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Abstract
We investigate the power of migration in online scheduling for parallel identical machines. Our
objective is to maximize the total processing time of accepted jobs. Once we decide to accept
a job, we have to complete it before its deadline d that satisfies d ≥ (1 + ε) · p + r, where p is
the processing time, r the submission time and the slack ε > 0 a system parameter. Typically,
the hard case arises for small slack ε � 1, i.e. for near-tight deadlines. Without migration,
a greedy acceptance policy is known to be an optimal deterministic online algorithm with a
competitive factor of 1+ε

ε (DasGupta and Palis, APPROX 2000). Our first contribution is to
show that migrations do not improve the competitive ratio of the greedy acceptance policy, i.e.
the competitive ratio remains 1+ε

ε for any number of machines.
Our main contribution is a deterministic online algorithm with almost tight competitive ratio

on any number of machines. For a single machine, the competitive factor matches the optimal
bound of 1+ε

ε of the greedy acceptance policy. The competitive ratio improves with an increasing
number of machines. It approaches (1+ε) · ln 1+ε

ε as the number of machines converges to infinity.
This is an exponential improvement over the greedy acceptance policy for small ε. Moreover, we
show a matching lower bound on the competitive ratio for deterministic algorithms on any number
of machines.
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1 Introduction

We address a basic scheduling problem on parallel identical machines. Given a sequence of
jobs, we are required to use the available resources as best as possible such that no accepted
job exceeds its deadline. The deadline of a job is at least (1 + ε) · pj time units after its
submission time, where pj is the processing time of the job and ε > 0 is the (typically small)
slack parameter. We model resource utilization by maximizing the total processing time. In
addition to the slack, we require the system to support preemption and migration.

From a system’s perspective, migration is an important topic. Not only is it technically
feasible, at least to some degree, in some cases it is even required [2, 8, 26]. For instance, when
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outsourcing jobs to an external provider, these jobs are often executed via virtual machines
instead of given access to a real server. Since the underlying systems are highly adaptive
environments dealing with machine failure and maintenance, migration is a necessary part of
such virtual infrastructure management [25].

From a theoretical perspective, assuming migration is a convenient simplification when
designing algorithms. Additionally, understanding when and how much migration improves
performance can ease the decision whether implementing migration in a system is worthwhile.
For a few examples where migration improves the performance of online algorithms, we refer
to [1, 6, 9, 22, 24].

1.1 Our Contribution
In this paper, we consider a system of m parallel identical machines supporting preemption
with migration and process jobs in an online fashion. A job can be interrupted at any given
time and resumed at a later date on a possibly different machine without overhead. At any
given time, a job can only be executed on one machine and each machine can process at
most one job. The slack ε > 0 is known to the algorithm a-priori and upon submission of a
job Jj at time rj , the processing time pj and deadline dj ≥ (1 + ε) · pj + rj are revealed to
the algorithm. We must immediately decide whether or not to accept Jj , denoted by the
indicator variable Uj = 1 if rejected and Uj = 0 if accepted and receive a payoff proportionate
to pj , if Jj is accepted. Once a job is accepted, we must complete it on time, i.e. we
cannot postpone completion of a job beyond its deadline in favor of another job. Using
the three-field notation, the problem is Pm|ε, online, pmtn|

∑
pj · (1− Uj). We measure the

performance of online algorithms via the competitive ratio. Since we have a maximization
problem, the competitive ratio is the maximum value of OPT(J)

Alg(J) over all input sequences
J , where OPT(J) is the objective value of an optimal offline algorithm and Alg(J) is the
objective value achieved by our online algorithm.

To accurately present our results, we require the definition of the function g(x) = ε·
( 1+ε

ε

)x.
Our main contribution is the design of a deterministic algorithm with an almost tight
competitive factor.

I Theorem 1. The Pm|ε, online, pmtn|
∑
pj · (1−Uj) problem admits a deterministic online

algorithm with competitive ratio at most max{ m·(1+ε)∑m−1
i=0

g( i
m ) ,

4
3}.

We are especially interested in the behavior of the function m·(1+ε)∑m−1
i=0

g( i
m ) for small ε and

large m, though we note that for any value of 0 < ε ≤ 1 and m > 1, the competitive ratio
of our algorithm is an improvement over the greedy algorithm. For a single machine, there
is no migration and the expression reduces to 1+ε

ε . As m tends to infinity, the expression
approaches (1 + ε) ln 1+ε

ε . For small ε, this is an exponential improvement over greedy. We
also note that the competitive ratio improves quickly, i.e. even for a comparatively small
number of machines a parallel system drastically outperforms a single machine environment.
Generally, for m machines, the competitive factor of our algorithm is O( m

√
1/ε). For an

arguably more immediate feel for the competitive ratios of various choices of ε and m, we
refer to Figure 1.

We further prove the following lower bound.

I Theorem 2. Any deterministic online algorithm for the Pm|ε, online, pmtn|
∑
pj · (1−Uj)

problem has a competitive ratio of at least bm·(1+ε)c∑m−1
i=0

g( i
m ) · (1− δ) for any δ > 0.
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Figure 1 Performance of the online algorithm for increasing number of machines. The plots
contain parameterizations of the function m·(1+ε)∑m−1

i=0
ε·( 1+ε

ε )i/m , which is the competitive ratio of our

algorithm for 0 < ε ≤ 1. We have ε = 0.1 in the left figure and the x-axis and the y-axis denote
the number of machines and the competitive ratio, respectively. In the right figure, the x-axis and
y-axis denote the dependency on 1/ε (i.e. 1/ε is large when the slack ε is small) and the competitive
ratio, respectively. The red line is the competitive ratio of the greedy algorithm for increasingly
smaller slack; the brown, violet and blue lines are the competitive ratios of our algorithm for 2, 10
and an infinite number of machines, respectively. Note that the competitive ratio is not equivalent
to the plotted function for large ε (i.e. 1/ε close to 0).

