
Real Interactive Proofs for VPSPACE ∗

Martijn Baartse1 and Klaus Meer2

1 Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany

2 Computer Science Institute, BTU Cottbus-Senftenberg
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany
meer@b-tu.de

Abstract
We study interactive proofs in the framework of real number complexity as introduced by Blum,
Shub, and Smale. The ultimate goal is to give a Shamir like characterization of the real counter-
part IPR of classical IP. Whereas classically Shamir’s result implies IP = PSPACE = PAT = PAR,
in our framework a major difficulty arises from the fact that in contrast to Turing complexity
theory the real number classes PARR and PATR differ and space resources considered alone are
not meaningful. It is not obvious to see whether IPR is characterized by one of them - and if so
by which.

In recent work the present authors established an upper bound IPR ⊆ MA∃R, where MA∃R
is a complexity class satisfying PARR (MA∃R ⊆ PATR and conjectured to be different from
PATR. The goal of the present paper is to complement this result and to prove interesting lower
bounds for IPR. More precisely, we design interactive real protocols for a large class of functions
introduced by Koiran and Perifel and denoted by UniformVPSPACE0. As consequence, we show
PARR ⊆ IPR, which in particular implies co-NPR ⊆ IPR, and PResR ⊆ IPR, where Res denotes
certain multivariate Resultant polynomials.

Our proof techniques are guided by the question in how far Shamir’s classical proof can be
used as well in the real number setting. Towards this aim results by Koiran and Perifel on
UniformVPSPACE0 are extremely helpful.

1998 ACM Subject Classification F.1.1 Models of Computation; F 1.2 Modes of Computation;
F 1.3 Complexity Measures and Classes

Keywords and phrases Interactive Proofs, real number computation, Shamir’s theorem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.14

1 Introduction

Shamir’s famous theorem [18] characterizes the set IP of languages that can be verified by an
interactive protocol performed between a polynomial time probabilistic verifier and a prover
of unlimited power as being equal to PSPACE.

Around the same time of Shamir’s result Blum, Shub, and Smale [5] introduced a model
of computation over the real numbers (for short: BSS model in the sequel) and a complexity
theory for it. Since then, among other things one line of activity in research on the BSS
model was to figure out whether and by what reasons important classical results in Turing

∗ Both authors were partially supported under projects ME 1424/7-1 and ME 1424/7-2 by the Deutsche
Forschungsgemeinschaft DFG. We gratefully acknowledge the support.

© Martijn Baartse and Klaus Meer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Real Interactive Proofs for VPSPACE

complexity theory hold as well over other computational structures. Following this line, in
the present paper we are interested in deriving results about the real class IPR of languages
verifiable by an interactive protocol over the reals; for precise definitions see next section.

It is well known that over the reals complexity classes that are classically defined or
characterized using space resources turn out to have a more subtle relation among each other
than they do classically. Taken alone, space resources have no meaning at all; each decision
problem can be decided in linear space using an elementary coding trick [15]. As consequence,
for many equivalent characterizations especially of the class PSPACE in classical complexity
it is unclear what they should become in the real number framework. Recall that PAR,
PSPACE, PAT, and IP, denoting the classes of languages acceptable in parallel polynomial
time with exponentially many processors, in polynomial space, in polynomial alternating
time, and by interactive proofs, respectively, all are the same in Turing complexity; see the
textbook [1] for references and proofs. In contrast, over R it is known that the first three
classes mentioned above satisfy PARR (PSPACER ⊆ PATR, where PSPACER denotes the
class of real decision problems decidable by an algorithm using both exponential time and
polynomial space and the other two classes are defined by extending the classical definitions
straightforwardly, see [7, 4]. As a consequence, if a new class like IPR is studied which
classically gives yet another characterization of PSPACE via Shamir’s result, it is not obvious
where it can be located over the reals.

It is straightforward to see from the definitions that NPR ⊆ IPR. But already the inclusion
co-NPR ⊆ IPR is far from being obvious. Shamir’s proof designs an interactive protocol
for the PSPACE-complete Quantified Boolean Formulas problem QBF roughly as follows:
First, the problem is arithmetized in form of giving a short formula representing an algebraic
expression with exponentially many terms. This expression replaces Boolean quantifiers in
the original formula by sums and products, respectively, in which the quantified variables
run through all values in {0, 1}. The goal of the communication protocol is to evaluate
this expression interactively and randomly. Towards this aim, certain canonical univariate
polynomials are attached to this expression by eliminating one after the other the leftmost

operator
1∑

xi=0
or

1∏
xi=0

in it. This results in a polynomial in xi of polynomial degree whose

value in a random point is verified interactively. Though a real variant of QBF can easily be
defined and is complete for PATR, Shamir’s proof cannot be transformed. An arithmetization
of quantifiers ranging over the reals is not possible in the same way and immediately destroys
the hope of following the above approach; however, see [2] for some attempts dealing with
more restricted real decision problems.

