabulary τ are built up from atomic formulas x = y

and Rx1 . . . xr, where x, y, x1, . . . , xr are variables and R ∈ τ is of arity r, using the boolean
connectives and existential and universal quantification. For example, for every k ≥ 1 let

cliquek := ∃x1 . . . ∃xk
( ∧

1≤i<j≤k
(¬xi = xj ∧ Exixj)

)
.

MFCS 2016



27:4 Some lower bounds in parameterized AC0

Then a graph G has a k-clique if and only if A(G) |= cliquek.

2.2 Parameterized complexity
We fix an alphabet Σ := {0, 1}. A parameterized problem (Q, κ) consists of a classical problem
Q ⊆ Σ∗ and a function κ : Σ∗ → N, the parameterization, computable in polynomial time.
As an example, we have already seen p-Clique in the Introduction. A similar problem is
the parameterized dominating set problem.

p-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Does G contain a dominating set of size k?

Both, p-Clique and p-Dominating-Set, play an important role in parameterized complex-
ity, mainly because they are complete for the classes W[1] and W[2], respectively. Recall
that the classes of the W-hierarchy are defined by taking the closure under fpt-reductions of
the following weighted satisfiability problem for suitable classes Γ of propositional formulas.

p-WSat(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Does γ have a satisfying assignment of Hamming weight k?

I Definition 1. Let (Q, κ) and (Q′, κ′) be two parameterized problems. An fpt-reduction
from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → Σ∗ such that:

For x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
For x ∈ Σ∗, R(x) is computable in time f(κ(x)) · |x|O(1) for some computable f : N→ N.
There is a computable function g : N→ N such that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

If there is an fpt-reduction from (Q, κ) to (Q′, κ′), then we write (Q, κ) ≤fpt (Q′, κ′).

For t ≥ 0 and d ≥ 1 we inductively define the classes Γt,d and ∆t,d of propositional
formulas: Γ0,d and ∆0,d are the class of conjunctions of at most d literals and the class of
disjunctions of at most d literals, respectively.

Γt+1,d :=
{∧
i∈I

δi | I finite and δi ∈ ∆t,d for all i ∈ I
}
,

∆t+1,d :=
{∨
i∈I

γi | I finite and γi ∈ Γt,d for all i ∈ I
}
.

I Definition 2. Let t ≥ 1. The class W[t] of the W-hierarchy is defined by

W[t] :=
⋃
d≥1

{
(Q, κ) | (Q, κ) ≤fpt p-WSat(Γt,d)

}
.

Circuit Complexity
A circuit C with n input gates is a directed acyclic graph in which every node (i.e., gate)
is labelled by

∧
,
∨
, ¬, or by one of the variables, or by 0, 1. All

∧
and

∨
gates may have

arbitrarily many inputs, i.e., C is of unbounded fan-in. The depth of C is the length of a
longest directed path in C. The size of C, denoted by |C|, is the number of gates in C. We
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often tacitly identify C with the function C : {0, 1}n → {0, 1}m it computes. Here, n is the
number of variables of C and m the number of its output gates.

AC0 is the class of problems that can be computed by circuits of bounded-depth and
polynomial size. More precisely:

I Definition 3. Let Q ⊆ Σ∗. We say that Q ∈ AC0 if there exists a family of boolean
circuits (Cn)n∈N such that:
(A1) The depth of every Cn is bounded by a fixed constant.
(A2) |Cn| = nO(1).
(A3) Let x ∈ Σ∗. Then (x ∈ Q if and only if C|x|(x) = 1). In particular, every Cn has n

input gates.
(A4) (Cn)n∈N is dlogtime-uniform, that is: there is a deterministic logtime Turing machine M

which on input 1n outputs the circuit Cn. More precisely, M recognizes the language{
(b, i, 1n)

∣∣ the ith bit of the binary encoding of Cn is b
}
(cf. Section 6 of [4]).

Often, (Cn)n∈N are called AC0-circuits.