When m · (1 + ε) is integral and cA ≥ 4
3 , our algorithm achieves a tight competitive ratio.

The greedy acceptance policy accepts any job that can be completed on time provided no
other accepted job is delayed beyond its deadline. For the same problem without migrations,
this algorithm is known to guarantee an optimal competitive ratio of 1+ε

ε [7]. We show that
the greedy acceptance policy cannot benefit from migrations:

I Theorem 3. The greedy acceptance policy for the Pm|ε, online, pmtn|
∑
pj ·(1−Uj) problem

has a competitive ratio of at least 1+ε
ε − δ for any δ > 0.

Since the non-migratory and the migratory models are identical for a single machine, the
greedy algorithm is optimal in this case. But its performance is exponentially worse than
the performance of our algorithm as ε→ 0 and m→∞.

1.2 Related Work
The offline problems 1|rj , pmtn|

∑
wj · (1 − Uj) and P2|rj , pmtn|

∑
Uj are NP hard [5].

Lawler [18] proposed a dynamic programming algorithm over the range of weights for the
former problem, i.e. 1|rj , pmtn|

∑
(1−Uj) is solvable in polynomial time. Kalyanasundaram

and Pruhs [13] showed that any schedule for the Pm|rj , pmtn|
∑
wj · (1− Uj) problem can

be transformed into a non-migratory schedule with O(1) additional machines.
Early preemptive online algorithms assumed that every job can be accepted, but possibly

delayed arbitrarily. A payoff wj is only received if the job is completed prior to deadline.
In this case there exists a tight 4-competitive deterministic algorithm on a single machine
for a class of well-behaved payoff functions including wj = pj [3, 17, 27]. For arbitrary
payoff functions and without further restrictions on the input, the competitive factor is
unbounded [27]. Kalyanasundaram and Pruhs [14] gave a O(1) competitive randomized
algorithm for maximizing the number of completed jobs and also showed that no constant
competitive deterministic algorithm exists.

ESA 2016



75:4 The Power of Migration for Online Slack Scheduling

When further requiring that any accepted job must be completed before its deadline,
there exists no constant competitive algorithm in general. To obtain more meaningful results,
research incorporated the slack ε > 01. For 1|ε, online, pmtn|

∑
pj · (1 − Uj), Baruah and

Haritsa [4] showed that a greedy acceptance policy achieves an optimal 1+ε
ε competitive ratio.

This result was extended to parallel machines supporting preemption but not migration by
DasGupta and Palis [7]

A lot of work has also been done for the non-preemptive variants of the problem. In
this case, the difficulty of obtaining a meaningful competitive ratio was first addressed by
bounding the aspect ratio ∆ = max p

min p . Lipton and Tomkins [20] gave a lower bound of
Ω(log ∆) for the competitive factor of any randomized online algorithm on a single machine
and additionally assuming dj = pj + rj for all jobs, obtained an upper bound of O(log1+δ ∆)
for any δ > 0. For arbitrary deadlines, Goldman, Parwatikar, and Suri [10] were able to
obtain a 6(dlog ∆e+ 1) competitive algorithm. They further studied the problem with slack ε
and achieved a competitive factor of 1+ dεeε if there are only two different job processing times.
Goldwasser [11] distinguished between exactly two distinct processing times or arbitrary
processing times and gave tight deterministic competitive factors of 1 + max

{
dεe+1
dεe ,

bεc+1
ε

}
and 2 + 1

ε , respectively. Kim and Chwa [16] later proved the same competitive factor for a
greedy acceptance policy on multiple machines. Lee [19] studied small slack factors ε� 1 by
way of parallel systems. For Pm|online|

∑
pj(1−Uj), he gave a deterministic m+1+m ·ε1/m

competitive algorithm. Hence, if m = log 1/ε, the algorithm is O(log 1/ε) competitive. By
simulating the parallel algorithm and picking one machine uniformly at random, Lee further
obtained an expected competitive factor of 1 + 3 log 1/ε.

1.3 Outline
In Section 3, we describe properties of schedules if all jobs are completed prior to their
deadlines. In a first order, it allows us to check whether a new job can be added to the schedule
without determining the whole schedule. Furthermore, using a series of transformations
and employing the slack factor property for deadlines, we are able to derive a canonical
schedule without improving the competitive factor. The canonical schedule contains jobs
with exponentially increasing deadlines. This exponential sequence represents a tradeoff
between already accepted total processing time and the potential to accept more processing
time in the future. Having determined the existence of such a schedule, the competitive ratio
of our acceptance procedure follows almost immediately if all jobs have the same release
date, see Section 4. When jobs arrive over time, the acceptance condition is insufficient
due to the existence of jobs with large processing times. However, by introducing a careful
charging scheme, we can leverage processing time of accepted jobs against processing time of
rejected jobs without impacting the competitive factor, provided ε is small enough. Due to
space restrictions, we omit a detailed calculus. We conclude by proving our lower bounds in
Section 5.

