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Abstract
We study a revenue maximization problem in the context of social networks. Namely, we con-
sider a model introduced by Alon, Mansour, and Tennenholtz (EC 2013) that captures inequity
aversion, i.e., prices offered to neighboring vertices should not be significantly different. We first
provide approximation algorithms for a natural class of instances, referred to as the class of single-
value revenue functions. Our results improve on the current state of the art, especially when the
number of distinct prices is small. This applies, for example, to settings where the seller will
only consider a fixed number of discount types or special offers. We then resolve one of the open
questions posed in Alon et al., by establishing APX-hardness for the problem. Surprisingly, we
further show that the problem is NP-complete even when the price differences are allowed to be
relatively large. Finally, we also provide some extensions of the model of Alon et al., regarding
the allowed set of prices.
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1 Introduction

We study a differential pricing optimization problem in the presence of network effects.
Differential pricing is a well known practice in everyday life and refers to offering a different
price to potential customers for the same service or good. Examples include offering cheaper
prices when launching a new product, making special offers to gold and silver members of an
airline miles program, offering discounts at stores during selected periods, and several others.

We are interested in studying differential pricing in the context of a social network.
Imagine a network connecting individuals (who are seen as potential clients here) with their
friends, family, or colleagues, i.e., with people who can exert some influence on them. One
can have in mind other forms of abstract networks as well, e.g., a node could represent a
geographic region, a neighborhood within a city, a type of profession, a social class, and edges
can represent interactions or proximity. The presence of such a network creates externality
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effects, meaning that the decision of a node to acquire a new product or a new service is
affected by the fact that some other nodes within her social circle (her neighborhood in
the graph) already did so. A typical example of positive externalities is when someone
becomes more likely to buy a new product due to the positive reviews by a friend who
already bought it in the past. Modeling positive externalities has led to a series of works
that study marketing strategies for maximizing the diffusion of a new product, [7, 14], or the
total revenue achieved, [13] (see also the Related Work section).

However, there also exist negative externality effects that can arise in a network. One
example is the purchase of a product with the intention to show off and be a locally unique
owner, e.g., a new type of expensive car, or clothes (also referred to as invidious consumption,
see [5]). In such a case, a node may be deterred from buying the same product, if a neighboring
node already did so. A second example of negative externalities, which is the focus of our
work, and arises from differential pricing, is inequity aversion, see e.g., [4] and [8]. This simply
means that a customer may experience dissatisfaction if she realizes that other people within
her social circle, were offered a better deal for the same service. Hence, significant price
differences, can create a negative response of some customers towards a product. Inequity
aversion can also arise under a different, but equally applicable, interpretation: nodes may
correspond to retail stores and an edge can signify proximity, so that clients could choose
among these stores. Again, having significantly different prices to the same products is not
desirable.

To capture the need for avoiding such phenomena, the relatively recent work of [2]
introduced a model for pricing nodes over a social network. The main idea is to impose
constraints on each edge, specifying that the price difference between two neighbors should be
bounded by some (endogenous) parameter, determined by the two neighbors. On top of this,
the seller is also allowed to not make a price offer to some nodes (referred to as introducing
discontinuities, see the related discussion in Section 2), in which case the difference constraints
do not apply for the edges incident to these nodes. Assuming a finite set of available prices,
unit-demand users, and digital goods (i.e., the supply can cover all the demand) the problem
is to find a feasible price vector that satisfies the edge constraints and maximizes the total
revenue. In its more general form the problem was shown to be NP-complete, but exact or
approximation algorithms were derived for some interesting cases.

Contribution: We revisit the model introduced by [2] (namely Model II of [2], which is the
more general one), and study the approximability of the underlying revenue maximization
problem. We resolve one of the open questions posed in [2], regarding the complexity of
the problem under the natural class of the so-called single-value revenue functions. Simply
put, this means that the revenue extracted by each node is exactly the price offered to her,
as long as the price does not exceed her valuation for the product (the usual assumption
made in auction settings as well). We first establish APX-hardness for this class answering
the question of [2], and we also show that the problem is NP-complete even when the price
differences are allowed to be relatively large (a case that could be thought easier to handle).
We then provide approximation algorithms that improve some of the currently known results.
Our improvement is stronger when the number of distinct prices is small. This applies for
example to many settings where the seller will only consider a fixed number of discount
types or special offers to selected customers. As the number of available price offers becomes
large, the performance of our algorithm degrades to a logarithmic approximation. Finally,
we provide an extension of these results to a more general model where the allowed prices
come from a set of k arbitrary integers, instead of using price sets of the form {1, 2, . . . , k},
as done in [2] (see Subsection 4.3).
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Related Work: Price discrimination is well studied in various domains in economics and is
also being applied to numerous real life scenarios. The algorithmic problem of differential
pricing over social networks is a more recent topic, initiated by [13]. The work of [13] studied
a model with positive externalities, where the valuation of a player may increase as more
friends acquire a good, and analyzed the performance of a very intuitive class of pricing
strategies. Further improvements on the performance of such strategies were obtained later
on by [9]. The work of [1] also considers a pricing problem but in an iterative fashion,
where the seller is allowed to reprice a good in future rounds. Revenue maximization under
a mechanism design approach was also taken in [12] under positive network externalities.
Finally, positive externalities have been used to model the diffusion of products on a network,
see, among others, the exposition in [15].