In this paper we shall therefore follow a different approach. We still are guided by
the question how far Shamir’s technique might lead. Instead of dealing directly with an
arithmetization of computationally hard real number problems we rely on results in BSS
theory that figure out how much can be done using certain oracles in real computations.
Such results have been obtained by several authors; crucial for us is work by Koiran and
Perifel [12]. Therein a relatively huge class UniformVPSPACE0 of families of polynomial
functions is introduced and studied. It is a kind of uniform extension of Valiant’s class
VNP and covers families of polynomials with exponential degree and integer coefficients
computable in PSPACE. Crucial for us will be two observations: Firstly, verifying whether
the result fn(x) of a member fn of such a family on input x equals a given y can be done
within the resources of IPR. This result is obtained by showing that the discrete techniques
used by Shamir are sufficient to deal with UniformVPSPACE0. This is important in order to
circumvent the above mentioned problems. Secondly, as shown in [12] UniformVPSPACE0

is powerful enough to deal with interesting real number problems in classes like co-NPR

Martijn Baartse and Klaus Meer 14:3

and larger via polynomial time BSS algorithms that access an oracle for function families
in UniformVPSPACE0. That way, a real verifier can be designed that is able to deal with
problems even from class PARR. This leads to our main result stating PARR ⊆ IPR. Taking
into account previous results this will locate IPR much better within certain real number
classes than it has been possible so far. It shows as well that also over the reals IPR under
standard complexity theoretic assumptions is considerably larger than NPR.

1.1 Previous results
Before summarizing previous results let us recall the formal definition of algebraic circuits
and the class PARR. An algebraic circuit is a connected and directed acyclic graph having
nodes either of indegree 0 (input nodes) , 1 (test nodes) or 2 (computation nodes). Nodes of
indegree 2 are labelled with one of the operations +,−, •, nodes of indegree 1 are labelled
with ′ ≥ 0?′ A circuit has one output node of outdegree 0. The size of a circuit is the number
of its nodes, its depth is the length of the longest path from an input node to the output
node. A circuit with n input nodes computes in the straightforward manner a function from
Rn 7→ R; on input x ∈ Rn it propagates values along the labels of nodes in the obvious way.
The value of a test node is either 1 or 0, depending on whether its incoming value is ≥ 0 or
not. We only consider circuits with one output node which is a test node. Thus, our circuits
compute characteristic functions.

I Definition 1. A probem L ⊆ R∞ :=
⊔
i≥1 Ri belongs to class PARR iff there exists a

family {Cn}n∈N of algebraic circuits of depth polynomially bounded in n, a constant s ∈ N,
and a vector c ∈ Rs of real constants such that
(i) each Cn has n+ s input nodes;
(ii) for all n ∈ N the circuit Cn computes the characteristic function of L∩Rn, when the last

s input nodes are assigned the constant values from c, i.e., x ∈ L ∩ Rn ⇔ Cn(x, c) = 1;
(iii) the family {Cn}n is PSPACE uniform, i.e., there is a Turing machine working in

polynomial space which for each n ∈ N computes a descripition of Cn.
If no constant vector c is involved we obtain the constant free version of PARR denoted by
PAR0

R.

The above definition basically is from [6]. There are equivalent ones explicitly involving BSS
machines [4]. The vector c used above then plays the role of the machine constants of such a
BSS algorithm.

There has so far not been much work on interactive proofs in the BSS model. It started
with a paper by Ivanov and de Rougemont [11] where Shamir’s result was shown to hold
as well in the additive real number model. In this model, multiplications are not allowed.
The interaction was restricted to exchanging bits. One side result in this paper was that the
classes PARR and IPR are provably different 1.

In [2] the real class IPR was introduced. The above mentioned problem in IPR\PARR from
[11] is one that can be formalized by using polynomially alternating existential quantifications
over the reals and arbitrary Boolean quantifiers. It is therefore kind of natural trying to
relate IPR to another real complexity class MA∃R introduced and studied by Cucker and

1 in [11] IPR is not introduced formally, but it is shown that there exists a problem not in PARR but
within a class that easily is seen to be a subclass of IPR as defined below. However, this example does
NOT show PARR ⊆ IPR

MFCS 2016

14:4 Real Interactive Proofs for VPSPACE

Briquel in [8]. It is a class which does not make sense over finite alphabets and can be located
between PSPACER and PATR.

I Definition 2. ([8]) The class MA∃R consists of all decision problems A ⊆ R∞ for which
there exists a problem L ∈ PR together with a polynomial p such that an x ∈ R∞ belongs to
A if and only if the following formula holds:

∀Bz1∃Ry1 . . . ∀Bzp(|x|)∃Ryp(|x|)(x, y, z) ∈ L .

Here, y = (y1, . . . , yp(|x|)) and z = (z1, . . . , zp(|x|)). The subscripts B,R for the quantifiers
indicate whether a quantified variable ranges over B := {0, 1} or R, respectively.

Note that MA∃R contains the real polynomial hierarchy PHR, i.e., problems with a
fixed number of both existential and universal real quantifiers and even its supclasses
PARR (PSPACER, see [8]. It is not known to capture PATR; however, MA∃R reflects the
special structure of quantifiers mentioned above in relation to the problem that witnesses
PARR 6= IPR. In fact, we have

I Theorem 3. ([2]) IPR ⊆ MA∃R.