2 Notations

Formally, we have a system of m parallel identical machines to schedule the jobs of a job
sequence J . The system allows preemption with migration, that is, it can interrupt the
execution of any job and immediately or later resume the execution on a possibly different

1 In literature the stretch f = 1 + ε is often used instead. The two notions are equivalent.
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machine without any preemption penalty (increase in processing time or forced additional
idle time on the machine). A job Jj ∈ J has processing time pj , release date rj and deadline
dj ≥ (1 + ε) · pj + rj with ε > 0 being the slack factor of the system. We say that a schedule
for a job system is legal if it completes all accepted jobs before or at their respective deadlines
and each machine executes at most one job at any moment. The system receives the jobs
one by one in sequence order and must irrevocably and without knowledge of any later jobs
decide whether it accepts the actual job or not. However, it can only accept a job if there is
a legal schedule for this job and all previously accepted jobs. We use the binary variable Uj
to express the decision for job Jj : Uj = 0 denotes acceptance of job Jj while the rejection of
Jj produces Uj = 1. It is our goal to maximize the total processing time of all accepted jobs
(
∑
pj · (1− Uj)). Therefore, an (online) algorithm A determines Uj(A) for all jobs in J and

produces utilization
∑
pj · (1− Uj(A)).

We evaluate our algorithm by determining bounds for the competitive factor, that is
the largest ratio between the optimal objective value and the objective value produced
by online algorithm A for all possible job sequences J : A has a competitive factor cA if
cA ≥ p∗(J )∑

Jj∈J
(1−Uj(A))·pj)

holds for any job sequence J with p∗(J ) = max{
∑
Jj∈J (1−Uj)·pj}

being the maximum total processing time of any legal schedule for J . Finally, c∗ is a lower
bound of the competitive factor if c∗ ≤ cA holds for any online algorithm A.

Next we introduce function g(x) = ε ·
( 1+ε

ε

)x. Straightforward calculus yields the identity:
m+i−1∑
j=i

g

(
j

m

)
+
(

1 + ε

ε

) i
m

=
m+i∑
j=i+1

g

(
j

m

)
(1)

We further use g to define the following threshold expression:

f(m, ε) = 1
ε
·
m∑
i=1

g

(
i

m

)
= 1

1 + ε
·
( 1+ε

ε

) 1
m( 1+ε

ε

) 1
m − 1

. (2)

3 Legal Schedules

max
{

maxJj{pj}, 1
m

∑
Jj
pj

}
is the optimal makespan for the problem Pm|pmtn|Cmax, see,

for instance, Pinedo [21]. Therefore, there is a legal schedule on m parallel identical machines
for a set of jobs J with a common deadline d if and only if pj ≤ d for all Jj ∈ J and∑
Jj∈J pj ≤ d ·m hold. We use this result and a function Vmin(t) to derive a similar necessary

and sufficient condition for the extended problem with different deadlines. For a set of jobs
J with possibly different deadlines, Vmin(t) is the minimum total processing time that we
must execute in interval [0, t) of a legal schedule for time t > 0:

Vmin(t) =
∑
Jj∈J


0 for dj − pj ≥ t
pj for t ≥ dj
pj − dj + t else

(3)

We sort all ν different deadlines in increasing order with dν being the largest deadline and
set d0 = 0.

I Lemma 4. There is a legal preemptive schedule for a set of jobs J with deadlines on m
parallel identical machines if and only if

pj ≤ dj for all Jj ∈ J and (4)
Vmin(t) ≤ t ·m for all t > 0. (5)

ESA 2016
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Proof. Due to Equation (3), Vmin(t) is monotonically increasing and continuous. d
dtVmin(t)

is piecewise constant and can only decrease if t is a deadline. Therefore, Inequalities (5) are
valid if they hold for every deadline.

only if: Clearly if we have either Vmin(di) > m · di for at least one deadline di or least one
job Jj ∈ J with pj > dj then there is no legal schedule for J .

if: We assume that Inequalities (4) and (5) hold. Then we generate a schedule for each
interval [di−1, di) in a backward order starting with [dν−1, dν).

To this end, we generate an LRPT (Least Remaining Processing Time first) schedule
for all jobs with deadline di. Since LRPT generates an optimal schedule for P |pmtn|Cmax,
it produces a legal schedule within interval [0, di) for these jobs due to the validity of
Inequalities (4) for all jobs with deadline di and Inequality (5) for deadline di. We denote
∆ = di − di−1 and use interval [0,∆) of the LRPT schedule as interval [di−1, di) of our
schedule. Then we reduce the processing time of each job by its total amount of processing
within this interval and assign the new deadline di−1 to all jobs with deadline di.

Now we must show that Inequalities (4) and (5) hold for the new largest deadline di−1.
Since the LRPT schedule is legal, the total processing of a job in interval [∆, di) of the LRPT
schedule cannot exceed di−1. Therefore, Inequalities (4) hold for all these jobs after the
modifications while Inequalities (4) remain valid for all unmodified jobs.

If there is some idleness in interval [0,∆) of the LRPT schedule then we process min{∆, pj}
of each job Jj with deadline di within this interval, that is, the total processing in this
interval is identical to Vmin(di)− Vmin(di−1). Therefore, Vmin(di−1) remains unchanged.

If no machine is idle in interval [0,∆) of the LRPT schedule then Vmin(di−1) may increase
and we have

Vmin(di−1) = Vmin(di)−m ·∆ ≤ m · di −m ·∆ = m · di −m · (di − di−1) = m · di−1.

