
The Parameterized Complexity of Fixing Number
and Vertex Individualization in Graphs∗

Vikraman Arvind1, Frank Fuhlbrück2, Johannes Köbler3,
Sebastian Kuhnert4, and Gaurav Rattan5

1 The Institute of Mathematical Sciences, Chennai, India
arvind@imsc.res.in

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
fuhlbfra@informatik.hu-berlin.de

3 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
koebler@informatik.hu-berlin.de

4 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
kuhnert@informatik.hu-berlin.de

5 The Institute of Mathematical Sciences, Chennai, India
grattan@imsc.res.in

Abstract
In this paper we study the complexity of the following problems:

1. Given a colored graph X = (V,E, c), compute a minimum cardinality set of vertices S ⊂ V

such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem
is computing a minimum base S for a permutation group G ≤ Sn given by generators, i.e.,
a minimum cardinality subset S ⊂ [n] such that no nontrivial permutation in G fixes all
elements of S. Our focus is mainly on the parameterized complexity of these problems. We
show that when k = |S| is treated as parameter, then both problems are MINI[1]-hard. For
the dual problems, where k = n− |S| is the parameter, we give FPT algorithms.

2. A notion closely related to fixing is called individualization. Individualization combined with
the Weisfeiler-Leman procedure is a fundamental technique in algorithms for Graph Isomor-
phism. Motivated by the power of individualization, in the present paper we explore the
complexity of individualization: what is the minimum number of vertices we need to individ-
ualize in a given graph such that color refinement “succeeds” on it. Here “succeeds” could
have different interpretations, and we consider the following: It could mean the individualized
graph becomes: (a) discrete, (b) amenable, (c) compact, or (d) refinable. In particular, we
study the parameterized versions of these problems where the parameter is the number of
vertices individualized. We show a dichotomy: For graphs with color classes of size at most 3
these problems can be solved in polynomial time, while starting from color class size 4 they
become W[P]-hard.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity – Gen-
eral

Keywords and phrases Parameterized complexity, graph automorphism, fixing number, base
size, individualization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.13

∗ This work was supported by the Alexander von Humboldt Foundation in its research group linkage
program. The third and fourth authors are supported by DFG grant KO 1053/7-2.

© Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and Gaurav Rattan;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 The Parameterized Complexity of Fixing Number and Vertex Individualization

1 Introduction

A permutation π on the vertex set V of a (vertex) colored graph X = (V,E, c) is an
automorphism if π preserves edges and colors. Uncolored graphs can be seen as the special
case where all vertices have the same color. The automorphisms of X form the group Aut(X),
which is a subgroup of the symmetric group Sym(V) of all permutations on V .

A fixing set for a colored graph X = (V,E, c) is a subset S of vertices such that there
is no nontrivial automorphism of X that fixes every vertex in S. The fixing number of X
is the cardinality of a smallest size fixing set of X. This notion was independently studied
in [10, 15, 16]. A nice survey on this and related topics is by Bailey and Cameron [8].

In this paper, one of the problems of interest is the computational complexity of computing
the fixing number of graphs:

I Problem 1.1. k-Rigid
Input: A colored graph X and an integer k

Parameter: k
Question: Is there a subset S of k vertices in V such that there are no nontrivial automor-

phisms of X that fix each vertex of S?

There is a closely related problem that has received some attention. Let G ≤ Sn be a
permutation group on [n]. A base of G is a subset S ⊂ [n] such that no nontrivial permutation
of G fixes each point in S, i.e., the pointwise stabilizer subgroup G[S] = {g ∈ G | ig = i ∀ i ∈
S} of G is the trivial subgroup {1}.

I Problem 1.2. k-Base-Size
Input: A generating set for a permutation group G on [n] and an integer k

Parameter: k
Question: Is there a subset S ⊂ [n] of size k such that no nontrivial permutation of G fixes

each point in S?

Note that a graph X is in k-Rigid if and only if Aut(X) is in k-Base-Size.
Computing a minimum cardinality base for G ≤ Sn given by generators is shown to

be NP-hard by Blaha [9]. The same paper also gives a polynomial-time log logn factor
approximation algorithm for the problem, i.e., the algorithm outputs a base of size bounded
by b(G) log logn, where b(G) denotes the optimal base size. We show that this approximation
factor cannot be improved unless P = NP; see Theorem 2.7.

In this paper our focus is on the parameterized complexity of these problems. Arvind
has shown that k-Base-Size is in FPT for transitive groups and groups with constant orbit
size [2], and raised the question whether this can be extended to more general permutation
groups. We show that both k-Rigid and k-Base-Size are MINI[1]-hard, even when the
automorphism group of the given graph X (resp., the given group G) is an elementary
2-group; see Section 2.

We also consider the dual problems (n − k)-Rigid and (n − k)-Base-Size, which ask
whether the given graph or group have a fixing set or base that consists of all but k vertices
or points and k is the parameter. We show that these problems are fixed parameter tractable.
More precisely, we give an kO(k2) + nO(1) time algorithm for (n − k)-Base-Size and an
kO(k2)nO(1) time algorithm for (n− k)-Rigid in Section 3.

Color refinement and individualization. A broader question that arises is in the context
of the Graph Isomorphism problem: Given two colored graphs X = (V,E, c) and X ′ =

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:3

(V ′, E′, c′) the problem is to decide if they are isomorphic, i.e., whether there is a bijection
π : V → V ′ such that for all x ∈ V , c′(xπ) = c(x) and for all x, y ∈ V , (x, y) ∈ E if and
only if (xπ, yπ) ∈ E′. Color refinement is a classical heuristic for Graph Isomorphism, and
in combination with other tools (group-theoretic/combinatorial) it has proven successful in
Graph Isomorphism algorithms (e.g. in the two most important papers in the area [7, 6]).
The basic color refinement procedure works as follows on a given colored graph X = (V,E, c).
Initially each vertex has the color given by c. The refinement step is to color each vertex
by the tuple of its own color followed by the colors of its neighbors (in color-sorted order).
The refinement procedure continues until the color classes become stable. If the multisets of
colors are different for two graphs X and X ′, we can conclude that they are not isomorphic.
Otherwise, more processing needs to be done to decide if the input graphs are isomorphic.
One important approach in this area is to combine individualization of vertices with color
refinement: Given a graph X = (V,E) and k vertices v1, v2, . . . , vk ∈ V , first these k vertices
are assigned distinct colors c1, c2, . . . , ck, respectively. Then, with this as initial coloring,
the color refinement procedure is carried out as before. Individualization is used both in
the algorithms with the best worst case complexity [7, 6] and in practical isomorphism
solvers [21]. Note that individualizing a vertex v results in fixing v, as every automorphism
must preserve the unique color of v.