Negative externalities within networks, as we focus on here, are less studied in the
literature. For the concept of inequity aversion, see e.g., [4, 8]. The work most closely
related to ours is [2], which introduced the model that we consider here. Efficient algorithms
were obtained for the case where discontinuities are not allowed (even for more general
revenue functions), and also for networks with bounded treewidth. An approximation ratio
of 1/(∆ + 1) was also provided, where ∆ is the maximum degree. Similar results were shown
for a stochastic version of the model. Finally, other types of negative externalities have been
considered e.g., in [3, 5] which study the effects of invidious consumption.

2 Definitions and Preliminaries

The social network is represented as an undirected graph G = (V,E), with |V | = n. We
assume that a provider of some good or service has a finite set P of available prices that he
could offer to the nodes. In most of our presentation, we assume as in [2], that the available
prices are given by P = {1, 2, . . . , k}. In Subsection 4.3, we show how to extend the analysis
when P is an arbitrary set of k positive integers, i.e., P = {p1, p2, . . . , pk}.

We assume every node has a unit-demand for the same product and that the supply of
the seller is enough to cover the demand of all nodes. For every node v ∈ V , we associate a
revenue function Rv : {1, 2, . . . , k} 7→ N that maps an offered price pv to the revenue that
the provider gains from this offer. In this paper, we focus on a simple and intuitive class of
revenue functions, also studied in [2]. In particular, for a node v ∈ V , Rv is called a single
value revenue function, if there exists a value val(v) such that when offered a price pv:

Rv(pv) =
{
pv if val(v) > pv

0 if val(v) < pv

We assume from now on that every node has a single value revenue function. We also
assume that val(v) ∈ P , for every v ∈ V . This is because for revenue maximization, that we
are interested in, nodes with val(v) > k, can only yield a revenue of k, and could be replaced
by val(v) = k, i.e., the highest possible price. Also for values that are less than k, and not
integers, we can again extract only an integer revenue, given the form of P . Finally, any
node v with val(v) < 1 can be deleted without affecting the optimal revenue (see the concept
of discontinuity defined below), so we can completely ignore such nodes to begin with. Thus,
we consider only instances with val(v) ∈ {1, 2, . . . , k},∀v ∈ V .

Given a vector p = (pv)v∈V of prices offered to the nodes, the total revenue is R(p) =∑
v∈V Rv(pv). Hence, our goal is to find a price vector that maximizes the total revenue. At

the same time, however, we want to capture the effect of inequity aversion [4, 8] in social
networks. This means that a node may experience dissatisfaction if she sees that other nodes
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within her social circle, were offered a better deal for the same service. Hence, significant
price differences, create negative externalities among users.

To avoid such situations the model introduced in [2] has constraints on each edge, stating
that the price difference between two neighbors u, v is bounded, i.e., pu − pv 6 α(u, v) and
pv − pu 6 α(v, u), for every (u, v) ∈ E. Here, α(·, ·) > 0 is integer-valued (given that the
prices are also integers) and note that in general is non-symmetric. Furthermore, the seller is
also allowed not to make an offer to certain nodes. Formally, this is captured by having one
more price option, which we denote by ⊥, with Rv(⊥) = 0. Setting pv = ⊥ to a node, means
that the provider does not make any offer to v, and there is no price restriction on the edges
that are incident to v. We can essentially think about this as deleting these vertices from
the graph. We will refer to setting pv = ⊥ to a node v ∈ V , as introducing a discontinuity
on v. Avoiding making an offer can be thought of as choosing not to promote a product or
service within a certain region or within a certain social group. In terms of optimization,
allowing discontinuities can help the seller in producing much higher revenue (than without
discontinuities) as Proposition 3 in Section 3 states.

Given this model, the set of feasible price vectors is then: F = {p : ∀ v ∈ V, pv ∈ P ∪{⊥},
and ∀ (u, v) ∈ E, pu 6= ⊥ ∧ pv 6= ⊥ ⇒ pu − pv 6 α(u, v) ∧ pv − pu 6 α(v, u)}. Therefore,
the problem we study is:

Inequity Aversion Pricing: Given a graph with edge constraints, and a single-value revenue
function for each node, find a feasible price vector that maximizes the total revenue, i.e., find
p ∈ F that achieves maxp∈F

∑
v∈V Rv(pv).