In both cases Inequality (5) is valid for deadline di−1. J

Since Lemma 4 does not consider the slack we introduce another function that leads to a
sufficient but not necessary condition. First we say that a job Jj is large if pj > dj

1+ε holds.
Although there is no submission of large jobs, the progression of time may turn jobs into
large jobs. Therefore, we must consider large jobs as well and define for every time t > 0:

Vaccept(t) =
∑
Jj∈J


pj for dj ≤ t
max{pj − dj

1+ε , 0} for dj > t > dj − dj

1+ε
pj − dj + t for dj − dj

1+ε ≥ t > dj − pj
0 for dj − pj ≥ t

(6)

Informally, we use Vaccept(t) to define a reduced threshold for accepting a new job Jj , that is,
we reject a new job if for at least one time t ≥ dj , the new jobs leads to Vaccept(t) > t ·f(m, ε)
- see Equation (2) - even if the acceptance of the job may produce a legal schedule.

Before formally describing this algorithm we must show that the validity of

Vaccept(t) ≤ t · f(m, ε) for all t > 0 (7)

always guarantees a legal schedule. Therefore, the next lemma is the key lemma for our
algorithm. Its proof is based on a reduction of the instance space with the help of several
transformations until we obtain an instance space that we can analyze with the help of a few
equations. Schwiegelshohn [23] used a similar approach to generate an alternative proof for
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di

−→

di

di·ε
1+ε

Figure 2 Large Job Splitting. The large job is marked as hatched area.

approximation factor of the lrf (largest ratio first) algorithm for the P ||
∑
wjCj problem,

see Kawaguchi and Kyan [15].

I Lemma 5. There is a legal preemptive schedule for a set of jobs J with possibly different
deadlines on m parallel identical machines if Inequalities (4) and (7) hold.

Proof. As with function Vmin(t) we need not examine all t to check the validity of Inequalit-
ies (7). Due to Equation (6), Vaccept(t) has the following properties:

It is monotonically increasing.
It is continuous unless t is a deadline.
d
dtVaccept(t) is piecewise constant.
d
dtVaccept(t) can only decrease if t = dj

1+ε for a large job Jj .
Therefore, Inequalities (7) are valid if they hold for every deadline di and the corresponding
time instance di

1+ε if there is a large job with deadline di.
We use contradiction to prove this lemma and assume that Inequalities (4) and (7) hold

while there is no legal schedule for J , that is, there is at least one deadline dh with Vmin(dh) >
dh ·m, see Lemma 4. Let dj be the largest deadline with Vmin(dj) > dj ·m. We apply several
transformations that do not decrease Vmin(dj) while the validity of Inequalities (4) and (7)
is maintained. We use the notation d>i and di> to describe the next larger and the next
smaller deadline of deadline di, respectively.

First, we introduce and discuss our transformations.
Large job splitting. We split a large job Ji into one job Ji1 with deadline di1 = di and

processing time pi1 = di

1+ε , and one job Ji2 with deadline di2 = di · ε
1+ε and processing

time pi2 = pi − di

1+ε ≤ di −
di

f = di2 , see Fig. 2.
This transformation neither changes Vmin(t) for any t nor Vaccept(t) for any t ≥ di2 .
Further, it may decrease but cannot increase Vaccept(t) for any t < di2 . Therefore, we
assume that our job sequence does not contain any large job.

Job removal. We remove any job Ji with di − pi ≥ dj . This transformation does not
change Vmin(t) for t ≤ dj and cannot increase Vaccept(t) for any t > 0. Since other
transformations may generate jobs with di − pi ≥ dj we must apply this transformation
repeatedly.

Spread generation. Assume two jobs Ji1 and Ji2 with

di1 = di2 > dj > di1 − pi2 ≥ di1 − pi1 ≥ di1 −
di1
f
.

For job Ji2 we reduce its processing time pi2 and its deadline di2 by δ < di1 − di1> ,
see Fig. 3. Due to dj − di1 + pi2 = dj − (di1 − δ) + (pi2 − δ) this transformation does
not change Vmin(dj) while it does not increase Vaccept(t) for t 6= di1 − δ. Clearly, the

ESA 2016
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di1

di1>

dj

Ji2 Ji1

−→

di1

di1>

dj

Ji2 Ji1

Figure 3 Spread Generation. Hatched areas contribute to Vmin(dj).

d>j

dj

δ
−→

d>j

dj
δ

Figure 4 V0-transformation. The hatched area becomes a new job and continues to contribute to
Vmin(dj).

modified job Ji2 is not large, and we have
Vaccept(di1 − δ) = Vaccept(di1)− pi1 − δ

≤ di1 · f(m, ε)− pi1 − δ ≤ (di1 − δ) · f(m, ε)
for δ ≤ pi1

f(m,ε)−1 . Therefore, we can use any δ with 0 < δ < min{di1 − di1>,
pi1

f(m,ε)−1}.
V0-transformation. Assume Vaccept(dj) = dj · f(m, ε) − δ with δ > 0 and a job Ji with

di = d>j and dj > di − pi. We introduce a new job with deadline dj and processing time
p′ = min{δ, dj − di + pi}. Note that the new job is not large since job Ji is not large.
Then we reduce processing time pi by p′, see Fig. 4. This transformation does not change
Vmin(dj) and Vaccept(t) for t < dj and t ≥ d>j . For d>j > t ≥ dj we increase Vaccept(t)
to dj · f(m, ε)− δ + p′ ≤ dj · f(m, ε).