We remark that most lower bounds in our paper still hold without the requirement (A4).
Therefore, (A4) is irrelevant for most of our results. However, with this uniformity condition,
AC0 characterizes precisely the class of problems that are definable in FO(<,+,×) [4].

3 The class para-AC0 and some natural examples

I Definition 4 ([3]). Let (Q, κ) be a parameterized problem. Then (Q, κ) is in para-AC0 if
there exists a family (Cn,k)n,k∈N of circuits such that:
(P1) The depth of every Cn,k is bounded by a fixed constant.
(P2) |Cn,k| ≤ f(k) · nO(1) for every n, k ∈ N, where f : N→ N is a computable function.
(P3) Let x ∈ Σ∗. Then (x ∈ Q if and only if C|x|,κ(x)(x) = 1).
(P4) There is a deterministic Turing machine that on input (1n, 1k) computes the circuit

Cn,k in time g(k) +O(logn), where g : N→ N is a computable function.

For future reference, we restate Rossman’s main result [20] as follows.

I Theorem 5. Let k ∈ N. Then there is no family (Cn)n∈N of circuits such that:
The depth of every Cn is bounded by a fixed constant.
The size of Cn is nO(k/4).
Let G be a graph and n := |V (G)|. Then G has a k-clique if and only if Cn(G) = 1.

In particular, p-Clique /∈ para-AC0.

I Remark. Recall that Chen et al. [7] showed that p-Clique has no algorithms of running
time f(k) · |n|o(k) unless the Exponential Time Hypothesis (ETH) fails. ETH is apparently
stronger than FPT 6= W[1]. Theorem 5 establishes an AC0 version of FPT 6= W[1].

Next, we give two equivalent characterizations of para-AC0 (for a proof see the full
version). The first one (i.e., between (i) and (ii)) was already mentioned in [11]. Note that
in [11] it is required that a problem in para-AC0 has an AC0 computable parameterization.

I Proposition 6. Let (Q, κ) be a parameterized problem. Consider the following state-
ments.
(i) (Q, κ) ∈ para-AC0.
(ii) There is a computable function pre : N→ Σ∗ (i.e., a precomputation) and AC0-circuits

(Cn)n∈N such that for x ∈ Σ∗,
x ∈ Q ⇐⇒ C|(x,pre(κ(x))|(x, pre(κ(x))) = 1.

MFCS 2016
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(iii) Q is decidable and there is a computable function, h : N→ N and AC0-circuits
(
Cn
)
n∈N

such that for every x ∈ Σ∗ with |x| ≥ h(κ(x)),
x ∈ Q ⇐⇒ C|x|(x) = 1.

Then (iii) ⇒ (i) ⇔ (ii). If, in addition, the parameterization κ can be computed by AC0-
circuits, then (i) ⇒ (iii), i.e., they are all equivalent.

In order to use Theorem 5 to show para-AC0 lower bounds for other problems, we
introduce a more restricted form of fpt-reductions.

IDefinition 7. Let (Q, κ) and (Q′, κ′) be two parameterized problems. A para-AC0-reduction
from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → Σ∗ such that:
(R1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(R2) There is a family (Cn,k)n,k∈N of circuits, whose depth is bounded by a fixed constant,

such that
1. for all x ∈ Σ∗, C|x|,κ(x)(x) outputs R(x);
2. every |Cn,k| ≤ f(k) · |x|O(1) for a computable function f : N→ N;
3. there is a deterministic Turing machine that on input (1n, 1k) computes the circuit

Cn,k in time g(k) +O(log n), where g : N→ N is a computable function.
(R3) There is a computable function h : N→ N such that κ′(R(x)) ≤ h(κ(x)) for all x ∈ Σ∗.
If there is a para-AC0-reduction from (Q, κ) to (Q′, κ′), then we write (Q, κ) ≤pac (Q′, κ′).