Some cases of this problem, as well as the variant where no discontinuities are allowed,
are already known to be polynomial time solvable [2]. Regarding hardness, although the
problem is NP-hard for more general revenue functions, it was posed as an open question
whether NP-hardness still holds for single value revenue functions (the hardness result in [2]
requires instances with revenue functions that cannot be captured by single value ones).

3 Warm-up: Basic Facts and Single-price Solutions

In this section, we present a simple algorithm and some basic observations, which we use
later on, in Section 4.

Let vmax = maxv∈V val(v) 6 k, and MAX =
∑
v∈V val(v). Given an instance of the

problem, we denote by OPT the revenue of an optimal solution. The quantity MAX is clearly
an upper bound on the optimal revenue, hence OPT 6 MAX.

We will refer to a solution as being a single-price solution, if it charges the same price to
every node without introducing discontinuities. Note that this is always a feasible solution
since all the edge constraints are satisfied. The revenue extracted by a single-price algorithm
that uses the price of p for all nodes is equal to p · |{v ∈ V : val(v) > p}|.

To understand whether single-price solution can be of any help for our setting, we can
examine the performance of the best possible single price. The following observation suggests
that we do not need to try too many values, even if vmax is very large.

I Lemma 1. In order to find the optimal single-price solution, it suffices to check at most
min{n, vmax} possible prices.

Proof. There are at most min{n, vmax} different values in the set {val(v) : v ∈ V }. It is
never optimal to use any price p /∈ {val(v) : v ∈ V }. Indeed, if p ∈ (val(v1), val(v2)), where
val(v1) and val(v2) are two consecutive distinct values for some nodes v1, v2 ∈ V , then it is
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strictly better to set the price to val(v2). For the same reason, it is suboptimal to set a price
that is less than the minimum value across nodes, while if we use a price p > vmax then we
gain no revenue. J

Hence in O(min{n, vmax}) steps, we can select the best single-price solution. Let us denote
by RSP the revenue raised by this solution. The performance of RSP has been analyzed in
a different context1 by [11], where it was shown that it achieves a Θ(lnn)-approximation.
Here we give a slightly tighter statement, which we utilize in later sections for small values
of vmax.

I Theorem 2. For any number n of agents, the optimal single-price solution achieves a
1/Hr-approximation, where r = min{n, vmax}, and H` is the `-th harmonic number, i.e.,

RSP >
MAX
Hr

>
OPT
Hr

.

Furthermore, the approximation guarantee is tight.

The proof is deferred to the full version of the paper. One interesting point here, is
that single-price solutions do not use any discontinuities. If RND is the maximum revenue
without using any discontinuities, clearly RND > RSP. And as we mentioned in Section 2,
it is possible to find the optimal solution that does not use discontinuities in polynomial
time; so why use something worse instead of RND? Actually, besides being harder to argue
about, RND turns out to be as bad an approximation as RSP, in the worst case. Hence, the
proposition below reveals that introducing discontinuities can cause a significant increase
in the optimal revenue achievable by the seller, compared to what can be achieved without
discontinuities.

I Proposition 3. The optimal solution with no discontinuities achieves a 1/Hr-approximation,
where r = min{n, vmax}, and this approximation guarantee is tight.

The proof of Proposition 3 is deferred to the full version of the paper.

4 Approximation of Inequity Aversion Pricing

In this section we present new approximation algorithms for the problem by exploiting ways in
which setting discontinuities in certain nodes can help. Our main result is an approximation
algorithm, with a ratio of (Hk − 0.25)−1. Even though asymptotically this is no better than
the optimal single-price algorithm, it does yield better ratios for instances where k is a small
constant. The motivation for studying cases where the set of available prices is a small
constant is that a seller may be willing to offer only specific types of discount to selected
customers, e.g., 20% or 30% off the regular price and so on, rather than using an arbitrary
set of prices.

We start below with the case of k = 2, before we move to the more general case.

4.1 A 0.8-approximation Algorithm when P = {1, 2} via Vertex Cover
In this subsection, we assume the available prices are 1, 2, or ⊥. Despite this restriction,
the problem still remains non-trivial, and it is currently not known if it is NP-complete

1 The work of [11] studied an auction pricing problem without the presence of social networks.

MFCS 2016
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Algorithm 1: A 0.8-approximation when P = {1, 2}
1 Given the graph G = (V,E), construct the bipartite graph G′ = (V1, V2, E

′) with
Vi = {v ∈ V : val(v) = i} and E′ = {(u, v) ∈ E : val(u) = 2, val(v) = 1, α(u, v) = 0}

2 Find a minimum vertex cover on G′, say S ⊆ V
3 Set ⊥ to all vertices of S
4 Set a price of 1 to every v ∈ V1 \ S and a price of 2 to every v ∈ V2 \ S. Let R∗ be the revenue

obtained by this solution
5 Compute the optimal single-price solution, as described in Section 3, with revenue RSP

6 Return the solution that achieves max{R∗, RSP}

or not. Given the discussion in Section 2, we will also assume that for every node v ∈ V ,
val(v) ∈ {1, 2}. For such instances we already have a 2

3 -approximation by Theorem 2, that
does not use discontinuities. The difficulty in improving this factor is in finding a way of
selecting appropriate nodes to set to ⊥.