V-transformation. Assume a job Ji with Vaccept(di) = di · f(m, ε)− δV < di · f(m, ε) and
Vaccept(di>) = di> · f(m, ε) for di> ≥ dj : We reduce processing time pi of job Ji by
p′ = δV

(1+ε)·f(m,ε)−1 to p′i and its deadline di by (1 + ε) · p′ to d′i, respectively, see Fig. 5.
This transformation produces p′i = pi − p′ ≤ di

1+ε −
di−d′i
1+ε = d′i

1+ε and

Vaccept(t) = Vaccept(di)− p′ = di · f(m, ε)− δV −
δV

(1 + ε) · f(m, ε)− 1

= di · f(m, ε)− (1 + ε) · δV · f(m, ε)
(1 + ε) · f(m, ε)− 1 = (di − (1 + ε) · p′) · f(m, ε)

for di > t ≥ d′i. It increases Vmin(dj) by ε · p′ and decreases Vaccept(t) by p′ for t ≥ di.
Vaccept(t) remains unchanged for t < d′i. We have d′i > di> since Vaccept(di) − pi ≥
Vaccept(di>) holds. We apply this transformation in the order of increasing deadlines.

p-transformation. Assume two jobs Ji1 and Ji2 with di1 > di2 > dj > di1 − pi1 , pi1 <
di1
1+ε ,

and pi2 <
di2
1+ε . We reduce pi2 by p′ = min{dj − di2 + pi2 ,

di1
1+ε − pi1} and increase pi1 by

p′, see Fig. 6. This transformation does change Vmin(dj) and does not increase Vaccept(t)
for any t.
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di

di>
dj −→

di

di′
di>
dj

Figure 5 V -transformation. Hatched areas contribute to Vmin(dj).

di1

di2
dj

p′

−→

di1

di2
dj

p′

Figure 6 p-transformation. The hatched area moves to another job and continues to contribute
to Vmin(dj).

After repeatedly applying these transformations we obtain a job sequence with the
following properties:
1. Vaccept(di) = di · f(m, ε) for di ≥ dj
2. pi <

di

1+ε for at most one deadline di > dj

3. pi = di

1+ε for every other deadline di > dj
4. There are no jobs with di − pi ≥ dj .
5. There are no two jobs with the same deadline di > dj .

We determine the value of Vaccept(di) for a job Ji with di > dj :

Vaccept(di) = di · f(m, ε) = di ·
ε

1 + ε
·
m∑
z=1

(
1 + ε

ε

) z
m

= di + di ·
ε

1 + ε
·
m−1∑
z=1

(
1 + ε

ε

) z
m

For pi = di

1+ε we have

Vaccept(di) = Vaccept(di>) + pi = di> ·
ε

1 + ε
·
m∑
z=1

(
1 + ε

ε

) z
m

+ di
1 + ε

.

Combining these two equations yields di = di> ·
( 1+ε

ε

) 1
m .

First assume that pi = di

1+ε holds for every deadline di > dj . Then we have a geometric
sequence of deadlines dj , dj ·

( 1+ε
ε

) 1
m , dj ·

( 1+ε
ε

) 2
m , . . .. In this sequence, the contribution

vmin(h) of the job with deadline dj ·
( 1+ε

ε

) h
m to Vmin(dj) is:

vmin(h) = dj − dj ·
(

1 + ε

ε

) h
m

·
(

1− 1
1 + ε

)
= dj ·

(
1− ε

1 + ε
·
(

1 + ε

ε

) h
m

)

Therefore, our sequence ends with dj ·
( 1+ε

ε

)m−1
m since no job with deadline dj · 1+ε

ε or larger
can influence Vmin(dj) unless the job is large.

ESA 2016
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Alternatively we assume a sequence that contains a job Ji with deadline di = dj ·
( 1+ε

ε

) s−1
m ·

z for 1 ≤ s ≤ m and 1 < z <
( 1+ε

ε

) 1
m and calculate pi using Equation (2):

di · f(m, ε) = dj ·
(

1 + ε

ε

) s−1
m

· z · f(m, ε) = dj ·
(

1 + ε

ε

) s−1
m

· f(m, ε) + pi

⇔ pi = dj ·
(

1 + ε

ε

) s
m

· 1
1 + ε

· z − 1( 1+ε
ε

) 1
m − 1

.

Then we determine the difference between the contribution to Vmin(dj) by the new
sequence and the original geometric sequence. We calculate this difference for the deadlines
at position s

∆(s) = dj − dj ·
(

1 + ε

ε

) s
m

·
(

1− 1
1 + ε

)
−

(
dj −

(
dj ·

(
1 + ε

ε

) s−1
m

· z − pi

))

= dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

((
1 + ε

ε

) s−m
m

−
(

1 + ε

ε

) s−1
m

)

and for a deadline at position q with s+ 1 ≤ q ≤ m:

∆(q) = dj − dj ·
(

1 + ε

ε

) q
m

·
(

1− 1
1 + ε

)
−

(
dj − dj ·

(
1 + ε

ε

) q−1
m

· z ·
(

1− 1
1 + ε

))

= dj ·
(

1 + ε

ε

) q−1
m −1

·

(
z −

(
1 + ε

ε

) 1
m

)

The total difference over the sequence of deadlines is

m∑
q=s+1

∆(q) = dj ·

(
z −

(
1 + ε

ε

) 1
m

)
· ε

1 + ε
·

m∑
q=s+1

(
1 + ε

ε

) q−1
m

= dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

(
1−

(
1 + ε

ε

) s
m−1

)
.

m∑
q=s

∆(q) = dj ·
z −

( 1+ε
ε

) 1
m( 1+ε

ε

) 1
m − 1

·

((
1 + ε

ε

) s−m
m

−
(

1 + ε

ε

) s
m

+ 1−
(

1 + ε

ε

) s−m
m

)
≥ 0.