However, in general para-AC0 is not closed under para-AC0-reductions:

I Example 8. Define Q :=
{

(x, b)
∣∣ x ∈ {0, 1}∗ and b =

∑
i∈[|x|] xi mod 2

}
. Clearly, Q is

equivalent to the classical Parity problem of deciding whether there is an even number
of 1’s in x. Thus Q /∈ AC0. We define polynomial time computable parameterizations
of Q by κ1(x, b) := 0 and κ2(x, b) :=

∑
i∈[|x|] xi mod 2. Then it is easy to see that

(Q, κ1) /∈ para-AC0 and (Q, κ2) ∈ para-AC0; yet (Q, κ1) ≤pac (Q, κ2) by the identity
mapping R(x, b) = (x, b).

Note (Q, κ2) also serves as a counterexample for the direction from (i) to (iii) in Proposi-
tion 6.

Therefore we need a further requirement on pac-reductions. The previous example
suggests to require the AC0-computability of the parameterization (as done in [11]). In fact,
para-AC0 is closed under those reductions. However, we choose another requirement, which
is simpler to verify and is satisfied by almost all natural reductions.

I Definition 9. Let (Q, κ) and (Q′, κ′) be two parameterized problems. A weak para-AC0-
reduction from (Q, κ) to (Q′, κ′) is a para-AC0-reduction which satisfies:
(R3’) There is a computable function h : N→ N such that κ′(R(x)) = h(κ(x)) for all x ∈ Σ∗.
(Q, κ) ≤pwac (Q′, κ′) means that there is a weak para-AC0-reduction from (Q, κ) to (Q′, κ′).

It is straightforward to verify that para-AC0 is closed under weak para-AC0-reductions.

I Lemma 10. Let (Q, κ) and (Q′, κ′) be parameterized problems with (Q, κ) ≤pwac (Q′, κ′).
If (Q′, κ′) ∈ para-AC0, then (Q, κ) ∈ para-AC0, too.

It is well known that p-Clique is fpt-reducible to p-Dominating-Set. The reduction
presented in the full version of this paper is a weak para-AC0-reduction. Thus, by Theorem 5
and Lemma 10:

I Proposition 11. p-Dominating-Set /∈ para-AC0.
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I Corollary 12. Let t, d ≥ 1 with t+ d ≥ 3. Then p-WSat(Γt,d) /∈ para-AC0.

Proof. For every graph G = (V,E) we define a propositional formula

δG :=
∧

u, v ∈ V with
u 6= v and {u, v} /∈ E

¬Xu ∨ ¬Xv.

Clearly, for every k ∈ N,

G has a k-clique ⇐⇒ δG has a satisfying assignment of weight k (1)

This gives a weak para-AC0-reduction from p-Clique to p-WSat(Γ1,2), or p-WSat(Γt,1)
in case t ≥ 2. J

Similarly, one can show that basic problems like p-Subgraph-Isomorphism, p-Hom,
p-Emb, and p-MC(Σ1

1) are not in para-AC0 (we use the notations of [12]).
In view of Corollary 12 the reader might wonder about the status of p-WSat(Γ1,1).

Using the color-coding technique as in [3], one can show that the problem is in fact solvable
in para-AC0. We present a more logic-oriented technique for such proofs. It is based on
Proposition 13. It uses FO(<,+,×) instead of dlogtime-uniform AC0. We defer the proofs
of this proposition and of Proposition 14 to the full version of the paper.

For n ∈ N denote by <[n] the natural ordering on [n]. If A is any ordered structure, then
(A,<A) is isomorphic to ([|A|], <[|A|]) and the isomorphism is unique. For ternary relation
symbols + and × we consider the ternary relations +[n] and ×[n] on [n] that are the relations
underlying the addition and the multiplication of N restricted to [n]. That is,

+[n] := {(a, b, c) | a, b, c ∈ [n], c = a+ b}, ×[n] := {(a, b, c) | a, b, c ∈ [n], c = a · b}.