Before we describe our algorithm, let us illustrate the main idea. Consider an instance of
the problem on a graph G = (V,E). Suppose we plan to find a feasible price vector, such
that for each u, either pu = ⊥ or pu = val(u). Since the possible prices are only 1 and 2, if
val(u) = 1, then for any (u, v) ∈ E, α(u, v) is not restrictive, while if val(u) = 2, then for any
(u, v) ∈ E, α(u, v) is restrictive only if α(u, v) = 0 and val(v) = 1. So, we could remove any
edge except from edges in E′ = {(u, v) ∈ E : val(u) = 2, val(v) = 1, α(u, v) = 0}. Note that
this defines a bipartite subgraph G′ = (V1, V2, E

′) of G, where Vi = {v ∈ V : val(v) = i}.
Since this new instance has less restrictions, the optimal revenue OPT′ is at least as good as
the optimal revenue OPT of the original instance.

Consider a vertex cover S in G′. The crucial observation is that we can satisfy all the
edge constraints regarding edges between V1 and V2, by introducing discontinuities on the
vertices of S. Since S covers all the edges between V1 and V2, the edge constraints between
V1 and V2 in the original graph G are now non-existent. If we also set a price of 1 on the
remaining vertices of V1 and a price of 2 on the remaining vertices of V2, all the original
constraints are satisfied. Thus, we have constructed a feasible solution for G.

The revenue of such a solution is MAX−val(S), where MAX =
∑
v∈V val(v) = |V1|+2·|V2|

and val(S) =
∑
v∈S val(v). Hence, the best outcome of such an algorithm is achieved when

S is a minimum weighted vertex cover (using the values as weights) rather than just any
vertex cover. For the analysis however, it suffices to compute just a minimum vertex cover
(see the Remark after the proof of Theorem 4). Moreover, by the Kőnig–Egerváry Theorem,
we can compute this in polynomial time for bipartite graphs (e.g., see [16]).

Finally, the algorithm compares the best of two outcomes, the solution outlined above
and the solution discussed in Section 3. Hence, we define ALG = max{RSP,MAX− val(S)},
where RSP is the maximum revenue achieved by setting a fixed price to every node.

I Theorem 4. Algorithm 1 achieves a 0.8-approximation for the Inequity Aversion Pricing
problem when P = {1, 2}. Furthermore, this ratio is tight.

Proof. Let ALG denote the revenue obtained by Algorithm 1 and let β be its approximation
ratio that we attempt to determine. Assume that β < 0.8. Then there exists some ε > 0 such
that β = 0.8− ε. To arrive at a contradiction, we are going to show that β > γ = 0.8− ε/2.

We will distinguish some cases, depending on the value of ALG. First of all, note that if
ALG > γ ·MAX, then we trivially obtain a γ-approximation: ALG

OPT > γ·MAX
MAX > γ. From now

on, assume that ALG < γ ·MAX. The following turns out to be a very useful upper bound
for OPT.
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I Claim 5. Let S denote a minimum vertex cover in the graph G′ (defined in step 1 of
Algorithm 1). Then, OPT 6 OPT′ 6 MAX− |S|.

Proof of Claim 5. The first inequality is straightforward (see also the discussion before
the theorem). For the second inequality, note that by the Kőnig–Egerváry Theorem, the
maximum matching in G′ has the same cardinality as S. LetM be such a maximum matching.
By the definition of G′, for each edge (u, v) ∈M the nodes u and v have different values, say
val(u) = 2 and val(v) = 1. Because of (u, v), an optimal solution must lose at least one unit
of revenue in comparison with MAX. Indeed, since α(u, v) = 0, an optimal solution either
sets a discontinuity on one of these two nodes, or it sets the same price. If this common price
is 1, we lose one unit from node v, whereas if it is 2 we do not extract revenue from u. The
claim follows. /

We know that ALG = MAX−val(S) and also val(S) 6 2|S|. Thus, |S| > 1
2 (MAX−ALG).