The main purpose of this paper is to complement this upper bound result by obtaining
non-trivial lower bounds for IPR as well. In Section 2 we introduce the main concepts and
define IPR and UniformVPSPACE0. Section 3 gives the result showing that all function
families in UniformVPSPACE0 can be evaluated interactively within IPR. The final section
applies this theorem to prove our main result, namely that some further real complexity
classes are included in IPR, PARR being the most interesting among them.

One remark concerning the contribution of this paper seems in charge. There is not one
big new technical result presented here. Different variants of Theorem 10 below have been
known before, see [16] and [14]; we present the proof again because of self-containment and
because reformulating the results in the cited papers in the way we need them would not
save much space. We believe the value of the present paper is the combination of several
pieces of previous works in a way that has not been done so far. This in particular refers
to using the class UniformVPSPACE0 in relation with interactive proofs and realizing that
discrete techniques are sufficient to deal with it in a certain sense. That way, we obtain
the strongest result on real interactive proofs so far. This result in our opinion definitely is
interesting by itself and means significant progress concerning the question how a seminal
result of classical complexity theory looks like in the real number framework.

2 Basic notions and results

In this section we recall the definitions of the two main complexity classes considered in this
paper, namely IPR as well as UniformVPSPACE0. The former was defined in [2], the latter
in [12].

2.1 The model for interaction and some variants
As underlying algorithm model we work in the Blum-Shub-Smale BSS model over R [4, 5].
Decision problems considered in this model are subsets of R∞ :=

⊔
i≥1 Ri. The model allows

to perform the basic arithmetic operations +,−, • and test instructions of the form ’is x ≥ 0?’
at unit cost; an x ∈ Ri has (algebraic) size i. Below, in addition we allow both the verifier
and the prover to exchange real numbers at unit cost.

Martijn Baartse and Klaus Meer 14:5

The prover P is a BSS machine unlimited in computational power. The verifier V is a
randomized polynomial time BSS algorithm. It is important to point out that randomization
(still) is discrete, i.e., V generates a sequence of random bits r = (r1, r2, . . .) during its
computation. The computation proceeds as follows:

Given an input x ∈ Rn of size |x| = n and (some of) the random bits of r the verifier V
computes a real V (x, r) =: w1 ∈ R and sends it to P ;
using x and w1 the prover P sends a real P (x,w1) =: p1 ∈ R back to V ;
let (w1, p1, w2, . . . , pi) denote the information sent forth and back after i rounds, then in
round i+ 1 V computes a real V (x, r, w1, p1, . . . , pi) =: wi+1 and sends it to P ; P then
computes a real P (x,w1, p1, . . . , pi, wi+1) =: pi+1 and sends it to V ;
the communication halts after a polynomial number m = poly(|x|) of rounds. Then V
computes its final result V (x, r, w1, . . . , pm−1) =: wm ∈ {0, 1} representing its decision to
reject or accept the input, respectively.

We denote the result of an interaction between V and P on input x and V using r as
random string by (P, V)(x, r). All computations by V have to be finished in (real) polynomial
time; thus, in particular the number of random bits generated as well as the number of
rounds is polynomially bounded in the size |x| of x.

I Definition 4. a) A language L ⊆ R∞ has an interactive protocol if there exists a
polynomial time randomized verifier V such that
(i) if x ∈ L there exists a prover P such that Pr

r∈{0,1}∗
{(P, V)(x, r) = 1} ≥ 2

3 and

(ii) if x 6∈ L, then for all provers P it holds Pr
r∈{0,1}∗

{(P, V)(x, r) = 1} ≤ 1
3 .

Above, the length of r can be polynomially bounded in the length of x.
b) The class IPR contains all L ⊆ R∞ which have an interactive protocol.

In the above definitions private coins are used, i.e., we do not allow the prover to
know the outcome of V ’s random choices. One could change this requirement and let the
verifier only send the random bits; what the verifier computes out of it then could be as
well computed by the allmighty prover. Such protocols are called Arthur-Merlin protocols.
Another modification uses one-sided instead of two-sided error in the acceptance condition
for V . Then, for x ∈ L there must be a prover such that V accepts with probability 1. For
sake of completeness we show below that these modifications do not change the class IPR.
Both the result and its proof are the same as in the Turing model.

I Definition 5. The class ĨPR is defined similar to IPR, but with the following modifica-
tions:
(i) The verifier V uses public coins, i.e., it only sends the random bits r generated in each

round to P .
(ii) The verifier accepts with one-sided error: A language L is in ĨPR iff there is a verifier V

such that ∀x ∈ L there exists a prover P such that Pr
r∈{0,1}∗

{(P, V)(x) = 1} = 1. And

∀x 6∈ L ∀P it holds Pr
r∈{0,1}∗

{(P, V)(x) = 1} ≤ 1
3 .

I Proposition 6. IPR = ĨPR.

Proof. 2 The inclusion ĨPR ⊆ IPR being clear let L ∈ IPR and let V be a corresponding

2 The fact that public coins are as powerful as private ones was first shown in [10]. An easier proof that
also replaces two-sided by one-sided error was given by J. Kilian. We could not figure out whether the
proof was published, it is however refered to in [9]. For sake of completeness we follow this proof below.