Let τ be a vocabulary which does not contain <,+,× and set τ<,+,× := τ ∪ {<,+,×}.
We say that a τ<,+,×-structure A has built-in addition and built-in multiplication if (A,<A
,+A,×A) is isomorphic to ([|A|], <[|A|],+[|A|],×[|A|]). Sometimes we write ϕ ∈ FO(<,+,×)
to emphasize that ϕ is a first-order formula in a vocabulary containing the symbols <,+,×.

I Proposition 13. There is a computable function which associates every k ∈ N with a
structure C(k) and every FO-formula ϕ(x) with an FO(<,+,×)-sentence χϕ such that for
every structure A,

[A : C(k)] |= χϕ (2)
⇐⇒ there are pairwise distinct x1, . . . , xk ∈ A with A |= ϕ(xi) for every i ∈ [k].

Here, [A : C(k)] := B =
(
A ∪̇ C(k), UB, <B,+B,×B

)
is defined as follows.

A ∪̇ C(k) is the disjoint union of A and C(k) (see the full version of the paper for the
definition of the disjoint union of structures).
UB := A and <B is an ordering of B and every element of A precedes all elements of
C(k). Furthermore <B extends the ordering ≺C(k) given in C(k).
B has built-in addition and multiplication.

I Proposition 14. p-WSat(Γ1,1) ∈ para-AC0.

MFCS 2016
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4 Inapproximability of p-Clique by para-AC0

We recall the notion of fpt approximation introduced in [10]. We present the definition for
p-Clique, the problem which interests us. It can easily be generalized to any maximization
problem.

If not stated otherwise, ρ : N → R≥1 is always a computable function such that the
mapping k 7→ k/ρ(k) is nondecreasing and unbounded.

I Definition 15. An algorithm A is a parameterized approximation for p-Clique with
approximation ratio ρ if for every graph G and k ∈ N with ω(G) ≥ k the algorithm A
computes a clique C of G such that |C| ≥ k/ρ(k). Here the clique number ω(G) is the size
of a maximum clique of G. If the running time of A is bounded by f(k) · |G|O(1) where
f : N→ N is computable, then A is an fpt approximation algorithm.

We tend to believe that p-Clique has no fpt approximation algorithm for any ratio ρ. Since
para-AC0 is a class of decision problems, in order to prove a lower bound it is more convenient
to deal with decision algorithms instead of algorithms computing a clique.

I Definition 16 ([10]). A decision algorithm A is a parameterized cost approximation for
p-Clique with approximation ratio ρ if for every graph G and k ∈ N,

if k ≤ ω(G)/ρ(ω(G)), then A accepts (G, k);
if k > ω(G), then A rejects (G, k).

In other words, A decides the promise problem:

p-Gapρ-Clique
Instance: A graph G and k ∈ N such that either k ≤ ω(G)/ρ(ω(G)) or k > ω(G).

Parameter: k.
Problem: Is k ≤ ω(G)/ρ(ω(G))?

The intuition behind this definition: If G contains a clique far bigger than k, detecting a
k-clique might become easier. It is straightforward to verify that if p-Clique has no fpt cost
approximation of ratio ρ, then it has no fpt approximation of ratio ρ either [10].

I Theorem 17. p-Gapρ-Clique /∈ para-AC0.

Our original proof of this result was based on a generalization of the machinery developed
in [20], a generalization we first used to prove that AC0 circuits are not sensitive to planted
cliques of a reasonable size, see Theorem 21. The much simpler proof of Theorem 21 we
present here is based on Beame’s Clique Switching Lemma [5] (see Section 4.1) and was
suggested to us anonymously. In the full version of the paper we apply Theorem 21 to derive
Theorem 17.

First we prove a consequence of Theorem 17. For t ≥ 0, d ≥ 1 we denote by Γ−t,d the
subset of subformulas of Γt,d with only negative literals. Clearly, if γ ∈ Γ−t,d has a satisfying
assignment of Hamming weight k, then it has one of weight k′ for every k′ < k. Denote by
ω(γ) the maximum Hamming weight of assignments satisfying γ. Then p-Gapρ-Wsat(Γ−t,d)
can be defined similarly as p-Gapρ-Clique.