If we combine this with Claim 5, we have

OPT 6
1
2(MAX + ALG) . (1)

To proceed with the analysis, we divide the interval [0, γ ·MAX] into smaller subintervals of
the form

[
i−1
m · γ ·MAX , i

m · γ ·MAX
)
for some fixed large m and i ∈ {1, · · · ,m}. Notice

that m is just a parameter in the analysis and has nothing to do with the input. We consider
cases depending on where exactly the value of ALG falls. In particular, let i∗ be the following
interval index: i∗ =

⌈
m+2
2−γ

⌉
.

Case (i): ALG ∈
[
i−1
m · γ ·MAX, im · γ ·MAX

)
with i > i∗.

Using inequality (1), we have:

ALG
OPT >

i−1
m · γ ·MAX

1
2 (MAX + ALG)

>
i−1
m · γ ·MAX

1
2 (MAX + i

m · γ ·MAX)
=

i−1
m · γ

1
2 (1 + i

m · γ)
.

In order to ensure a γ-approximation, it suffices to have
i−1
m · γ

1
2 (1 + i

m · γ)
> γ ⇐⇒ i− 1

m
>

1
2

(
1 + i

m
· γ
)
⇐⇒ i >

m+ 2
2− γ .

But this last inequality holds since i > i∗. Therefore, in this case, the algorithm achieves a
γ-approximation.

Case (ii): ALG < i∗−1
m · γ ·MAX.

Again, we use inequality (1), but now the lower bound of ALG comes from Theorem 2, which
gives a guarantee for the optimal single-price solution:

ALG
OPT >

RSP
1
2 (MAX + ALG)

>
1
H2

MAX
1
2 MAX

(
1 + γ · i∗−1

m

) = 4/3
1 + γ · i∗−1

m

.

Like in case (i), it suffices to have

4/3
1 + γ · i∗−1

m

> γ ⇐⇒ 4 > 3γ
(

1 + γ · i
∗ − 1
m

)
.

Using an obvious upper bound for i∗, it suffices for γ to satisfy the following:

4 > 3γ + 3γ2 ·
m+2
2−γ + 1− 1

m
⇐⇒ 6

m
γ2 + 10γ − 8 6 0 .

MFCS 2016
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v1 v2

v3 v4

v5 v6

v7 v8

v4n−3 v4n−2

v4n−1 v4n

0 0 0 0 0 0

V2

V1

Figure 1 Algorithm 1 is tight on such instances. Only the relevant edges are shown.

Clearly, there is some m∗ ∈ N, such that

6
m∗

(0.8− ε/2)2 + 10(0.8− ε/2)− 8 6 0 .

Thus, the approximation ratio β of Algorithm 1 is at least 0.8− ε/2, which contradicts the
choice of ε. Hence, β > 0.8.

To see why the ratio of the algorithm is tight, we can construct an infinite family of
examples as follows: Consider a graph of 4 nodes {v1, v2, v3, v4} such that val(v1) = val(v2) =
2, and val(v3) = val(v4) = 1. There are only two edges, namely (v2, v3) and (v2, v4). Suppose
α(·, ·) = 0. The optimal revenue here is 5 by offering a price of 1 to v2, v3, v4 and a price
of 2 to v1. On the other hand, the optimal single-price algorithm achieves a revenue of 4,
either with a price of 1 or 2. Also, a minimum (weighted or not) vertex cover here is either
{v2} or {v3, v4}. In both cases, the revenue by setting ⊥ to the vertex cover is 4. We can
add many copies of this construction (and possibly some extra edges with α(e) > 1 for a
connected example) to turn this into an infinite family of tight examples. For an illustration,
see Figure 1. J

I Remark. It seems appealing to try to exploit the fact that we can solve the minimum
weighted vertex cover problem in polynomial time for bipartite graphs. However, as our
analysis shows, using the weighted version of vertex cover, instead of the unweighted one,
does not yield any better approximation.

4.2 An Approximation Algorithm for k > 2
We now consider the case where there are more than two available prices. In order to improve
the approximation guarantee of Theorem 2, we reduce the problem to the case of k = 2, and
use the results of the previous subsection.

Consider an instance of the problem, with available prices in {⊥, 1, 2, . . . , k}. As discussed
in Section 2, we may assume that val(v) ∈ {1, 2, . . . , k} for every v ∈ V . We create another
instance, where we set the value of every node with val(v) > 1 to be equal to 2. We can
then run Algorithm 1 from Subsection 4.1 on this new instance. At the same time, we can
also compute the optimal single-price solution for the original instance, and pick the best
among these two solutions. This yields Algorithm 2, described below.

Clearly, Algorithm 2 runs in polynomial time. Note that the solution returned by the
algorithm is feasible. Any single-price solution is always feasible, while Algorithm 1 will
produce a price vector that is feasible for I ′, and therefore for I, since the edge restrictions
in the two instances are the same. Even though asymptotically, this is still a logarithmic
approximation, the algorithm achieves significantly better results for small values of k.