Due to the restrictions on z, we have
∑m
q=s ∆min(q) = 0 if and only if s = 0 holds. Therefore,

we obtain the largest contribution to Vmin(dj) with a sequence of geometrically increasing
deadlines. For this sequence, we calculate Vmin(dj):

Vmin(dj) = dj · f(m, ε) +
m−1∑
i=1

(
dj −

ε

1 + ε
·
(

1 + ε

ε

) i
m

· dj

)
= dj ·m

This result contradicts our assumption. J
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Algorithm 1 Admission_Control
1: for each newly submitted job Jj do
2: tentatively accept Jj
3: for each accepted job Ji do
4: if di ≥ dj then
5: calculate v = Vaccept(di)
6: if v > f(m, ε) · di then
7: reject Jj

4 Upper Bound of the Online Algorithm

In this section we present our online algorithm for the Pm|ε, online, pmtn|
∑
pj(1 − Uj)

problem. First we address the admission control case with all jobs arriving at time 0, i.e.,
the online property only considers the sequence of jobs but no progression of time. Our
Algorithm 1 Admission_Control simply applies the threshold of Lemma 5: If no accepted job
(including the newly submitted one) exceeds the threshold then the job is accepted, otherwise
it is rejected. Since no job is large, a job Jj does not influence Vaccept(t) for t < dj . Due
to the first paragraph of the proof of Lemma 5, we only must consider time instances that
are deadlines. Having accepted the jobs, a schedule can be generated by applying Lemma 4.
Next we prove the competitive factor of this algorithm.

I Theorem 6. The Pm|ε, online, pmtn|
∑
pj · (1−Uj) problem with rj = 0 for all jobs admits

a deterministic online admission control algorithm with competitive ratio at most m·(1+ε)∑m−1
i=0

g( i
m ) .

Proof. Since any algorithm produces an optimal result if it accepts all jobs we assume that
some jobs are rejected. Since the deadline condition Inequality (4) is valid for every submitted
job Jj , algorithm Admission_Control only rejects a job Jj if there is a t ≥ dj with

Vaccept(t) ≥ t · f(m, ε)− pj ≥ t ·
(
f(m, ε)− 1

1 + ε

)
≥ t

1 + ε
·

(
ε ·

m∑
h=1

(
1 + ε

ε

) h
m

− 1
)

= t

1 + ε
·
m−1∑
h=0

g( h
m

)

Due to Equations (3) and (6), we have Vmin(τ) ≥ Vaccept(τ) for all τ ≥ 0 while no
algorithm can yield more than Vmin(τ) = τ ·m. In the following we consider two intervals:
I1 = [0, ts) with ts being the largest time with Vmin(t) = t · 1

1+ε ·
∑m−1
h=0 g( hm ). Interval

I2 = [ts, dν) only exists for dν > ts. If this case the maximum total processing in I2 is
V ′ = Vmin(dν) − Vmin(ts) otherwise we say V ′ = 0. Note that ts > dj holds. Since there
is no rejected job with deadline ts or larger it is not possible to increase V ′ in an optimal
schedule. Then we have

cA ≤
ts ·m+ V ′

ts · 1
1+ε ·

∑m−1
h=0 g( hm ) + V ′

<
ts ·m

ts · 1
1+ε ·

∑m−1
h=0 g( hm )

= m
1

1+ε ·
∑m−1
h=0 g( hm )

. J

For the general case with progression of time we use Algorithm 2 Online_Utilization.
Lines 9 to 12 of Algorithm Online_Utilization are identical to Algorithm Admission_Control.
Our reference time tref is the latest submission time (Line 2). Since progression of time may
produce large jobs we must also examine the acceptance condition for those time instances
at which the large part of a job ends due to the first paragraph of the proof of Lemma 5, see
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Algorithm 2 Online_Utilization
1: for each newly submitted job Jj do
2: tref = rj ;
3: Uj = 0;
4: for each job Ji with Ui = 0 do
5: if pi > (di − tref )/(1 + ε) and (di − tref )/(1 + ε) + tref ≥ dj then
6: calculate v = Vaccept((di − tref )/(1 + ε) + tref )
7: if v > f(m, ε) · (di − tref )/(1 + ε) then
8: Uj = 1
9: if di ≥ dj then
10: calculate v = Vaccept(di)
11: if v > f(m, ε) · (di − tref ) then
12: Uj = 1
13: if di > dj − pj and di < dj then
14: calculate v = Vmin(di)
15: if v > m · (di − tref ) then
16: Uj = 1

Lines 5 to 8. We must use the current reference time when determining these time instances
(Lines 5 and 6).

Progression of the reference time may lead to large jobs and it may produce a violation of
the acceptance condition for some time instances. To prevent such a situation, we introduce
the additional legal test based on Lemma 4 for all jobs that have passed the acceptance test
of Lemma 5, see Lines 13 to 16 in Algorithm 2 Online_Utilization. If a job passes all tests it
is accepted.

I Lemma 7. There is a legal schedule for all jobs accepted by Algorithm 2 Online_Utilization.

Proof. The proof directly follows from Lemma 4. J

In the next theorem we derive the competitive factor of our algorithm.

I Theorem 1 (restated). The Pm|ε, online, pmtn|
∑
pj · (1− Uj) problem admits a determ-

inistic online algorithm with competitive ratio at most max{ m·(1+ε)∑m−1
i=0

g( i
m ) ,

4
3}.