In [5] we have examined several classes of colored graphs in connection with the color
refinement procedure. They form a hierarchy:

Discrete (Amenable (Compact (Refinable (1)

X ∈ Discrete if running color refinement on X results in singleton color classes.
X ∈ Amenable if for any X ′ that is non-isomorphic to X, color refinement on X and X ′
results in different stable colorings [5].
X ∈ Compact if every fractional automorphism of X is a convex combination of
automorphisms of X [25]. Here, automorphisms are viewed as permutation matrices that
commute with the adjacency matrix A of X, and fractional automorphisms are doubly
stochastic matrices that commute with A.
X ∈ Refinable if two vertices u and v of X receive the same color in the stable coloring
if and only if there is an automorphism of X that maps u to v [5].

For these graph classes, various efficient isomorphism and automorphism algorithms are
known. Motivated by the power of individualization in relation to color refinement, we
consider the following type of problems.

I Problem 1.3. k-C (where C is a class of colored graphs)
Input: A colored graph X = (V,E, c) and an integer k

Parameter: k
Question: Are there k vertices of X so that individualizing them results in a graph in C?

It turns out that for each class C in the hierarchy (1), the problem k-C is W[P]-hard, even
when the input graph has color class size at most 4. For color class size at most 3 however,
the problems become polynomial time solvable. For the class Discrete[`] of all colored
graphs where ` rounds of color refinement turn all color classes into singletons, we show that
k-Discrete[`] is W[2]-hard. These results are in Section 4.

Additionally, we give an FPT algorithm for the dual problem (n− k)-Discrete that asks
whether there is a way to individualize all but k vertices so that the input graph becomes
discrete; see Section 5.

MFCS 2016

13:4 The Parameterized Complexity of Fixing Number and Vertex Individualization

Color valence. A beautiful observation due to Zemlyachenko [27], that plays a crucial role
in [7], concerns the color valence of a graph. Given a colored graph X = (V,E, c), the color
degree degC(v) of a vertex v in a color class C = {v ∈ V | c(v) = c0} is the number of
neighbors of v in C. The color co-degree of v in C is co-degC(v) = |C| − degC(v). The color
valence of X is defined as maxv,C min{degC(v), co-degC(v)}. Zemlyachenko has shown [27]
that in any n-vertex graph X = (V,E) we can individualize O(n/d) vertices so that the
vertex colored graph obtained after color refinement has color valence at most d. This gives
rise to the following natural algorithmic problem:

I Problem 1.4. k-Color-Valence
Input: A colored graph X = (V,E, c) and two numbers k and d

Parameter: k
Question: Is there a set of k vertices such that when these are individualized, the graph

obtained after color refinement has color valence bounded by d?

We show that this problem is W[P]-complete; see Corollary 4.4.

2 The number of fixed vertices as parameter

In this section we show that the parameterized problems k-Rigid and k-Base-Size are both
MINI[1]-hard. The class MINI[1] contains all parameterized problems that are FPT-reducible
to Mini-3SAT. Both were defined in [12, 14].

I Problem 2.1 ([12, 14]). Mini-3SAT
Input: A formula F in 3-CNF of size bounded by k logn and the number n in unary

Parameter: k
Question: Is there a boolean assignment to the variables that satisfies the formula F?

It turns out that MINI[1] is contained in the class W[1] [14] and has a variety of complete
problems in it. Moreover, it has been linked to the exponential time hypothesis.

I Lemma 2.2 ([12, 14]). If MINI[1] = FPT then there is a 2o(n) time algorithm for 3SAT.

I Theorem 2.3. The problem k-Base-Size is MINI[1]-hard, even for elementary 2-groups.

Proof. It is easy to see that Mini-3SAT in which each variable occurs at most 3 times
is also MINI[1]-complete, by modification of a standard NP-completeness proof. This only
increases the size by a constant factor. We will give an FPT many-one reduction from this
variant of Mini-3SAT to k-Base-Size. Let F = C1 ∧ C2 ∧ · · · ∧ Cm, and n in unary, be a
Mini-3SAT instance with variable occurrences bounded by 3. Since the size of F is bounded
by k logn, we have m ≤ k logn. Let V denote the set of distinct variables in F . We also have
|V | ≤ k logn. We partition V as V =

⊔k
i=1 Vi, where |Vi| ≤ logn for 1 ≤ i ≤ k. For each i,

the set Ti = {0, 1}Vi consisting of all truth assignments to variables in Vi has size |Ti| ≤ n.
Define the universe U = {1, 2, . . . ,m,m+ 1, . . . ,m+ k}. For each truth assignment a ∈ Ti
we define the subset Si,a ⊂ U consisting of m+ i along with all j such that a satisfies Cj , i.e.,

Si,a = {m+ i} ∪ {j | Cj contains a literal that is true under a}.

Clearly, since each variable occurs at most 3 times in F and since |a| = |Vi| ≤ logn, it follows
that |Si,a| ≤ 1 + 3 logn. The following claim is straightforward.

I Claim 2.4. The collection of sets {Si,a | 1 ≤ i ≤ k, a ∈ Ti} with universe U has a set cover
of size k if and only if F is satisfiable.