I Theorem 6. Algorithm 2 achieves a 1
Hvmax−0.25 -approximation ratio for Inequity Aversion

Pricing when the available prices are {⊥, 1, 2, · · · , k}, with k > 2.
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Algorithm 2: An algorithm for k > 2
1 Given an instance I, construct a new instance I ′, where for every v ∈ V ,
val′(v) = min{val(v), 2}; everything else remains unchanged

2 Run Algorithm 1 from Subsection 4.1 on instance I ′, and let R∗ be the revenue obtained
3 Compute the optimal single-price solution without discontinuities, on the original instance I,

as described in Section 3, with revenue RSP

4 Return the solution that achieves max{R∗, RSP}

Proof. The proof is by induction on vmax. For vmax = 2 the result follows from Theorem 4
since 0.8 = 1

H2−0.25 .
Now assume we have an instance I where vmax = j > 2. As usual, let OPT denote the

optimal revenue for I and ALG the revenue returned by Algorithm 2. Also, let Rj be the
revenue extracted by setting price j at every node, and Vj = {v ∈ V : val(v) = j}. We
consider two cases.
Case (i): |Vj | > 1

(Hj−0.25)j ·OPT. Then, ALG
OPT > Rj

OPT = j·|Vj |
OPT >

1
Hj−0.25 ·OPT

OPT = 1
Hj−0.25 .

Case (ii): |Vj | < 1
(Hj−0.25)j · OPT. Let I∗ be an instance derived from I by setting

val∗(v) = min{val(v), j−1}, i.e., we only reduce the valuation of the nodes with val(v) = vmax
by 1. Let OPT∗ denote the optimal revenue for I∗, and ALG∗ the revenue returned by
Algorithm 2. By the inductive hypothesis we have ALG∗ > 1

Hj−1−0.25 ·OPT∗.
Furthermore, notice that the set of vertices with valuation greater than 1 is the same in

both instances. So, Algorithm 2 on input I∗ considers exactly the same price vectors as it
does on input I, with the exception of the single-price solution that universally uses j. We
conclude that ALG∗ 6 ALG. Next, we prove the following useful claim.

I Claim 7. OPT∗ > OPT− |Vj |.

Proof of Claim 7. Let p be an optimal price vector for I. Construct the price vector p∗ by
decreasing any price that is at least j to j − 1. It is straightforward to see that in instance I
we have R(p∗) > R(p)−|Vj | = OPT−|Vj |, while in both instances R(p∗) is the same. What
is left to show is that p∗ is feasible for I∗. Observe, however, that the two instances have
exactly the same edge restrictions and that, by its definition, p∗ did not increase the price
difference between any two vertices compared to p. Thus, OPT∗ > R(p∗) > OPT− |Vj |. /

Now, we can write

ALG
OPT >

ALG∗

OPT >
1

Hj−1−0.25 ·OPT∗

OPT >
1

Hj−1−0.25 · (OPT− |Vj |)
OPT

>
1

Hj−1 − 0.25

(
1−

1
j(Hj−0.25) ·OPT

OPT

)
= 1
Hj−1 − 0.25 ·

jHj − 0.25j − 1
j(Hj − 0.25)

= 1
Hj−1 − 0.25 ·

j(Hj−1 − 0.25)
j(Hj − 0.25) = 1

Hj − 0.25 ,

which concludes the proof. J

4.3 Approximation Algorithms for General Price Sets
We end Section 4 by extending our results when P is an arbitrary set of k positive integers, i.e.,
P = {p1, p2, . . . , pk}. This can be seen as a more realistic model, especially for small values of
k. In such a case, one could try to directly apply Theorems 2, 4, or 6 for P ′ = {1, 2, 3, . . . , pk}.
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Table 1 Examples of obtained approximation ratios.

P {1, 2} {1, 2, 3} {1, . . . , 100} {10, 20, 25} {3, 6, 10, 11}
1/Hk 0.667 0.545 0.193 0.545 0.48

Alg. 2, general α 0.8 0.631 0.202 – –
Thm. 10, general α ‖ α = 0 0.8 0.631 0.202 0.597 ‖ 0.689 0.524 ‖ 0.574

However, this may produce a very poor approximation when k is small but pk is large, and
feasibility is not guaranteed either. In what follows, Pj denotes

∑j
i=1

pi−pi−1
pi

, where p0 = 0.
We begin with a generalization of Theorem 2.

I Theorem 8. For any number n of agents and possible prices p1 < p2 < . . . < pk the
optimal single-price algorithm achieves a ρ-approximation, where ρ = 1/min{Hn, Pk}, i.e.,

RSP >
MAX

min{Hn, Pk}
>

OPT
min{Hn, Pk}

,

and this approximation guarantee is tight.