Proof. We use induction on the number of submission times. For a single submission time,
the claim holds due to Theorem 6. Therefore, we assume validity of the claim for k different
submission times. As in the proof of Theorem 6 let ts be the largest time instance with
Vmin(ts) = ts · 1

1+ε ·
∑m−1
h=0 g( hm ) with respect to any previous reference time (release date of

a job). If we use the expression with respect to a reference time then we reduce all times
by the reference time when calculating Vmin(t) and Vaccept(ts) while we keep the original
values for the purpose of time comparison. We divide the rest of our proof into four cases.

1. There is no rejection of any job with release date rk+1 due to the legal test in Algorithm 2
Online_Utilization and ts ≥ rk+1. Since the progression of the reference time to rk+1
cannot increase ts in a non-delay schedule without the acceptance of a new job we can
assume that all job parts that are not completed before rk+1 have release date rk+1 and
apply the proof of Theorem 6 to all jobs with release date rk+1.
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2. There is no rejection of any job with release date rk+1 due to the legal test in Algorithm 2
Online_Utilization and ts < rk+1. We assume that the optimal schedule uses all available
resources before ts. Then we define V ′ as in the proof of Theorem 6 and split all job
parts contributing to V ′ into a job part that can be executed before rk+1 and a job part
that must be executed after rk+1. We denote the total processing time of the first type
of job parts by V ′(ts). If our scheduling algorithm executes the V ′(ts) completely within
interval [ts, rk+1) then we can apply the proof of Theorem 6 to all jobs with release date
rk+1 and obtain the claim. Therefore, we assume that not the total processing time of
V ′(ts) is scheduled within interval [ts, rk+1). Such situation is only possible if a job Jj
from V ′(ts) with processing time pj is started at time τ > rk+1 − pj . In a non-delay
schedule such delayed start requires all machines to be busy in interval [ts, τ). In order to
maximize the total processing time of V ′(ts) that is scheduled after rk+1 we assume that
we have b long jobs each with the maximum processing time rk+1 − ts and each starting
at time τ while all other jobs contributing to V ′(ts) are only executed in interval [ts, τ),
that is, we have V ′(ts) = (τ − ts) ·m+ (rk+1 − ts) · b ≤ m · (rk+1 − ts). We denote the
total processing time of jobs with release date rk+1 in our schedule including V ′\V ′(ts)
by V̄ . Due to Theorem 6, the total processing time in the optimal schedule cannot exceed
cA · (V̄ +b · (τ− ts)). This situation cannot influence the competitive factor if the following
condition holds:

cA ≥ cA · (V̄ + b · (τ − ts)) + b · (rk+1 − ts) +m · (τ − ts)
V̄ + b · (rk+1 − ts) +m · (τ − ts)

⇔ 1− 1
cA

≥
b
m ·

τ−ts
rk+1−ts

b
m + τ−ts

rk+1−ts

The term on the right side has the maximum value for b
m = τ−ts

rk+1−ts = 1
2 resulting in

cA ≥ 4
3 , see also Hussein and Schwiegelshohn [12]. Therefore, the competitive factor is

not affected for small ε.

3. A least one job with release date rk+1 is rejected due to the legal test in Algorithm 2
Online_Utilization and ts ≤ rk+1. This case leads to a contradiction since we have
Vaccept(t) ≤ Vmin(t) ≤ t · 1

1+ε ·
∑m−1
h=0 g( hm ) for all t ≥ rk+1 with respect to reference

time rk+1. Therefore, we can apply Lemma 5 for all jobs with release date rk+1 and any
accepted job with release date rk+1 passes the legal test.

4. A least one job with release date rk+1 is rejected due to the legal test in Algorithm 2
Online_Utilization and ts ≤ rk+1. Before discussing this case we consider the worst case
example in the proof of Lemma 5 for Vmin(ts) = ts · 1

1+ε ·
∑m−1
h=0 g( hm ) and a single release

time. Let t0 = ts · ε
1+ε . Then we have for t ≥ t0

Vmin(t) ≤ m ·
(∫ t

t0

(
1− log 1+ε

ε

(
y

t0

))
dy + t0

)
≤ m ·

(
t− 1

ln 1+ε
ε

·
(
t · ln t

t0
− t+ t0

))
. (8)

Progression of time without accepting any new jobs can only increase the bound for
Vmin(t). Since any new accepted job must also pass the acceptance test of Lemma 5,
Inequality (8) must always hold for a possibly new ts. Therefore, any job Jh with release
date rk+1 and a deadline dh ≥ ts cannot fail the legal test. J
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5 Lower Bounds for Deterministic Online Algorithms

I Theorem 2 (restated). Any deterministic online algorithm for the Pm|ε, online, pmtn|
∑
pj ·

(1− Uj) problem has a competitive ratio of at least bm·(1+ε)c∑m−1
i=0

g( i
m ) · (1− δ) for any δ > 0.

Proof. In our proof the job sequence consists of several series of jobs all with dj ≥ pj · (1 + ε).
In every step the adversary submits identical jobs until we have either accepted the planned
number of jobs or until bm · (1 + ε)c jobs have been submitted. We will show that the latter
case produces a competitive ratio cA ≥ bm·(1+ε)c∑m−1

i=0
g( i

m ) . Therefore, we are forced to accept the

desired number of jobs.
Furthermore, we must show that there is a legal schedule for all accepted jobs. To this

end, we use Lemma 4 with deadlines di = 1+ε
ε · g(

i−1
m ) = g( i−1

m + 1) for 1 ≤ i ≤ m and
dm+1 = (1 + ε) · ( 1+ε

ε − δ) for an arbitrarily small δ > 0. Since there is only a single accepted
job for every deadline di with 1 < i ≤ m, less than m jobs contribute to the total processing
time in Vmin(di+1)− Vmin(di) for 1 ≤ i < m. Therefore, we must only consider Vmin(d1) to
show the existence of a legal schedule.