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:5

We will now transform this special set cover instance into an instance of k-Base-Size. The
group we shall consider is Fm+k

2 , i.e., the product ofm+k copies of the group on {0, 1} defined
by addition modulo 2. Treating each set Si,a as a subset of the coordinates 1, 2, . . . ,m+ k,
we can associate a copy of F|Si,a|

2 with it. Consider the set Ω =
⊔
i,a F

|Si,a|
2 . Note that

|Ω| =
∑
i,a 2|Si,a| ≤ nk. The group Fm+k

2 acts faithfully on Ω as follows. Given an element
u ∈ Fm+k

2 and a point v ∈ F|Si,a|
2 , let ui,a denote the projection of u to the coordinates in Si,a.

Then u maps v to v ⊕ ui,a. Thus, Fm+k
2 is a permutation group acting on Ω given by the

standard basis of m+ k unit vectors as generating set. The following straightforward claim
completes the reduction.

I Claim 2.5. The group Fm+k
2 acting on Ω, as defined above, has a base of size k if and

only if the set cover instance (U, {Si,a | 1 ≤ i ≤ k, a ∈ Ti}) has a set cover of size k.

To see the claim, observe that V ⊆ Ω is a base if and only if the sets Si,a with V ∩F|Si,a|
2 6= ∅

form a set cover for U . Indeed, a point p ∈ U is covered by these sets if and only if all
u ∈ Fm+k

2 with up = 1 move an element of V . J

I Theorem 2.6. The problem k-Rigid is MINI[1]-hard.

Proof. It suffices to encode the k-Base-Size instance constructed in the proof of Theorem 2.3
as a k-Rigid instance (X, k) with the following properties. The graph X has |Ω|+ 2(m+ k)
vertices and at most |Ω|(1 + 3 logn) edges. Further, the above k-Base-Size instance has a
base of size k if and only if the graph X has a fixing set of size k.

We explain the construction of X. Let l = m+ k. The vertex set of X is Ω ∪ I1 ∪ · · · ∪ Il
where each set Ij = {a0

j , a
1
j} is a distinct color class of size 2. The edge set of X is defined as

follows. Let v = (b1, . . . , bp) ∈ F|Si,a|
2 be a vertex in Ω and let Si,a = {i1, i2, . . . , ip} be the

set of coordinates occurring in v. Then we connect v to the vertices abq

iq
, for each q = 1, . . . , p.

This finishes the construction of X.
We claim a one-to-one correspondence between the permutation group Fm+k

2 acting on Ω
and Aut(X). Indeed, any vector v = (b1, . . . , bl) ∈ Fm+k

2 can be associated with a unique
automorphism σ of X as follows. The automorphism σ flips the color class Ij if and only if
bj = 1. For a vertex u ∈ Ω, define σ(u) = v(u) using the action of Fm+k

2 on Ω. It is easy to
check that σ respects the adjacencies inside X. Note that the action of an automorphism
of X is determined by its action on I1, . . . , Il, so this is a one-to-one correspondence.

Consequently, a set J ⊂ Ω is a base for the original k-Base-Size instance if and only if
J is a fixing set for the graph X. We observe that we can always avoid fixing a vertex u inside
I1 ∪ · · · ∪ Il by instead fixing some neighbor of u ∈ Ω. Therefore, the original k-Base-Size
instance has a base of size k if and only if the graph X has a fixing set of size k. J

We end this section with some consequences of our hardness proofs on the approximability
of the minimum base size of a group. There is a log logn factor approximation algorithm due
to Blaha [9] for the minimum base problem (in fact, a careful analysis yields a ln lnn-factor
approximation). In this connection we have an interesting observation about the set cover
problem instances that arise in Theorem 2.3 (Claim 2.4). A more general version is the
B-Set-Cover problem: we are given a collection of subsets of size at most B of some
universe U and the problem is to find a minimum size set cover. Trevisan [26] has shown
that there is no approximation algorithm for this problem with approximation factor smaller
than lnB −O(ln lnB) unless P = NP. This leads us to the following theorem.

I Theorem 2.7. The approximation factor of ln lnn in Blaha’s approximation algorithm
for minimum base cannot be improved, even for elementary abelian 2-groups, unless P = NP.

MFCS 2016

13:6 The Parameterized Complexity of Fixing Number and Vertex Individualization

Proof. The reduction from (logn)-Set-Cover to the minimum base problem that is ex-
plained in the proof of Theorem 2.3 preserves the optimal solution size. Furthermore, it is
easy to see that this reduction carries over to all (logn)-Set-Cover instances. Combined
with Trevisan’s result, this completes the proof. J

3 The number of non-fixed vertices as parameter

In this section we show that the problems (n− k)-Rigid and (n− k)-Base-Size are in FPT
with running time kO(k2)nO(1). We will show this first for (n− k)-Base-Size. We need some
permutation group theory.

Let G ≤ Sym(Ω) be a permutation group acting on a set Ω. The support of a permutation
g ∈ G is supp(g) = {i ∈ Ω | ig 6= i}. The orbit of a point i ∈ Ω is the set iG = {ig | g ∈ G}.
The group G is transitive if it has a single orbit in Ω. Let G ≤ Sym(Ω) be transitive. A
subset ∆ ⊆ Ω is a block if for every g ∈ G its image ∆g = {ig | i ∈ ∆} is either ∆g = ∆ or
∆g ∩∆ = ∅. Clearly, Ω and singleton sets are blocks for any G. All other blocks are called
nontrivial. A transitive group G is primitive if it has no nontrivial blocks.

There are polynomial-time algorithms that take as input a generating set for some
G ≤ Sym(Ω) and compute its orbits and maximal nontrivial blocks [19]. We can test if G is
primitive in polynomial time. If G is transitive on Ω we can compute a maximal nontrivial
block ∆1. It is easy to see that ∆g

1 is also a block for each g ∈ G. This yields a partition
of Ω into blocks (which are said to constitute a block system for G): Ω = ∆1 t∆2 t . . .t∆`.
The group G acts transitively on the blocks {∆1,∆2, . . . ,∆`}. Furthermore, since these are
maximal blocks, the group action is primitive. The following classic result is useful for our
algorithm.