For k = 2, Theorem 8 yields an approximation ratio of p2
2p2−p1

. We can still use the ideas
of Theorem 4 to improve this factor. Notice, however, that although all of our results so
far are independent of α(·, ·), now the improvement will depend on the edge constraints. As
in Algorithm 1, we can define a bipartite graph by using a restricted subset of the edges of
G. In analogy to the set E′ in section 4.1, we let E′ = {(u, v) ∈ E : val(u) = p2, val(v) =
p1, and α(u, v) < p2 − p1}, and α = max(v1,v2)∈E′ α(v2, v1). We have the following.

I Theorem 9. When P = {p1, p2} there is a polynomial time ρ-approximation algorithm for
the Inequity Aversion Pricing problem, where ρ = p2

2
2p2

2−p1p2−(p2−p1) min(p1,p2−p1−α) . Further-
more, this ratio is tight.

Notice that Theorem 9 yields a 0.8-approximation when P = {1, 2}. Finally, based on the
improved approximation for two prices, we can get an analog of Theorem 6 for any number
of distinct prices. Given an instance I, let I ′ be the new instance where for every v ∈ V ,
val′(v) = min{val(v), p2}, while the constraints remain the same.

I Theorem 10. Let P = {p1, p2, · · · , pk}, and suppose that on instance I ′ (described above)
the algorithm implied by Theorem 9 gives a 1

P2−x -approximate solution. Then, we can get a
1

Pk−x -approximate solution for the original instance of the Inequity Aversion Pricing problem
in polynomial time.

The proofs of all results in this subsection are deferred to the full version of the paper.
We note however, that the algorithms and the proofs for Theorems 9 and 10 are similar to
the corresponding algorithms and proofs for Theorems 4 and 6 respectively.

Table 1 summarizes approximation ratios obtained by the optimal single price solution,
Algorithm 2, as well as the algorithm implied by Theorem 10 for different sets of prices.

5 Hardness for Single Value Revenue Functions

In [2] there is an n1−ε inapproximability result for Inequity Aversion Pricing, but for general
revenue functions and α(u, v) = 1 for every edge. An NP-hardness proof is also given for
these edge constraints when single value and constant revenue functions are allowed. The
NP-hardness of Inequity Aversion Pricing as we study it here, i.e., allowing only single value
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revenue functions, was left as an open question. We resolve this question by proving that the
problem remains NP-complete even if we restrict the revenue functions to be single value.
Our reduction implies that the result holds even when the price differences are allowed to be
close to the maximum possible price k. Further, when α(u, v) = 0 for every edge, we are
able to show APX-hardness.

The reduction, below, is from the decision version of 3-Terminal Node Cut: Given a
graph G(V,E), a set S = {v1, v2, v3} ⊆ V , and an integer q, is there a subset of q vertices
that can be deleted, so that any two vertices of S are in different connected components
of the resulting graph? The NP-completeness of the weighted version of 3-Terminal Node
Cut is discussed in [6], while the APX-hardness of the unweighted version we use here is
discussed in [10]; in either case no explicit proof is given. The NP-completeness result we
need follows from Theorem 15 as well.

I Theorem 11. Let ε > 0 be any small constant. The decision version of Inequity Aversion
Pricing (for single value revenue functions) is NP-complete even when α(u, v) is as large as
k1−ε for all (u, v) ∈ E(G), where k is the maximum possible price.

Proof. It is immediate that the problem is in NP. To facilitate the presentation, we prove the
NP-hardness when α(·, ·) is upper bounded by k1/3/3. As discussed at the end of the proof,
the reduction can be easily adjusted when the upper bound of α(·, ·) is k1−ε, for constant ε.

Let us consider an instance of 3-Terminal Node Cut, i.e., a graph G(V,E), with |V (G)| = n,
a set S = {v1, v2, v3} of non adjacent vertices of G, and an integer q. We may assume that
q 6 n− 3, otherwise the question is trivial. Next we give a construction of an appropriate
instance for Inequity Aversion Pricing.

Let H be the graph obtained from G as follows. We replace every vertex v ∈ S by n3

vertices, where each such vertex has the same neighbors as v, i.e., if uv is a vertex in the
bundle of vertices replacing v, then for every edge (v, x) ∈ E(G) we add the edge (uv, x)
to E(H). For any v ∈ S, we call such a set of vertices in H a v-bundle. The set of prices
is {⊥, 1, 2, . . . , k}, where k = n3 + n2. Finally, for any (u, v) ∈ E(H) we set α(u, v) and
α(v, u) arbitrarily, as long as they are at most k1/3/3. Note that |V (H)| = n− 3 + 3n3, and
|E(H)| 6 |E(G)|+ 3(n− 1)n3 6 3n4.