MFCS 2016

14:6 Real Interactive Proofs for VPSPACE

verifier accepting L with private coins and two-sided error. Without loss of generality in each
communication round V generates one random bit. A new verifier Ṽ using public coins and
accepting L with one-sided error is obtained as follows. On input x Ṽ expects from a prover
to provide information about the communication between V and an optimal prover for it.
More precisely, define a protocol tree T coding the protocol between V and an optimal prover
on x as follows. An edge in T represents one communication round after a coin toss has been
made by V. Since one bit is generated in each round T is binary, the outgoing edges of each
node represent the communication for results 0 and 1, respectively. For m communication
rounds the probability that V accepts x is 1/2m times the number of accepting paths.

In its communication on x with a prover the new verifier Ṽ descends a path of T top down
as follows. Let r be the current node of T traversed, r1, r2 its left and right child, respectively.
Ṽ asks the prover for the numbers R,R1, R2 of accepting paths the communication between
an optimal prover and V would generate when starting in r, r1, and r2, respectively. If r is
the root and the number reported by the prover is < 2

3 · 2
m the verifier rejects right away.

For an arbitrary node r it checks whether R = R1 +R2 and rejects if the equation is violated.
Otherwise, Ṽ moves to ri with probability Ri

R for i = 1, 2. The protocol continues until a leaf
is reached. If the path traversed is accepting for the protocol followed by V , then Ṽ accepts,
otherwise it rejects.

Ṽ obviously uses public coins; its random decisions are known to the prover because it is
informed about the child of r that is picked by Ṽ . To see that Ṽ accepts L with one-sided
error first note that for x ∈ L an optimal prover will always give the correct numbers
R,R1, R2 and thus Ṽ ends with probability 1 in an accepting leaf because there must exist
such a leaf in T . Let us then assume x 6∈ L and let P be an arbitrary prover.

Claim: For each node r in T the following holds: if there are R accepting paths from r

on for an optimal prover and V, but the current prover P claims there are R′ > R accepting
paths, then Ṽ will realize an error with probability ≥ 1− R

R′ .

Proof of claim: By induction on the height h of r. Let h = 1 and let r have children r1, r2
being leaves. If R = 0, then no matter whether R′ = 1 or R′ = 2 both paths are rejecting and
Ṽ realizes it with probability 1 = 1− 0

R′ . If R = 1 then R′ = 2 and Ṽ chooses the rejecting
path with probability 1

2 = 1− 1
2 .

For arbitrary h let the correct number of accepting paths from r, r1, r2 on be R,R1, R2,
respectively. Let R′, R′1, R′2 denote the (larger) numbers claimed by P . According to the
induction hypothesis if the protocol starts in ri the verifier Ṽ realizes an error with probability
≥ (1− Ri

R′
i
), i = 1, 2. In node r it chooses the left child with probability R′1

R′ and the right one

with probability R′2
R′ . The error probability thus is (1− R1

R′1
) · R

′
1

R′ + (1− R2
R′2

) · R
′
2

R′ = 1− R
R′ .

Finally, each x 6∈ L is rejected by the original verifier V and any prover with probability
≥ 2

3 , i.e., at most 1
3 of all paths starting at the root of T are accepting. Ṽ either rejects directly

if the prover claims R < 2
3 · 2

m accepting paths or it rejects with probability ≥ 1− 1/3
2/3 = 1

2
by the claim. Running the protocol for Ṽ once more increases this probability to at least
3
4 >

2
3 as required. 2

2.2 UniformVPSPACE0

The following class of functions was introduced and studied by Koiran and Perifel in [12] and
kind of generalizes the famous Valiant class VNP. Informally, it consists of uniform families
of polynomials with integer coefficients which depend on polynomially many variables,
potentially an exponential degree and whose coefficients can be computed in PSPACE.
Though originally defined over arbitrary fields we restrict ourselves to the real numbers.

Martijn Baartse and Klaus Meer 14:7

I Definition 7. (see [12])
(a) A family {fn}n∈N of real polynomials belongs to UniformVPSPACE0 iff the following

conditions are satisfied: There exists a polynomial p such that
(i) each fn depends on u(n) variables, where u(n) is bounded from above by p(n);
(ii) the total degree of each fn is bounded by 2p(n);
(iii) the coefficients of each fn are integers which are bounded in their bitsize by 2p(n)−1;
(iv) the coefficient function a is PSPACE computable. More precisely, a gets as argu-

ments triples (n, α, i), where n ∈ N is given in unary, α = (α1, . . . , αu(n)) is a list of
binary numbers representing a monomial xα = xα1

1 ·x
α2
2 · . . . ·x

αu(n)
u(n) , and i is a binary

number. Then a(n, α, i) ∈ {0, 1} gives the i-th bit of the coefficient of monomial xα
in fn. In particular, the value a(n, α, 0) gives the sign of this monomial. 3

The functions fn thus have the following representation:

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

xα

 .
(b) A family {fn}n∈N of polynomials belongs to class UniformVPAR iff it can be computed

by a PSPACE-uniform family of arithmetic circuits of polynomial depth, compare
Definition 1. If the family is constant free we obtain class UniformVPAR0.