I Lemma 3.1. [13, Lemma 3.3D] Suppose G ≤ Sn is primitive and G is neither An nor Sn
itself. If there is an element g ∈ G such that |supp(g)| ≤ k, then |Ω| ≤ (k − 1)2k.

Here, An = Alt([n]) denotes the subgroup of Sn that consists of those permutations that can
be written as the product of an even number of transpositions.

I Theorem 3.2. There is a kO(k2) +nO(1) time algorithm for the (n− k)-Base-Size problem.

Proof. Let G ≤ Sn be the input group given by a generating set and let k be the parameter.
We call a set S ⊆ [n] a co-base for G, if [n] \ S is a base for G. The algorithm finds a
co-base S of size k if it exists. During its execution, the algorithm may decide to fix some
points. Since in this case the actual group G is replaced by the pointwise stabilizer subgroup,
there is no need to store these points. The algorithm proceeds as follows.

1. Let O1, O2, . . . , O` be the orbits of the group G. If ` ≥ k then the set S obtained by
picking one point from each of the orbits O1, O2, . . . , Ok is a co-base for G.

2. Suppose ` < k, and there is an orbit Oi of size more than k2k on which G’s action is not
primitive. In this case compute a maximal block system of G in Oi, Oi = ∆i1 t . . .t∆iri

,
and deal with the following subcases:

a. If ri > k, then the set S obtained by picking one point from each block ∆i1, . . . ,∆ik is
a co-base for G.

b. If ri ≤ k, then each block ∆ij is of size at least k2k−1 which is strictly more than k.
Thus any n − k sized subset of [n] intersects each block ∆ij and hence the support
of any permutation that moves the blocks. Let H be the subgroup of G that setwise
stabilizes all blocks ∆ij . The subgroup H can be computed from G in polynomial time

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:7

using the Schreier-Sims algorithm [19]. Replace G by H and go to Step 1. This step is
invoked at most k times since each invocation increases the number of orbits.

3. Suppose ` < k, and there is an orbit Oi of size more than k2k such that G is primitive
on Oi, but different from Sym(Oi) and Alt(Oi). Then any k points of Oi form a co-base
for G (by Lemma 3.1).

4. Suppose there is an orbit Oi of size more than k2k such that G restricted to Oi is
either Sym(Oi) or Alt(Oi). Then fix the first |Oi| − k elements of Oi (the choice of the
subset of points fixed does not matter as both Sym(Oi) and Alt(Oi) are t-transitive for
t ≤ |Oi| − 2). Replace G by the subgroup H that fixes the first |Oi| − k elements of Oi
and go to Step 1. This step is invoked at most once.

5. This step is only reached if all orbits are of size at most k2k, implying that the entire
domain size is at most k2k+1. Hence, the algorithm can find a co-base S of size k by
brute-force search in kO(k2) time if it exists.

The brute-force computation (done in the last step), when the search space is bounded
by k2k+1, costs kO(k2). The rest of the computation uses the standard group-theoretic
algorithms [19] whose running time is polynomially bounded by n. Therefore, the overall
running time of the algorithm is bounded by kO(k2) + k nO(1). As k ≤ n, the theorem follows.

We note that the algorithm is in fact a kernelization algorithm. It computes in nO(1) time
a kernel of size k2k+1 (where size refers to the size of the domain on which the group acts). J

We now show the main result of this section, i.e., that (n− k)-Rigid is in FPT.

I Theorem 3.3. There is a kO(k2)nO(1) time algorithm for the (n− k)-Rigid problem.

Proof. Let X = (V,E, c) be a colored n-vertex graph and k as parameter be an instance of
(n− k)-Rigid. If we can use a subroutine for the Graph Isomorphism problem then we can
compute a generating set for the automorphism group Aut(X) of X with polynomially many
calls to this subroutine [20]. With this generating set as input we can then run the algorithm
of Theorem 3.2 to compute an (n− k) size fixing set for X, if it exists, in time kO(k2)nO(1).

However, it turns out that we can avoid using the Graph Isomorphism subroutine and
still solve the problem in kO(k2)nO(1) time with the following observations:

1. We note that any set of size n− k will intersect the support of any element σ ∈ Aut(X)
if |supp(σ)| > k. Thus, we only need to collect all elements of support bounded by k.

2. An automorphism σ ∈ Aut(X) is defined to be a minimal support automorphism of X
if there is no nontrivial automorphism ϕ ∈ Aut(X) such that supp(ϕ) (supp(σ). For
any nontrivial automorphism π ∈ Aut(X) such that |supp(π)| ≤ k, there is a minimal
support automorphism ϕ ∈ Aut(X) such that |supp(ϕ)| ≤ k and supp(ϕ) ⊆ supp(π).

3. We observe that Schweitzer’s algorithm in [24] can be used to compute, in kO(k)nO(1) time,
the set M of all minimal support automorphisms σ ∈ Aut(X) such that |supp(σ)| ≤ k.

4. Let G′ be the subgroup of Aut(X) generated by M . It follows from the above discussion
that an n− k sized subset of V is a base for Aut(X) (and thus a fixing set for X) if and
only if it is a base for G′. We can apply the algorithm of Theorem 3.2 to compute such a
base if it exists. J

4 The number of individualized vertices as parameter

In this section, we show that the problem k-C is W[P]-hard for all classes C of the color
refinement hierarchy (1). To this end, we give a reduction from Weighted Monotone
Circuit Satisfiability, which is known to be W[P]-complete [1].

MFCS 2016

13:8 The Parameterized Complexity of Fixing Number and Vertex Individualization

I Problem 4.1. Weighted Monotone Circuit Satisfiability
Input: A monotone boolean circuit C on n inputs and an integer k

Parameter: k
Question: Is there an assignment x ∈ {0, 1}n of Hamming weight k so that C(x) = 1?