I Proposition 18. Let t, d ≥ 1 with t+ d ≥ 3. Then p-Gapρ-Wsat(Γ−t,d) /∈ para-AC0.

Proof. Consider the reduction from p-Clique to p-Gapρ-Wsat(Γt,d) in the proof of Corol-
lary 12. Clearly δG ∈ Γ−t,d and δG is independent of k. Thus, the equivalence (1) preserves
the approximation ratio. The result then follows immediately. J
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4.1 Beame’s Clique Switching Lemma
Let n ∈ N. We consider graphs with vertex set [n]. To represent functions on those graphs,
every potential edge e ∈

([n]
2
)
is encoded by a boolean variable Xe. We set

Xn :=
{
Xe

∣∣∣ e ∈ ([n]
2

)}
.

In particular, Xe = 1 means that e is present in the given graph, otherwise Xe = 0.
Sometimes, it is convenient to understand e as a natural number with e ∈

[(
n
2
)]
. Then, e is

the eth potential edge in an n-vertex graph, and Xe is the eth variable in Xn.
For every ` ∈ [n] and q ∈ R with 0 ≤ q ≤ 1 let µ ∈ C`,qn be a random restriction,

µ : Xn → {0, 1, ?} generated as follows:
Choose U ∈

([n]
`

)
uniformly at random and then set µ(Xe) := ? for every e ∈

(
U
2
)
.

For e /∈
(
U
2
)
we set µ(Xe) := 1 with probability q and µ(Xe) := 0 with probability 1− q.

Let F be a boolean function defined on the set of assignments from Xn to {0, 1} and
µ ∈ C`,qn . The function F�µ is defined on the set of assignments from µ−1(?) to {0, 1} by:
For S : µ−1(?) → {0, 1}, we set F �µ (S) := F (S ∪ µ), where S ∪ µ : Xn → {0, 1} is the
assignment:

(S ∪ µ)(Xe) := S(Xe), if Xe ∈ µ−1(?) and (S ∪ µ)(Xe) := µ(Xe), otherwise.

Recall that a rooted binary tree is a decision tree on some variable set X ⊆ Xn if every leaf is
labeled either 0 or 1, every internal node is labelled by a variable of X , and the edges between
an internal node and its two children are labelled 0 and 1. The vertex height of a path P
in T is the number of distinct vertices occurring in edges e such that the corresponding Xe

appears in P . The vertex height |T |v of T is the maximum vertex height of a path in T .
For any boolean function F as above, we set

DTdepthvertex(F ) = min{|T |v | T a decision tree computing F}.

The following lemma is the imbalanced version of [5, Lemma 3] mentioned in the first
paragraph of page 12 of that paper. The vertex length of a clause is the number of distinct
vertices in edges e with Xe appearing in this clause.

I Lemma 19 ([5]). Let n, r ∈ N and 0 ≤ q ≤ 1/2. Moreover, let F be a DNF-formula of
variable set Xn with conjunctive clauses of vertex length at most r. For s, ` ∈ N with ` := pn,
where s ≥ 0 and ` := pn with p ≤ 1/(r(2/q)(r+s)/2), we have

Pr
µ∈C`,q

n

[
DTdepthvertex

(
F�µ

)
> s
]
<

8
(
(2/q)(s+r−1)/2pr

)s
3 .

In the full version of the paper we apply Lemma 19 inductively on bounded-depth circuits
and show

I Lemma 20. Assume
k : N→ R+ with k(n) ≤ log2 n for all sufficiently large n and limn→∞ k(n) =∞,
S, d : N→ N with S(n) ≥ n.