Again, the superscript ’0’ indicates that a class is defined without involving additional
real constants. It is relatively straightforward to see that both notions above characterize
the same set of families:

I Lemma 8. ([12]) It holds UniformVPSPACE0 = UniformVPAR0.

The result implies in particular that if a family of functions {fn} ∈ UniformVPAR is
defined by a family of circuits using a constant vector c ∈ Rs, then one obtains another
family of functions {gn} ∈ UniformVPSPACE0 such that for all x ∈ Ru(n) of suitable input
size we have gn(x, c) = fn(x). This will be needed below.

3 Lower bound for IPR

In this section we prove our main technical theorem. Basically it shows that function families
in UniformVPSPACE0 can be represented by certain formulas having a very particular
structure. The latter strongly resembles the structure of formulas arising via arithmetization
of discrete quantified boolean formulas as outlined in the introduction. Of course, the new
kind of formulas involve real variables. The special structure obtained allows to verify the
values of such functions in a way similar to Shamir’s original interactive proof for the QBF
problem. Using additional results about class UniformVPSPACE0 then makes it possible to
derive real interactive proofs for interesting real number problems, foremost for all problems
in PARR.

We start with the definition of these specially structured formulas.

I Definition 9. Let x1, x2, . . . be a countable set of variable symbols.
(a) A binary polynomial formula over the reals is a formula p which can be built in finitely

many steps according to the following rules:

3 Note that since a only attains values in {0, 1} it can be seen as decision problem and thus the PSPACE
requirement makes sense.

MFCS 2016

14:8 Real Interactive Proofs for VPSPACE

(i) p = 1 and p = xi for i = 1, 2, . . . are binary polynomial formulas ;
(ii) if p1, p2 are binary polynomial formulas, then so are p1 + p2, p1 − p2, p1 · p2;
(iii) if p is a binary polynomial formula depending freely on xi, then both

∑
xi∈{0,1}

p(. . . , xi, . . .)

and
∏

xi∈{0,1}
p(. . . , xi, . . .) are binary polynomial formulas (with xi bounded by sum-

mation and multiplication, respectively).
All formulas - and no others - that can be obtained in finitely many steps applying the
rules i) to iii) are binary polynomials formulas.

(b) The size of a binary polynomial formula is defined as the number of construction steps
used in a) to generate it.

(c) A binary polynomial formula p in the canonical way represents a real polynomial function.
It depends on the free variables, i.e., on those xi that have been introduced via rule i)
but have not been bound by a Boolean summation or multiplication applying rule iii).

The following theorem shows that families of functions in UniformVPSPACE0 are basically
the same as families of polynomials given via uniform families of binary polynomial formulas.
Similar statements in different variants are already in [16] and [14]. We present the proof for
sake of self-containment and because reformulating the results of those papers in the way we
need them would likely not save much space.

I Theorem 10. Let {fn}n be a family of polynomial functions. Then {fn}n belongs to class
UniformVPSPACE0 if and only if there exists a polynomial time Turing algorithm which on
input n ∈ N (in unary) computes a binary polynomial formula pn which represents fn. By
computing pn we mean that the algorithm computes a scheme how to generate pn according
to the steps defined above.

Proof. For the if-direction let {pn}n be a family of binary polynomial formulas which are
uniformly generated by a polynomial time Turing machine. Then it is easy to see that pn can
be computed by a PSPACE-uniform family of arithmetic circuits of polynomial depth. Since
the formulas only involve the constant 1 the circuits are constant-free as well. The summation
and multiplication operators in a formula can be simulated in parallel by the circuit, thus
the polynomially many construction steps for the formula result in a polynomial depth for
the circuit. It follows that the polynomial family {pn}n belongs to class UniformVPAR0.

Lemma 8 now implies the ’if’-direction.
For the only-if direction, let a family {fn}n ∈ UniformVPSPACE0 be given and consider

one of its members

fn(x1, . . . , xu(n)) =
∑
α

(−1)a(n,α,0)

2p(n)∑
i=1

2i−1a(n, α, i)

xα

 .
Without loss of generality we assume u = p. Our task is to show that the different parts in
this representation can be rewritten in form of binary polynomial formulas.

Step 1: Let us start with constructing binary polynomial formulas for the numbers
2i−1. To catch the necessary ideas we first give an unsuccessful approach: It is 2i−1 =

1∑
j1=0

1∑
j2=0

. . .
1∑

ji−1=0
1, but the length of this binary formula is i. Since parameter i in the above

sum for representing fn is running from 1 to 2p(n) the corresponding formula becomes too
long. Instead, consider the binary representation of i =: (i1, . . . , ip(n)). We define a binary
polynomial formula for G1(i1, . . . , ip(n)) := 2i−1. Its main building block is a formula for the

Martijn Baartse and Klaus Meer 14:9

characteristic function

F1(j1, . . . , jp(n), i1, . . . , ip(n)) =

1 if 0 6= (j1, . . . , jp(n)) < (i1, . . . , ip(n))

−1 if 0 = i

0 otherwise

,

where the ordering < is to be understood as ordering of the integers represented in binary
by the corresponding tuples. Once a binary polynomial formula for F1 is available one for
G1 is obtained via

G1(i1, . . . , ip(n)) =
1∏

j1=0
. . .