I Theorem 4.2. For all classes C of the color refinement hierarchy (1), k-C is W[P]-hard,
even for graphs of color class size at most 4.

Proof. We will give a parameter-preserving reduction that maps positive instances of
Weighted Monotone Circuit Satisfiability to positive instances of k-Discrete,
while negative instances are mapped to negative instances of k-Refinable. A similar
reduction was used to show that the classes from the color refinement hierarchy (1) are all
P-hard [5], which in turn builds on ideas of Grohe [17].

Let 〈C, k〉 be the given instance of Weighted Monotone Circuit Satisfiability,
and let n be the number of inputs of the circuit C. We define a graph XC . For each gate gk
of C (including the input gates), XC contains a vertex pair Pk = {vk, v′k}, which forms a
color class. If a pair corresponds to an input gate, we call it an input pair. The intention is
that setting an input gi to 1 corresponds to individualizing the vertex vi; we will add gadgets
to XC so that after color refinement it holds also for each non-input gate gk that gk = 1 if
and only if vk and v′k have different colors.

To achieve this, we use the gadgets given in Figure 1. The basic building block is the
gadget CFI(Pi, Pj , Pk) introduced by Cai, Fürer, and Immerman [11]. It connects the three
pairs Pi, Pj , and Pk using four additional vertices as depicted. These four vertices form
a color class F ; each instance of the gadget uses its own copy of F . This gadget has the
property that every automorphism flips either none or exactly two of the pairs Pi, Pj and Pk;
thus the CFI-gadget implements the xor function in the sense that any automorphism
must flip Pk if and only if it flips exactly one of Pi and Pj . In our case, however, the
CFI-gadget implements the and function: If both Pi and Pj are distinguished (either by
direct individualization or in previous rounds of color refinement), the vertices of the inner
color class F and consequently Pk will be distinguished in two rounds of color refinement.
Conversely, if at most one of the pairs Pi and Pj is distinguished, then the color class F
is split into two color classes of size 2 and color refinement stops at this point, leaving the
other two pairs non-distinguished. For each and gate gk = gi ∧ gj in C, we add the gadget
CFI(Pi, Pj , Pk) to XC .

The second gadget we use is IMP(Pi, Pk). It consists of the gadget CFI(F ′, F ′′, Pk),
where F ′ and F ′′ are vertex pairs that form color classes of size two, and perfect matchings
that connect these pairs to Pi; see Fig. 1. Again, each instance of this gadget gets its own
copy of the color classes F , F ′ and F ′′. There is an automorphism of IMP(Pi, Pk) that flips
the vertices in Pi, but none that flips the vertices in Pk. In the color refinement setting, this
gadget implements the implication function: When Pi is distinguished, this will propagate
to both F ′ and F ′′, and consequently also to F and Pk. Conversely, distinguishing Pk will
only split F into two color classes of size 2 before color refinement stops. For each or gate
gk = gi ∨ gj in C, we add the gadgets IMP(Pi, Pk) and IMP(Pj , Pk) to XC . For the output
gate g` of C, we add a second vertex pair Q and the gadget IMP(P`, Q) to XC .

Our above analysis of the gadgets ensures that the following invariant holds when running
color refinement on XC after individualizing a subset of its input pairs: For each implication
gadget IMP(Pi, Pk) in XC the pair Pk can only be distinguished if Pi is distinguished, and
for each and gadget CFI(Pi, Pj , Pk) the pair Pk can only be distinguished if both Pi and Pj
are distinguished. This implies the following.

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:9

Pi Pj

Pk

F

CFI(Pi, Pj , Pk)

vi v
′
i vj v

′
j

vk v
′
k

Pi

F ′ F ′′

F

Pk

IMP(Pi, Pk)
vi v

′
i

vk v
′
k

Figure 1 Gadgets used in the reduction of Theorem 4.2.

I Claim 4.3. Running color refinement on XC after individualizing some input pairs will
distinguish exactly those pairs Pk for which the gate gk evaluates to 1 under the assignment
that sets exactly those input gates to 1 whose corresponding pairs were initially individualized.

Let X ′C be the graph that is obtained from XC by adding implication gadgets from Q to
each pair Pi that corresponds to an input gate gi. If C has a satisfying assignment x ∈ {0, 1}n
of weight k, individualizing the vertices vi with xi = 1 and subsequently running color
refinement will assign distinct colors to all vertices of XC . Indeed, the gadgets of XC ensure
that the pair Q becomes distinguished, the additional gadgets in X ′C propagate this to all
input pairs Pi, and the gates of XC in turn make sure that all remaining color classes become
distinguished. Conversely, if C does not have a weight k satisfying assignment, there is no
way to individualize k input vertices such that color refinement distinguishes Q. However,
we already noted that there is no automorphism that transposes the output pair of the
IMP(P`, Q) gadget, so no way of individualizing k input vertices makes X ′C refinable.

In X ′C , it always suffices to individualize one vertex from Q to make it discrete. To drop
the assumption that each of the k individualized vertices must correspond to an input gate,
we construct a graph X ′′C . It consists of n input pairs Pi = {vi, v′i} and n copies of XC ,
to which we will refer to as X(1)

C , . . . , X
(n)
C . We also add the gadgets IMP(Pi, P (j)

i) for all
i, j ∈ {1, . . . , n} and the gadgets IMP(Q(i), Pi) for all i ∈ {1, . . . , n}. It is not hard to see
that 〈C, k〉 7→ 〈X ′′C , k〉 is the desired reduction; see the full version [3] for its correctness. J

As a corollary to this proof we can derive the W[P]-hardness of the k-Color-Valence
problem.

I Corollary 4.4. k-Color-Valence is W[P]-hard.