Define q : N→ R+ and s : N→ N by

q(n) := n−1/k(n) and s(n) :=
⌊√

k(n)(logn S(n)d(n))
⌋
, (3)
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and `i : N→ N inductively by

`0(n) := n and `i+1(n) :=
⌊

`i(n)
n5s(n)/k(n)

⌋
. (4)

Then, `d(n)(n) = n
1−Θ

(
5d(n)
√

(logn S(n)d(n))/k(n)
)
and for every circuit C with variable set Xn,

size bounded by S(n), and depth bounded by d(n),

Pr
µ∈C

`d(n)(n),q(n)
n

[
C�µ is constant

]
= 1− o(1).

4.2 A strong AC0 version of the planted clique conjecture
In the standard planted clique problem, we are given a graph G whose edges are generated
by starting with a random graph with universe [n] and edge probability 1/2, then “planting”
(adding edges to make) a random clique on k vertices; the problem asks for efficient algorithms
finding such a clique of size k. The problem was addressed in [17, 18, 2], among many others.
It is conjectured that no such algorithm exists. Here, as a consequence of Lemma 20, we
prove a statement considerably stronger than the AC0 version of this conjecture.

Let us be more precise. The Erdős-Rényi probability space ER(n, p), where n ∈ N and
0 ≤ p ≤ 1, is obtained as follows. We start with the set [n] of vertices. Then we choose every
e ∈

([n]
2
)
as an edge of G with probability p, independently of the choices of other edges.

For G ∈ ER(n, 1/2) the expected size of a maximum clique is approximately 2 log n.
Therefore G almost surely has no clique of size, say, 4 log n. For any graph G with vertex
set [n] and any A ⊆ [n] we denote by G+ C(A) the graph obtained from G by adding edges
such that the subgraph induced on A is a clique. For n, c ∈ N with c ∈ [n] and p ∈ R with
0 ≤ p ≤ 1 we consider a second distribution ER(n, p, c): Pick a random graph G ∈ ER(n, p)
and a uniformly random subset A of [n] of size c and plant in G a clique on A, thus getting
the graph G+C(A). The notation (G,A) ∈ ER(n, p, c) should give the information that the
random graph was G and that the random subset of [n] of size c was A.

I Theorem 21. Let k : N→ R+ with limn→∞ k(n) =∞, and c : N→ N with c(n) ≤ nξ for
some 0 ≤ ξ < 1. Then for all AC0 circuits (Cn)n∈N,

lim
n→∞

Pr
(G,A)∈ER(n,n−1/k(n), c(n))

[
Cn(G) = Cn(G+ C(A))

]
= 1.

Proof. We assume that k(n) ≤ log2 n for all sufficiently large n. The general case can be
reduced to it by standard techniques from probability theory.

Let (Cn)n∈N be a family of circuits such that for some d̄, t ∈ N every Cn has depth at
most d̄ and size bounded by nt. In order to apply Lemma 20, we set for n ∈ N,

S(n) = nt and d(n) = d̄. (5)

By Lemma 20, it follows that (recall that q(n) = n−1/k(n))

Pr
µ∈C

`
d̄

(n),q(n)
n

[
Cn�µ is constant

]
= 1− o(1). (6)

Furthermore, `d̄(n) = n
1−Θ

(
5d(n)
√

(logn S(n)d(n))/k(n)
)

= n1−o(1); the first equality holds by
Lemma 20 and the second by (5). The key step consists of the following random process,
which generates (G,A) ∈ ER(n, n−1/k(n), c(n)) from µ ∈ C

`d̄(n),q(n)
n .
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(a) Let V (G) := [n].
(b) Add edges e ∈

([n]
2
)
with µ(e) = 1 to E(G).

(c) Recall that µ−1(?) =
(
U
2
)
, where U ∈

( [n]
`d̄(n)

)
was chosen uniformly at random. For every

e ∈
(
U
2
)
, add e to E(G) with probability q(n).