1. The adversary submits a job with processing time
∑m−1
i=0 g( im )− b

∑m−1
i=0 g( im )c < 1 and

deadline (1 + ε). We must accept this job to prevent cA →∞.
2. The adversary submits identical jobs with processing time 1 and deadline 1 + ε until
b
∑m−1
i=0 g( im )c+ 1 such jobs have been accepted. If we accept this number of jobs then

our total processing time is∑
Jj∈J

(1− U(j)) · pj =
m−1∑
i=0

g( i
m

) + 1 =
m∑
i=1

g( i
m

) = Vmin(1 + ε),

see Equation (1). There is a legal schedule since we have Vmin(1+ε) < m·g(1) = m·(1+ε).
If we accept at most b

∑m−1
i=0 g( im )c of these jobs then we have a total processing time∑

Jj∈J (1− U(j)) · pj =
∑m−1
i=0 g( im ) and a competitive factor

cA = bm · (1 + ε)c∑m−1
i=0 g( im )

.

3. The adversary executes m − 1 similar submission iterations. We assume that at the
beginning of iteration k we have∑

Jj∈J
(1− U(j)) · pj =

m+k−1∑
i=k

g( i
m

) and

Vmin(1 + ε) =
m∑
i=1

g( i
m

) + (k − 1) · (1 + ε)−
k−1∑
i=1

g( i
m

),

respectively. Clearly, this assumption holds for k = 1. The adversary submits jobs with
processing time p = 1

εg( km ) and deadline d = 1+ε
ε g( km ) = g( km +1) until we accept one job.

If we do not accept any of these jobs then the total processing time remains unchanged
and we obtain

cA =
bm · (1 + ε)c · 1

εg( km )∑m+k−1
i=k g( im )

= bm · (1 + ε)c∑m−1
i=0 g( im )

.

Otherwise we have∑
Jj∈J

(1− U(j)) · pj =
m+k−1∑
i=k

g( i
m

) + 1
ε
· g( k

m
) =

m+k∑
i=k+1

g( i
m

)

⇔ Vmin(1 + ε) =
m∑
i=1

g( i
m

) + k · (1 + ε)−
k∑
i=1

g( i
m

)

due to 1 + ε− (d− p) = 1 + ε− g( km ) and Equation (1).
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4. After iteration m− 1 we have∑
Jj∈J

(1− U(j)) · pj =
2m−1∑
i=m

g( i
m

) and

Vmin(1 + ε) = g(1) + (m− 1) · (1 + ε) = m · (1 + ε).
Finally, the adversary submits bm · (1 + ε)c jobs with processing time p = 1+ε

ε · (1− δ)
and deadline dm+1 = (1 + ε) · 1+ε

ε · (1− δ) for an arbitrarily small δ > 0. Since any such
job must start at the latest at time

dm+1 − p = ε ·
(

1 + ε

ε
· (1− δ)

)
< (1 + ε),

we cannot accept any such job and obtain the competitive factor

cA =
bm · (1 + ε)c · 1+ε

ε · (1− δ)∑2m−1
i=m g( im )

= bm · (1 + ε)c∑m−1
i=0 g( im )

· (1− δ). J

We now turn our attention to the greedy acceptance policy. Here, we accept any job that
can be computed prior to its deadline without delaying the currently accepted jobs beyond
their respective deadlines.

I Theorem 3 (restated). The greedy acceptance policy for the Pm|ε, online, pmtn|
∑
pj · (1−

Uj) problem has a competitive ratio of at least 1+ε
ε − δ for any δ > 0.

Proof. We consider an arbitrarily small δ > 0 and use at the beginning a sequence of
1 + dm · (1 + ε)e jobs with the following processing times:

p1 = ε ·m · δ

p2 =
{
m · (1 + ε)− bm · (1 + ε)c − ε ·m · δ for m · (1 + ε) 6= bm · (1 + ε)c
1− ε ·m · δ for m · (1 + ε) = bm · (1 + ε)c

p3 = p4 = . . . = p1+dm·(1+ε)e = 1

All jobs p1, . . . p1+dm·(1+ε)e have deadline 1 + ε and must be accepted according to our policy
since we have

Vmin(1 + ε) =
1+dm·(1+ε)e∑

i=1
pi = m · (1 + ε). (9)

Then the adversary submits m identical jobs with processing times p = 1+ε
ε − δ and deadline

d = (1 + ε) · p = (1+ε)2

ε − (1 + ε) · δ. Since the acceptance of any one of these jobs leads to

Vmin(1 + ε) = m · (1 + ε) + 1 + ε− (d− p) = m · (1 + ε) + ε · δ > m · (1 + ε) (10)

we must reject everyone of these jobs.
However, the rejection of job J1 allows acceptance of all other jobs since we have

Vmin(1 + ε) = m · (1 + ε) and Vmin( (1+ε)2

ε − (1 + ε) · δ) = m ·
(

(1+ε)2

ε − (1 + ε) · δ
)
due to

Equations (9) and (10).
Therefore, the greedy acceptance algorithm has a competitive factor of at least

cAgreedy =
m ·

(
(1+ε)2

ε − (1 + ε) · δ
)

m · (1 + ε) = 1 + ε

ε
− δ. J

Since the lower bound of the competitive factor for the common preemption model is
identical to the competitive factor for preemption without migration, see Lemma 5 and
DasGupta and Palis [7], we can state that a greedy acceptance policy cannot exploit the
benefits of migration.
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