Proof. In the previous reduction we mapped instances of Weighted Monotone Circuit
Satisfiability to instances of k-Discrete such that the given boolean circuit C has a
satisfying assignment of weight k if and only if the resulting graph X ′′C can be made discrete
by individualizing k vertices. Note that individualizing k vertices in X ′′C and subsequently
running color refinement results in singleton color classes if and only if it brings the color
valence down to 0. Thus, k-Color-Valence is W[P]-hard even for d = 0. J

4.1 Graphs of color class size at most 3
We call a vertex-colored graph b-bounded if all its color classes are of size at most b. In this
section, we show that for any 3-bounded graph, we can compute in polynomial time the
minimum number of vertices that have to be individualized so that the resulting colored

MFCS 2016

13:10 The Parameterized Complexity of Fixing Number and Vertex Individualization

graph becomes rigid, discrete, amenable, compact, or refinable. We will use the following
two lemmas; their proofs can be found in the full version of this article [3].

I Lemma 4.5. Let X be a 3-bounded graph whose color classes are stable. If Aut(X) restricted
to any color class Ci of X is the full symmetric group on Ci, then X is compact.

I Lemma 4.6. Let X be a connected 3-bounded graph whose color classes are stable. If some
σ ∈ Aut(X) is cyclic (i.e., σ acts cyclically on each color class Ci), then X is compact.

I Theorem 4.7. For any 3-bounded graph we can compute in polynomial time a vertex set S
of minimum size such that individualizing (or fixing) all the vertices in S makes the graph
discrete, amenable, compact, refinable (or rigid).

Proof. Let X = (V,E, c) be the given 3-bounded graph. We first compute the color partition
{C1, . . . , Cm} of the stable coloring of X. We can assume that each induced graph Xi = X[Ci]
is empty and each induced bipartite graph Xij = X[Ci, Cj] has at most |Ci| · |Cj |/2 edges,
as otherwise we can complement these subgraphs. Since the partition {C1, . . . , Cm} is stable
and the color classes have size at most 3, it follows that there are no edges between color
classes having different sizes, and that between color classes Ci and Cj of the same size we
either have a perfect matching or no edges at all.

We say that two color classes Ci and Cj are linked if there is a path between some vertex
u ∈ Ci and some vertex v ∈ Cj . Since this is an equivalence relation, it partitions the color
classes into equivalence classes. This induces a partition V = V1 t · · · t Vl of the vertices
such that each set Vi is a union of linked color classes having the same size and there are no
edges between Vi and Vj whenever i 6= j. Hence, it suffices to solve the problem separately
for each of the induced subgraphs X[Vi].

If all color classes of X[Vi] are of size 2, then Aut(X[Vi]) contains exactly one non-trivial
automorphism flipping all the color classes, implying that X[Vi] is compact (see Lemma 4.5).
In this case it suffices to individualize (or fix) an arbitrary vertex to make the graph discrete
(or rigid). Further, X[Vi] is already amenable if and only if it is a forest [4].

If all color classes of X[Vi] are of size 3, then we compute its connected components as
well as Aut(X[Vi]) (which is even possible in logspace [18, 23]) and consider the following
subcases.

If X[Vi] has 6 automorphisms (or, equivalently, consists of three connected components),
then X[Vi] is compact (see Lemma 4.5) and it suffices to individualize two vertices inside
an arbitrary color class to make the graph discrete. On the other hand, if we individualize
only one vertex, then the graph does not become discrete (not even rigid). Further,
X[Vi] is amenable if and only if it is a forest [4]. If X[Vi] contains cycles then we need to
individualize 2 vertices to make the graph amenable.
If X[Vi] has 3 automorphisms, then it follows that these automorphisms act cyclically on
each color class and X[Vi] is connected as well as compact (see Lemma 4.6). In this case
it suffices to individualize an arbitrary vertex to make the graph discrete.
If X[Vi] has 2 automorphisms (or, equivalently, consists of two connected components),
then X[Vi] is not refinable and it suffices to individualize an arbitrary vertex in the larger
of the two components to make the graph discrete.
Finally, if X[Vi] is rigid, then it follows that X[Vi] is connected and not refinable. In this
case it suffices to individualize an arbitrary vertex to make the graph discrete. J

We can actually strengthen Theorem 4.7 and show that these problems are in logspace. Since
the case analysis in the proof can be done in logspace, it suffices to show that the stable

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:11

color partition of a 3-bounded graph can be computed in logspace. The proof of this result
is given in the full version of this article [3].

4.2 Bounded number of refinement steps
In this section, we consider (colored) graphs in which all color classes become singletons after
` rounds of color refinement. We denote the class of these graphs by Discrete[`].

I Theorem 4.8. The k-Discrete[`] problem is W[2]-hard for any constant ` ≥ 1, even for
uncolored and for 2-bounded graphs.

Proof. We prove this by providing a reduction from the W[2]-complete problem Dominating
Set that is inspired by [22, Theorem 7]. The input to this problem is a graph X = (V,E)
and a number k (treated as parameter) and the question is whether there exists a dominating
set D ⊆ V of size k in X, meaning that each vertex v ∈ V \D is adjacent to at least one
vertex in D. We transform the Dominating Set instance (X, k) with X = (V,E) into an
equivalent instance (X ′, k) where X = (V ′, E′, c′) for k-Discrete[`]. For every v ∈ V , the
colored graph X ′ contains the vertices v1, . . . , v` and v′1, . . . , v′` as well as the edges {vi, vi+1}
and {v′i, v′i+1} for all i in {1, . . . , `− 1}. Furthermore, we add the edges {v1, u1} and {v′1, u′1}
for every edge {u, v} of X. We choose c′ in such a way that for all v ∈ V the set {v1, v

′
1} is

a color class and c′(vi) = c′(v′i) for all i ∈ {2, . . . , `}.
Let D be a dominating set in X. Individualizing all the vertices v1 in X ′ with v ∈ D will

distinguish the pairs {v1, v
′
1} for all v ∈ V after one round of color refinement. Thus after at

most `− 1 more rounds all color classes of X ′ will be singletons.
For the converse direction, let I be a set of vertices in X ′, such that individualizing them

and running ` rounds of color refinement produces singleton color classes. If I contains
vertices vi or v′i for i > 1, we can replace them by v1 and this still puts X ′ in Discrete[`].
It is easy to see that this replacement does not decrease the number of color classes that
become singletons after ` rounds. Hence, we can assume that I only contains vertices of the
form v1, implying that the set D = {v ∈ V | v1 ∈ I} is a dominating set of size at most |I|
in X. To see this it suffices to observe that the vertices u` and u′` can only be distinguished
by color refinement within ` rounds if either u1 is in I or u has a neighbor v for which v1 is
in I, implying that either u or some neighbor of u is in D.