1∏
jp(n)=0

(
F1(j1, . . . , jp(n), i1, . . . , ip(n)) + 1

)
;

this follows from the definition of F1 since the above product contributes a factor 2 for each
0 6= j < i, a factor 0 if i = 0 and a factor 1 in the other cases.

Binary polynomial formulas for the cases i = 0 and j = 0 are easily obtained. The order
relation (j1, . . . , jp(n)) < (i1, . . . , ip(n)) can be expressed as

jp(n) < ip(n) ∨
{
jp(n) = ip(n) ∧ jp(n−1) < ip(n−1)

}
∨ . . .{

jp(n) = ip(n) ∧ . . . ∧ j2 = i2 ∧ j1 < i1
} .

A binary polynomial formula for the characteristic function y < z of comparing two
single input bits is given by z · (z − y); and a formula for the above Boolean combination is
obtained by combining two characteristic functions χ1, χ2 via χ1 · χ2 for conjunctions and
via χ1 + χ2 for disjunctions (note here that at most one clause becomes true). That way a
binary polynomial formula representing G1 is obtained. Its length clearly is polynomially
bounded in n.

Step 2: Next, a binary polynomial formula for the function

Gα(x1, . . . , xp(n)) := xα1
1 · x

α2
2 · . . . · x

αp(n)
p(n) = xα

for given α is derived as follows. First, consider a single factor, for example xα1
1 , and let the

binary representation of α1 be (α11, α12, . . . , α1p(n)). Now for p(n) variables t := (t1, . . . , tp(n))
consider the binary polynomial formula

χ(α1 = 0) + (1− χ(α1 = 0))·(
x1 ·

1∏
t1=0

. . .
1∏

tp(n)=0

(
F1(t1, . . . , tp(n), α11, . . . , α1p(n)) · (x1 − 1) + 1

))
.

Here, χ(α1 = 0) denotes a binary polynomial formula for the characteristic function of the
condition α1 = 0. A short moment of reflection now shows that for α1 = 0 the above formula
results in x0

1 = 1; if α1 > 0, then for each integer 0 < t < α1 a factor x1 is contributed
whereas for t = 0 and t ≥ α1 > 0 a factor 1 is obtained. Thus, the formula represents xα1

1 .

Since each monomial in fn has p(n) variables, the above construction can be repeated
p(n) many times to obtain

Gα(x1, . . . , xp(n)) =
p(n)∏
j=1

[
χ(αj = 0) +

(1− χ(αj = 0)) ·
(
xj

1∏
t1=0

. . .
1∏

tp(n)=0

(
F1(t1, . . . , tp(n), αj1, . . . , αjp(n)) · (xj − 1) + 1

))]
,

MFCS 2016

14:10 Real Interactive Proofs for VPSPACE

i.e., a binary polynomial formula for xα of polynomial length. Note that in the above formula
the first product results from applying a polynomial number of times construction step a),ii)
of Definition 9, whereas the subsequent products result from step iii).

Step 3: The representation of the coefficients a(n, α, i) as binary polynomial formulas
is based on PSPACE-completeness of the QBF problem, i.e., the question of deciding
whether a quantified Boolean formula is true [19]. By assumption, computing a(n, α, i)
can be done in PSPACE. Thus, for each n there exists a Boolean formula ψn(α, i) =
∃x1∀x2 . . . Qmxmφ(n, α, i) where the quantifiers range over {0, 1}, Qm ∈ {∃,∀}, φ is quantifier
free and a(n, α, i) = 1 iff ψn(α, i) is true. Moreover, ψn can be computed uniformly in
polynomial time in n. Next, arithmetize ψn in the folklore way (see, for example, [18]):
first, compute in polynomial time a polynomial q(x, α, i), x = (x1, . . . , xm), that gives the
truth value of the quantifier free formula φ(x, α, i), then replace quantifiers of the form

∃xjq(..., xj , ...) by 1 −
1∏

xj=0
(1 − q(..., xj , ...)) (this guarantees the result to stay in {0, 1})

and quantifiers of form ∀xjq(..., xj , ...) by
1∏

xj=0
q(..., xj , ...). This gives uniformly a binary

polynomial formula G2(n, α, i) computing a(n, α, i).
Step 4: A binary formula for the sign (−1)a(n,α,0) of a monomial xα is given as −2 ·

G2(n, α, 0) + 1.
Putting everything together, a binary polynomial formula representing fn(x1, . . . , xp(n))

results from two further exponential sums, both expressed in our scheme via polynomially
many applications of construction rule iii). Identifying as before i = (i1, . . . , ip(n)), αj =
(αj1, . . . , αjp(n)) and α = (α1, . . . , αp(n)) and recalling that G1(0) = 0 this binary polynomial
formula is

p(n)∑
j=1

1∑
αj1=0

...
1∑

αjp(n)=0

[
(−2G2(n, α, 0) + 1) ·

(
1∑

i1=0
...