(d) Choose A ∈
(
U
c(n)
)
uniformly at random. Note that this is possible as |U | = `d̄(n) =

n1−o(1) > nξ ≥ c(n) for sufficiently large n.
By (b)–(d), G and G + C(A) contain the same edges from

([n]
2
)
\ µ−1(?). Thus, by (6),

Cn(G) = Cn(G + C(A)) with high probability. By (c) and (d), A can be viewed as being
chosen in

( [n]
c(n)
)
uniformly at random. J

5 The complexity of p-Halt

We already mentioned in the abstract of this article that the complexity of the parameterized
halting problem p-Halt is linked to open problems in computational complexity, descriptive
complexity, and proof theory [9]. For example, p-Halt ∈ XP is equivalent to the existence
of an almost optimal algorithm for the set of tautologies of propositional logic, or to the fact
that a certain logic, presented in [16], is a logic for PTIME. Both statements are conjectured
to be false. The origin of our interest in para-AC0 was our hope to get a lower bound on
the complexity of p-Halt in terms of para-AC0, that is, to show p-Halt /∈ para-AC0. But
also this problem remains open. We know that AC0 corresponds to FO(<,+,×), first-order
logic with an ordering relation and built-in addition and multiplication. In this section we
prove that p-Halt /∈ para-FO(<,+), even p-Halt /∈ XFO(<,+), hold unconditionally, to
our knowledge the best known lower bound for the complexity of p-Halt.

Recall that in the paragraph preceding Proposition 13 we defined the natural ordering
<[n] on [n] and the ternary relations +[n] and ×[n] of addition and multiplication, respectively,
on [n]. Now we address the definition of XFO(<,+,×). For this purpose we view inputs to
parameterized problems as structures.

Any string x ∈ Σ∗ with |x| = n can be identified with the {<,+,×,One}-structure
〈x〉<,+,× := ([n], <[n],+[n],×[n],One[n]). Here i ∈ [n] is in One[n], the interpretation of the
unary relation symbol One, if and only if the ith bit of x is a ‘1’. The structures 〈x〉<,+ and
〈x〉< are reducts of 〈x〉<,+,× over the vocabularies {<,+,One} and {<,One}, respectively.

I Definition 22. Let (Q, κ) be a parameterized problem. Then (Q, κ) ∈ XFO(<,+,×) if
there is a computable function that assigns to every k ∈ N a first-order sentence ϕk such
that for every instance x of (Q, κ) we have

(
x ∈ Q ⇐⇒ 〈x〉<,+,× |= ϕκ(x)

)
. Analogously,

the class XFO(<,+) is defined.

I Theorem 23. p-Halt /∈ XFO(<,+).

Proof. For a contradiction we assume that p-Halt ∈ XFO(<,+) and show that then the
halting problem for Turing machines would be decidable.

Assume that there is a computable function that assigns to every k ∈ N a first-order
sentence ϕk such that

(
(1n,M) ∈ p-Halt ⇐⇒ 〈(1n,M)〉<,+ |= ϕ|M|

)
for every instance

(1n,M). Fix M. There is a first-order interpretation I that for every n ∈ N defines an
isomorphic copy of 〈(1n,M)〉<,+ in ([n], <[n],+[n]): Let c(n) := |(1n,M)| be the length of the
string (1n,M). We define the interpretation stepwise. As M is fixed, it is easy to see that we
can define in ([n], <[n],+[n]) a subset S of c(n) elements of [n]s for suitable s, the universe
of the structure defined by the intended interpretation. We order S by the lexicographical
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order on s-tuples with respect to <[n]. Now it is easy to define, using +[n], the corresponding
built-in addition.

Then, from M we can compute ϕ|M| and ϕI|M| such that (1n,M)<,+ |= ϕ|M| if and only if
([n], <[n],+[n]) |= ϕI|M|, and thus,

(1n,M) ∈ p-Halt ⇐⇒
(
[n], <[n],+[n]) |= ϕI|M|. (7)

By the Ginsburg-Spanier [14] improvement of Presburger’s Theorem we know that for ϕI|M|
we may compute n0, p0 ∈ N such that for all n ≥ n0 we have

(
[n], <[n],+[n]) |= ϕIM if and

only if
(
[n+ p0], <[n+p0],+[n+p0]) |= ϕIM. By this equivalence and (7) we see that

M does not hold on empty input tape ⇐⇒
(
[n0], <[n0],+[n0]) |= ¬ϕIM.