For uncolored graphs we simulate the colors with degrees using a global gadget which
in turn is distinguished from the rest by four special vertices of which two need to be
individualized in any case. This increases the parameter from k to k + 2. See the full
version [3] for details. J

5 The number of non-individualized vertices as parameter

In this section, we show that the problem (n− k)-Discrete is in FPT. In fact, we show a
linear kernel and consequently, a kO(k)nO(1) time algorithm for this problem.

I Theorem 5.1. There exists a kernel of size 2k for (n−k)-Discrete that can be computed
in polynomial time.

We begin with some notation. Given a colored graph X = (V,E, c), let S be a subset of
vertices. Let C[S] denote the stable partition obtained by individualizing every vertex in V \S
and performing color refinement. We denote the number of color classes in C[S] by |C[S]|.
We can partition the vertices u in V \S by their neighborhood N(u)∩S inside the set S. We
denote this partition of V \ S by N [S] and the number of sets in it by |N [S]|. We call two

MFCS 2016

13:12 The Parameterized Complexity of Fixing Number and Vertex Individualization

vertices u and v twins if N(u)\{v} = N(v)\{u}. This relation is an equivalence relation and
the corresponding equivalence classes are called twin classes. A graph is said to be twin-free
if each twin class is of size 1.

The following lemma shows that sufficiently large twin-free graphs are yes instances of
the (n− k)-Discrete problem.

I Lemma 5.2. Let X = (V,E) be a twin-free graph. Suppose |V | > 2k. There exists a
set S ⊂ V of size k such that C[S] is discrete. Moreover, we can compute such a set in
(nk)O(1) time.

Proof. We describe the algorithm for computing S. Initially, we pick an arbitrary subset
T0 ⊂ V of size k and run color refinement to compute the stable partition C[T0]. Let
C1, . . . , Cl be the color classes in C[T0] that are contained in T0. If C[T0] is already discrete,
we output the set S = T0 and stop.

Otherwise we rename the color classes such that |C1| ≥ |Ci| for i = 2, . . . , l. Then we
compute the partition N [S] = {B1, . . . , Bm} of V \ S, where we assume that |B1| ≥ |Bi|
for i = 2, . . . ,m. If m ≥ k, then we form S by picking an arbitrary vertex from each of the
sets B1, . . . , Bk. To see that C[S] is discrete it suffices to observe that individualizing all the
vertices in V \ S causes the separation of the sets B1, . . . , Bm and individualizing all but at
most one vertex in each set Bi makes the graph discrete.

It remains to handle the case that m < k. We show that in this case it is possible to
compute in polynomial time a set T1 of size k such that |C[T1]| > |C[T0]|. By repeating
this procedure i ≤ k − 1 times, we end up with a set Ti for which C[Ti] is discrete. Let
u and v be two vertices inside the color-class C1. Since X is twin-free, there must be a
vertex a witnessing the fact that u and v are not twins. Since u and v have the same color,
a cannot be individualized, implying that a ∈ T0. Let Cj be the color class containing a.
Since C1 and Cj are stable color classes, there must exist a vertex b ∈ Cj such that {u, a}
and {v, b} are edges and {u, b} and {v, a} are non-edges. Clearly, individualizing a refines
the color class C1. Therefore, the set T ′ = T0−{a} has the desired property |C[T ′]| > |C[T0]|
but is of size k − 1.

Since |V | > 2k and m < k, it follows that |B1| ≥ 2. Let x and y be two vertices inside B1.
Since X is twin-free, there must be a vertex z witnessing the fact that x and y are not
twins. Since all vertices in T0 either have both vertices x and y as neighbors or none of them
(otherwise, x and y would have different neighborhoods inside T0, contradicting the fact that
x, y ∈ B1), it follows that z 6∈ T0. We claim that the set T1 = T ′ ∪ {z} yields the same stable
partition as T ′, i.e., C[T1] = C[T ′]. In fact, color refinement anyway assigns a unique color
to z, since it is the only non-individualized vertex that is adjacent to exactly one of the two
individualized vertices x and y. This completes the proof of the lemma. J

Proof of Theorem 5.1. We outline a simple kernelization algorithm for (n− k)-Discrete.
Let X be the given graph and let k be the given parameter. The algorithm first makes the
graph X twin-free by removing all but one vertex from each twin-class.

If the resulting graph X ′ has at most 2k vertices, it outputs the instance (X ′, k) as the
kernel. Since in each twin class of X, all but one vertices have to be individualized to make
the graph discrete, the two instances (X, k) and (X ′, k) are indeed equivalent with respect
to the (n− k)-Discrete problem.

If X ′ has more than 2k vertices, the algorithm computes in polynomial time a set S of
size k such that individualizing every vertex outside of S makes the graph X ′ discrete (see
Lemma 5.2). Clearly this set S is also a solution for X, so the kernelization algorithm can
output a trivial yes instance. J

V. Arvind, F. Fuhlbrück, J. Köbler, S. Kuhnert, and G. Rattan 13:13

Acknowledgements. We thank the anonymous referees for their helpful comments.

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter

tractability and completeness IV: On completeness for W[P] and PSPACE analogues. Annals
of Pure and Applied Logic, 73(3):235–276, 1993. doi:10.1016/0168-0072(94)00034-Z.

2 V. Arvind. The parameterized complexity of fixpoint free elements and bases in permuta-
tion groups. In Proceedings of 8th International Symposium on Parameterized and Exact
Computation (IPEC), pages 4–15. Springer, 2013. doi:10.1007/978-3-319-03898-8_2.