1∑
ip(n)=0

G1(i) ·G2(n, α, i)
)
·

Gα(x1, . . . , xp(n))
]
. 2

The theorem now can easily be applied to prove, maybe a bit surprisingly, that the
classical technique by Shamir leads relatively far when designing interactive protocols also in
the real number framework. More precisely, we have

I Theorem 11. It holds UniformVPSPACE0 ⊆ IPR in the following sense: Let {fn}n be a
family in UniformVPSPACE0 such that fn depends on u(n) variables. Then there exists a
real interactive protocol for the language {(n, x, y) ∈ N× Ru(n) × R | fn(x) = y}.

Proof. The proof is an immediate application of Theorem 10 and the original proof of
IP=PSPACE in [18]. Given an instance (n, x, y) the verifier first computes in polynomial time
the binary polynomial formula obtained at the end of the proof of Theorem 10 representing
fn(x). Note that it involves real numbers resulting from the input values xj , has polynomial

length and contains a polynomial number of operators of the form
1∑
t=0

and
1∏
t=0

. This is the

decisive observation; it implies that the technique used in Shamir’s proof to verify interactively
an equation fn(x) = y can be applied in our setting as well without major modifications:
Once again, as briefly outlined in the introduction, the verification of fn(x) = y can be done
by eliminating one after the other the leftmost of the operators. The fact that we deal with
binary polynomial formulas of polynomial size guarantees that the univariate polynomials

Martijn Baartse and Klaus Meer 14:11

obtained with Shamir’s construction have polynomially bounded degree. Therefore, the
protocol runs in polynomial time.

2

4 Applications

In view of the difficulties described in the introduction when trying to design an interactive
proof for problems in PARR directly, an idea is to study oracle algorithms in the BSS model.
More precisely, algorithms that are of interest use as information from an oracle different
function evaluations. If f is a member of a family of functions such that for an argument
x and a value y the equality f(x) = y can be verified by an interactive protocol, then the
outcome of a polynomial time BSS oracle computation having access to an oracle for values
of f can be verified interactively as well; for each oracle query the verifier performs an
interactive proof with the prover asking the latter to provide proofs of the correct oracle
answers. Those are verified by the verifier. If it detects an error in any of the claimed oracle
answers it rejects.

In order to obtain an interactive proof for interesting real complexity classes we can
therefore consider such oracle computations. A typical classical example along this line is
the computation of the permanent polynomial. In [13] an interactive protocol for verifying
the value of a permanent of a 0-1-matrix was given (before Shamir’s result was known).
Together with Toda’s theorem that the polynomial hierarchy PH is included in P#P and the
#P -completeness of the permanent computation this implies the existence of an interactive
protocol for all problems in the polynomial hierarchy. The protocol for the permanent, as for
example described in [1], works as well for real matrices in the BSS model. This implies that
real problems that can be decided by a polynomial time BSS algorithm having access to an
oracle computing the permanent of real number matrices, i.e., all problems in class PPermR ,
belong to IPR. However, it is not known whether the permanent plays a similar role for real
counting problems as it does in the Turing model. This is an active field of research. Basu
and Zell [3] have given a real analogue of Toda’s theorem. Instead of the permanent in this
approach the computation of so-called Betti numbers of semi-algebraic sets plays a crucial
role. The latter express certain topological properties of semi-algebraic sets. But they seem
to be even more difficult to handle than permanent computations. And for the permanent
itself a real variant of Toda’s theorem is currently not known to hold.

In our context, Theorem 11 along the above lines has interesting consequences due to
the strong relation the class PARR has to UniformVPSPACE0. The main result of [12] is a
transfer result which roughly states that if families in UniformVPSPACE0 can be evaluated
efficiently, then there is a collapse of PARR to PR. On the way to prove this result the authors
show a result most interesting for us; it witnesses the strength of oracle algorithms that
query function evaluations of members of families in UniformVPSPACE0. We first state this
result more precisely, starting with the following definition.

I Definition 12 ([12]). A polynomial-time algorithm with UniformVPSPACE0-tests is a
family {fn(x1, . . . , xu(n))}n ∈ UniformVPSPACE0 together with a uniform family {Cn}n of
constant-free algebraic circuits of polynomial size. The circuits in addition to their usual
gates have special oracle gates of indegree u(n). Those gates on input x ∈ Ru(n) output 1 if
fn(x) ≤ 0 and 0 otherwise.

I Theorem 13 ([12]). For each A ∈ PAR0
R there is a polynomial-time algorithm with

UniformVPSPACE0-tests deciding A.

MFCS 2016

14:12 Real Interactive Proofs for VPSPACE

Given the remark following Lemma 8 the theorem holds analogously for all problems in
PARR. Together with Theorem 11 we can now prove our main result.

I Theorem 14. PARR (IPR

Proof. Let A ∈ PARR. Theorem 13 and the subsequent remark imply that there exists
a family {fn}n ∈ UniformVPSPACE0 such that membership in A can be decided by a
polynomial time BSS algorithm that has access to an oracle answering questions of the form:
is fn(x) ≤ 0 for certain arguments x computed during the algorithm. Now each time such an
oracle question is posed the verifier asks the prover for a y ≤ 0 (or y > 0, respectively, if the
answer should be fn(x) > 0). Then, it applies the algorithm behind the proof of Theorem 11
to verify the result and to continue with the correct oracle answer. If no error occurs the
given input is accepted to belong to A, otherwise it is rejected. Given the arguments at the
beginning of this section the statement follows. 2

Applying the same line of arguments and picking up the above discussion it also follows
that PResR ∈ IPR, where Res = {Resn}n denotes the family of resultant polynomials of n+ 1
homogeneous polynomials in n+ 1 variables. This follows from [12] because there it is shown
that Res ∈ UniformVPSPACE0.