We can decide the halting problem by checking whether
(
[n0], <[n0],+[n0]) |= ¬ϕIM. J

For the proof it was essential that the function assigning to every k ∈ N the FO(<,+)-
sentence ϕk is computable. The class obtained if we drop the requirement of computability
is called nonuniform-XFO(<,+). We will see that p-Halt ∈ nonuniform-XFO(<,+) by the
even stronger statement of part 1 of Proposition 24, a proposition we prove in the full version
of the paper.

We note in passing that by standard modeltheoretic techniques one can show that the
parameterized vertex cover problem, a fixed-parameter tractable problem, is not in the
subclass nonuniform-XFO(<) of nonuniform-XFO(<,+). Thus we get a lower bound for the
parameterized complexity of this problem.

We come back to our claim p-Halt ∈ nonuniform-XFO(<,+). We even show p-Halt ∈
nonuniform-para-FO(<,+). By definition, a parameterized probelm (Q, κ) belongs to
nonuniform-para-FO(<,+) (to para-FO(<,+)) if there are a sentence ϕ ∈ FO(<,+) and a
(computable) function pre : N→ Σ∗ such that for all x,

x ∈ Q ⇐⇒ 〈(x, pre(κ(x))〉<,+ |= ϕ.

So, in the nonuniform version we allow noncomputable precomputations. Note that para-FO(<
,+) ⊆ XFO(<,+) as the role of the precomputation

(
in the definition of para-FO(<,+)

)
can be taken over by the sentences ϕk

(
in the definition of XFO(<,+)

)
.

I Proposition 24. 1. p-Halt ∈ nonuniform-para-FO(<,+).
2. p-Halt /∈ nonuniform-para-FO(<).

Let τ be a vocabulary which does not contain the reation symbols <,+,× and set
τ<,+,× := τ ∪ {<,+,×}. Recall that a τ<,+,×-structure A has built-in addition and built-in
multiplication if (A,<A,+A,×A) is isomorphic to ([|A|], <[|A|],+[|A|],×[|A|]).

A first-order sentence ϕ of vocabulary τ<,+,×, shortly ϕ ∈ FO(<,+,×), is invariant
(more precisely, <-invariant) if for every τ -structure A and any expansions (A, <1,+1,×1)
and (A, <2,+2,×2) of A to structures with built-in addition and multiplication, we have:

(A, <1,+1,×1) |= ϕ ⇐⇒ (A, <2,+2,×2) |= ϕ.

It should be clear what we mean if we say that a ϕ ∈ FO(<,+) or a ϕ ∈ FO(<) is invariant.
Along the lines of [8, Theorem 10] one can show:

I Proposition 25. Assume that p-Halt ∈ XFO(<,+,×). Let τ be any vocabulary not
containing the symbols <, +, and ×. Then there is a computable function F defined on the
class of FO(<,+,×)-sentences of vocabulary τ ∪ {<,+,×} such that
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for every ϕ ∈ FO(<,+,×) the sentence F (ϕ) is invariant;
if ϕ is an invariant FO(<,+,×)-sentence, then ϕ and F (ϕ) are equivalent.

Thus, {F (ϕ) | ϕ an invariant FO(<,+,×)} is the class of sentences of vocabulary τ of a
logic for the invariant fragment of FO(<,+,×).

In view of Theorem 23, we tried, without success, to show that for FO(<,+) there is no
computable function F with the properties mentioned in the preceding result for FO(<
,+,×), or even to show that there is no effective enumeration of the invariant sentences
of FO(<,+,×).
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