3 V. Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and Gaurav Rattan.
The parameterized complexity of fixing number and vertex individualization in graphs.
arXiv:1606.04383, 2016.

4 V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the power of color
refinement. In Proceedings of 20th International Symposium Fundamentals of Computation
Theory (FCT), pages 339–350. Springer, 2015. doi:10.1007/978-3-319-22177-9_26.

5 V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On Tinhofer’s linear
programming approach to isomorphism testing. In Proceedings of 40th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), pages 26–37. Springer,
2015. doi:10.1007/978-3-662-48054-0_3.

6 László Babai. Graph Isomorphism in quasipolynomial time. arXiv:1512-03547, 2015.
7 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of 15th

Annual ACM Symposium on Theory of Computing (STOC), pages 171–183, 1983. doi:
10.1145/800061.808746.

8 Robert F. Bailey and Peter J. Cameron. Base size, metric dimension and other invariants
of groups and graphs. Bulletin of the London Mathematical Society, 43(2):209–242, 2011.
doi:10.1112/blms/bdq096.

9 Kenneth D. Blaha. Minimum bases for permutation groups: The greedy approximation.
Journal of Algorithms, 13(2):297–306, 1992. doi:10.1016/0196-6774(92)90020-D.

10 Debra L. Boutin. Identifying graph automorphisms using determining sets. Electronic
Journal of Combinatorics, 13:R78, 2006. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v13i1r78.

11 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

12 Liming Cai and David Juedes. On the existence of subexponential parameterized algo-
rithms. Journal of Computer and System Sciences, 67(4):789–807, 2003. doi:10.1016/
S0022-0000(03)00074-6.

13 John D. Dixon and Brian Mortimer. Permutation groups. Springer, 1996. doi:10.1007/
978-1-4612-0731-3.

14 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto, and
Frances A. Rosamund. Cutting up is hard to do: The parameterised complexity of k-
cut and related problems. Electronic Notes in Theoretical Computer Science, 78:209–222,
2003. doi:10.1016/S1571-0661(04)81014-4.

15 David Erwin and Frank Harary. Destroying automorphisms by fixing nodes. Discrete
Mathematics, 306(24):3244–3252, 2006. doi:10.1016/j.disc.2006.06.004.

16 Gašper Fijavž and Bojan Mohar. Rigidity and separation indices of paley graphs. Discrete
Mathematics, 289(1-3):157–161, 2004. doi:10.1016/j.disc.2004.09.004.

17 Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. Com-
binatorica, 19(4):507–532, 1999. doi:10.1007/s004939970004.

MFCS 2016

http://dx.doi.org/10.1016/0168-0072(94)00034-Z
http://dx.doi.org/10.1007/978-3-319-03898-8_2
https://arxiv.org/abs/1606.04383
http://dx.doi.org/10.1007/978-3-319-22177-9_26
http://dx.doi.org/10.1007/978-3-662-48054-0_3
https://arxiv.org/abs/1512-03547
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1112/blms/bdq096
http://dx.doi.org/10.1016/0196-6774(92)90020-D
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r78
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r78
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1016/S0022-0000(03)00074-6
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1016/S1571-0661(04)81014-4
http://dx.doi.org/10.1016/j.disc.2006.06.004
http://dx.doi.org/10.1016/j.disc.2004.09.004
http://dx.doi.org/10.1007/s004939970004

13:14 The Parameterized Complexity of Fixing Number and Vertex Individualization

18 Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness results
for graph isomorphism. Journal of Computer and System Sciences, 66(3):549–566, 2003.
doi:10.1016/S0022-0000(03)00042-4.

19 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
Computation, pages 139–175. American Mathematical Society, 1993. URL: http://www.
cs.uoregon.edu/~luks/dimacs.pdf.

20 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Process-
ing Letters, 8(3):131–136, 1979. doi:10.1016/0020-0190(79)90004-8.

21 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

22 Joanna Raczek. Distance paired domination numbers of graphs. Discrete Mathematics,
308(12):2473–2483, 2008. doi:10.1016/j.disc.2007.05.018.

23 Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of 37th Annual
ACM Symposium on Theory of Computing (STOC), pages 376–385, 2005. doi:10.1145/
1060590.1060647.

24 Pascal Schweitzer. Isomorphism of (mis)labeled graphs. In Proceedings of 19th European
Symposium on Algorithms (ESA), pages 370–381, Berlin, 2011. Springer. doi:10.1007/
978-3-642-23719-5_32.

25 Gottfried Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2–3):253–
264, 1991. doi:10.1016/0166-218X(91)90049-3.

26 Luca Trevisan. Non-approximability results for optimization problems on bounded de-
gree instances. In Proceedings of 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 453–461. ACM, 2001. doi:10.1145/380752.380839.

27 Viktor N. Zemlyachenko, Nikolay M. Kornienko, and Regina I. Tyshkevich. Graph isomor-
phism problem. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta, 118:83–158, 1982. Russian. Translation to English: [28].

28 Viktor N. Zemlyachenko, Nikolay M. Kornienko, and Regina I. Tyshkevich. Graph iso-
morphism problem. Journal of Mathematical Sciences, 29(4):1426–1481, 1985. English
translation of [27]. doi:10.1007/BF02104746.

http://dx.doi.org/10.1016/S0022-0000(03)00042-4
http://www.cs.uoregon.edu/~luks/dimacs.pdf
http://www.cs.uoregon.edu/~luks/dimacs.pdf
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.disc.2007.05.018
http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1007/978-3-642-23719-5_32
http://dx.doi.org/10.1007/978-3-642-23719-5_32
http://dx.doi.org/10.1016/0166-218X(91)90049-3
http://dx.doi.org/10.1145/380752.380839
http://dx.doi.org/10.1007/BF02104746

	Introduction
	The number of fixed vertices as parameter
	The number of non-fixed vertices as parameter
	The number of individualized vertices as parameter
	Graphs of color class size at most 3
	Bounded number of refinement steps

	The number of non-individualized vertices as parameter