Next we define the single value revenue functions for the vertices of H. For every
v ∈ V (G) \ S, let val(v) = n3 + n2, and for every vi ∈ S, let val(uvi) = n3 + i−1

2 n2 for all
uvi

in the vi-bundle. We show below that G has a subset of at most q vertices that separate
all the vertices of S, if and only if there is a feasible choice of prices for the vertices of H
that gives revenue at least Rq, where Rq = (n− 3− q)n3 +

∑3
i=1 n

3 (n3 + i−1
2 n2).

One direction is easy. Let A be a subset of at most q vertices of G that separate the
three vertices of S. For all v ∈ A we put a discontinuity on the corresponding v in H. If
we think of these vertices as removed from H, this creates several connected components.
For any other vertex u ∈ V (H), if u is in the same component as some vi-bundle (or itself
is one of the vertices of the vi-bundle), set its price to n3 + i−1

2 n2, otherwise set its price
to n3 + n2. Notice that any vertex without a discontinuity produces revenue at least n3,
while any vertex uvi

in a vi-bundle with vi ∈ S produces revenue exactly n3 + i−1
2 n2. Now,

it is straightforward to check that this price vector p is feasible and gives enough revenue:
R(p) =

∑
u∈V (H) R(u) > (n− 3− q)n3 +

∑3
i=1 n

3 (n3 + i−1
2 n2) = Rq.

For the opposite direction we begin with a couple of observations. Assume that there
is a price vector p∗ that gives revenue at least Rq. We claim that p∗ can have only a few
discontinuities.
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I Claim 12. There is no feasible price vector p with R(p) > Rq and more than q disconti-
nuities.

One immediate implication of Claim 12 is that for any v ∈ S not every vertex in the
v-bundle has price ⊥. This holds because the v-bundle has n3 vertices and only q 6 n− 3 of
them can get ⊥. This is crucial, because if we think of the vertices with price ⊥ as removed
from H, then no two vertices are separated because of discontinuities in the v-bundles. In
particular, we can completely ignore those discontinuities with respect to connectivity.

Let Dp = {v ∈ V (G) \ S | pv =⊥}, i.e., Dp is the set of non terminal vertices in G that
their corresponding vertices in H have discontinuities in p. So far, by Claim 12, we have
that |Dp∗ | 6 q. What is left to be shown is that these discontinuities separate the v-bundles,
for any v ∈ S.

I Claim 13. There is no feasible price vector p such that R(p) > Rq, and for some vi, vj ∈ S
vertices from both the vi-bundle and the vj-bundle are in the same connected component of
the graph H ′ = H − {v ∈ V (H) | v is not in a bundle and pv =⊥}.

We conclude that Dp∗ is a set of at most q vertices of G that separate all the vertices of
S. This completes the proof for the case where α(·, ·) is upper bounded by k1/3/3.

I Claim 14. The above reduction generalizes for α(·, ·) upper bounded by k1−ε for any
possitive constant ε.

The proofs of Claims 12, 13, and 14 are deferred to the full version of the paper. J

For the special case where all the differences are 0, we show that the problem is APX-hard.
In doing so, we prove that 3-Terminal Node Cut is MAX SNP-hard, and thus APX-hard. As
noted already, MAX SNP-hardness of 3-Terminal Node Cut is discussed —but not explicitly
proved— in [10]. Here, having this reduction is crucial, and we have therefore obtained an
explicit construction, since eventually we need to show that 3-Terminal Node Cut restricted
in a specific set of instances is MAX SNP-hard.

I Theorem 15. Multi-Terminal Node Cut is MAX SNP-hard even for 3 terminals and all
the weights equal to 1.

I Theorem 16. Inequity Aversion Pricing (for single value revenue functions) is APX-hard
when α(e) = 0 for all e ∈ E(G).

The proofs of Theorems 15 and 16 are deferred to the full version of the paper.

I Remark. The maximum price k in the instance constructed in the proof of Theorem 16
does not depend on the size of the problem. Given that there is some constant ρ beyond
which it is hard to approximate 3-Terminal Node Cut, this means that there exists some
constant k∗ for which Inequity Aversion Pricing does not have a PTAS. Note that for such a
k∗ we do have a constant factor approximation, with factor H−1

k∗ .

6 Concluding remarks

We studied a revenue maximization problem under inequity aversion for the natural class
of single-value revenue functions. Apart from establishing the first hardness results for this
class, we also derived approximation algorithms based on combinatorial and graph-theoretic
tools, which improve the state of the art when the set of available prices is small. We find
this to be a realistic setting as special price offers are usually derived by specific discount and
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promotion policies. Several questions still remain open. Even for k = 2, it is not known if the
problem is NP-hard, or whether we can have better approximation ratios. Clearly, it would
also be interesting to resolve the approximability for general k, i.e., can we have a better
than O(1/Hk)-approximation for large k? Exploring further models of negative externalities
is another attractive direction that is not as well studied as the case of positive externalities.
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