Problem 1. How large is the class PUniformVPSPACE0

R ?

In this paper we have derived a first significant lower bound for the class IPR. Summarizing
the results already mentioned the current picture is PARR (IPR ⊆ MA∃R ⊆ PATR . There
are some further immediate questions resulting from our lower bound. Given Shamir’s
characterization of classical IP it follows that IP is closed under complementation. However,
without Shamir’s result there seems no obvious way to prove this. Thus, in the real number
setting we currently do not know whether the analogue statement holds.

Problem 2. Is it true that IPR = co-IPR?

Of course, we are still missing a characterization of IPR. The work in [8] gives rise to
conjecture MA∃R (PATR which would imply that IPR is neither characterized by PARR nor
by PATR. Comparing our results with the different discrete characterizations of IP there seems
to be only one more natural class left as a candidate, namely the class PSPACER of problems
being decidable by an algorithm using both exponential time and polynomially many registers.
Note that requiring both conditions at the same time makes the coding argument from [15] not
working. As mentioned above it is known that PARR (PSPACER ⊆ MA∃R ⊆ PATR. For
establishing PSPACER as a lower bound for IPR using the above techniques we should first get
a similar result to Theorem 11 for a class like UniformVPSPACE0 such that using this class in
oracle computations will cover PSPACER. We do not not know whether UniformVPSPACE0

itself or another similar class satisfies this. The upper bound MA∃R should then also be
replaced by PSPACER.

Problem 3. What is the relation between PSPACER and IPR?

References
1 S. Arora, B. Barak: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.

Martijn Baartse and Klaus Meer 14:13

2 M. Baartse, K. Meer: Some results on interactive proofs for real computations. Exten-
ded abstract in: Proc. 11th conference Computability in Europe CiE 2015, Bucharest, A.
Beckmann, V. Mitrana, M. Soskova (eds.), Springer LNCS 9136, 107–116, 2015.

3 S. Basu, T. Zell: Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s
theorem. Foundations of Computational Mathematics, 10(4), 429–454, 2010.

4 L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computation. Springer,
1998.

5 L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math.
Soc., vol. 21, 1–46, 1989.

6 O. Chapuis, P. Koiran: Saturation and Stability in the Theory of Computation over the
Reals. Ann. Pure Appl. Logic 99 (1-3), 1–49, 1999.

7 F. Cucker: On the complexity of quantifier elimination: The structural approach. The
Computer Journal, vol. 36 No. 5, 400–408, 1993.

8 F. Cucker, I. Briquel: A note on parallel and alternating time. Journal of Complexity, vol.
23, 594–602, 2007.

9 S. Goldwasser: Interactive Proof Systems. In: Computational Complexity Theory, J. Hart-
manis (ed.), Proc. of Symposia in Applied Mathematics, Vol. 38, 108–128, 1989.

10 S. Goldwasser, M. Sipser: Private coins versus public coins in interactive proof systems. In
Proc. of the 18th Symposium on Theory of Computing STOC, 59–68, 1986.

11 S. Ivanov, M. de Rougemont: Interactive Protocols on the reals. Computational Complexity
8, 330–345, 1999.

12 P. Koiran, S. Perifel: VPSPACE and a transfer theorem over the reals. Computational
Complexity 18 (4), 551–575, 2009.

13 C. Lund, L. Fortnow, H. Karloff, N. Nisan: Algebraic methods for interactive proof systems.
Journal of the ACM 39 (4), 859–868, 1992.

14 G. Malod: Succinct Algebraic Branching Programs Characterizing Non-Uniform Complex-
ity Classes. Extended abstract in: Proc. 18th International Symposium on Fundamentals of
Computation Theory FCT 2011, Oslo, Lecture Notes in Computer Science 6914, 205–216,
2011.

15 C. Michaux: Une remarque à propos des machines sur R introduites par Blum, Shub et
Smale. C.R. Acad. Sci. Paris, t. 309, série I, 435–437, 1989.

16 B. Poizat: Â la recherche de la définition de la complexité d’espace pour le calcul des
polynômes à la manière de Valiant. Journal of Symbolic Logic, 73:4, 1179–1201, 2008.

17 J. Renegar: On the computational Complexity and Geometry of the first-order Theory of
the Reals , I - III. Journal of Symbolic Computation, 13, 255–352, 1992.

18 A. Shamir: IP = PSPACE. Journal of the ACM, vol. 39(4), 869–877, 1992.
19 L.J. Stockmeyer, A.R. Meyer: Word problems requiring exponential time. In: Proceedings

STOC, ACM, 1–9, 1973.

MFCS 2016

	Introduction
	Previous results

	Basic notions and results
	The model for interaction and some variants
	Uniform VPSPACE0

	Lower bound for IP Reals
	Applications

