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Abstract
Given a set S of integers whose sum is zero, consider the problem of finding a permutation of these
integers such that: (i) all prefixes of the ordering are non-negative, and (ii) the maximum value
of a prefix sum is minimized. Kellerer et al. referred to this problem as the stock size problem
and showed that it can be approximated to within 3/2. They also showed that an approximation
ratio of 2 can be achieved via several simple algorithms.

We consider a related problem, which we call the alternating stock size problem, where the
number of positive and negative integers in the input set S are equal. The problem is the same
as above, but we are additionally required to alternate the positive and negative numbers in the
output ordering. This problem also has several simple 2-approximations. We show that it can
be approximated to within 1.79.

Then we show that this problem is closely related to an optimization version of the gasoline
puzzle due to Lovász, in which we want to minimize the size of the gas tank necessary to go around
the track. We present a 2-approximation for this problem, using a natural linear programming
relaxation whose feasible solutions are doubly stochastic matrices. Our novel rounding algorithm
is based on a transformation that yields another doubly stochastic matrix with special properties,
from which we can extract a suitable permutation.
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1 Introduction

Suppose there is a set of jobs that can be processed in any order. Each job requires a specified
amount of a particular resource, e.g. gasoline, which can be supplied in an amount chosen
from a specified set of quantities. The limitation is that the storage space for this resource
is bounded, so it must be replenished as it is used. The goal is to order the jobs and the
replenishment amounts so that the required quantity of the resource is always available for
the job being processed and so that the storage space is never exceeded.
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71:2 The Alternating Stock Size Problem and the Gasoline Puzzle

More formally, we are given a set of integers Z = {z1, z2, . . . zn} whose sum is zero. For a
permutation σ, a prefix sum is

∑t
i=1 zσ(i) for t ∈ [1, n]. Our goal is to find a permutation of

the elements in Z such that (i) each prefix sum is non-negative, and (ii) the maximum prefix
sum is minimized. (Placing the elements with positive values in front of the elements with
negative values satisfies (i) and therefore yields a feasible – although possibly far from optimal
– solution.) This problem is known as the stock size problem. Kellerer, Kotov, Rendl and
Woeginger presented a simple algorithm with a guarantee of µx + µy, where µx is the largest
number in Z, and µy is the absolute value of the negative number with the largest absolute
value in Z. (We sometimes use µ = max{µx, µy}.) Since both µx and µy are lower bounds
on the value S∗ of an optimal solution, this shows that the problem can be approximated to
within a factor of 2. Additionally, they presented algorithms with approximation guarantees
of 8/5 and 3/2 [11].

1.1 The Alternating Stock Size Problem
In this paper we first consider a restricted version of the stock size problem in which we
require that the positive and negative numbers in the output permutation alternate. We
refer to this problem as the alternating stock size problem. A motivation for this problem is
that we could schedule tasks in advance of knowing the input data. For example, suppose we
want to stock and remove items from a warehouse and each task occupies a certain time slot.
If we want to plan ahead, we may want to designate each slot as a stocking or a removing
slot in advance, e.g. all odd time slots will be used for stocking and all even time slots for
de-stocking. This could be beneficial in situations where some preparation is required for
each type of time slot.

The input for our new problem is two sets of positive integers, X = {x1 ≥ · · · ≥ xn} and
Y = {y1 ≥ · · · ≥ yn}, such that |X| = |Y |, and the two sets have equal sums. The elements
of X represent the elements to be “added” and the elements of Y are those to be “removed”.
Note that, here, µy = y1 and µx = x1. We now formally define the new problem.

I Definition 1. The goal of the alternating stock size problem is to find permutations σ and
ν such that
(i) for t ∈ [1, n],

∑t
i=1 xσ(i) − yν(i) ≥ 0,

(ii) max
1≤t≤n

∑t
i=1(xσ(i) − yν(i−1)) is minimized, where yν(0) = 0.

Although this problem is a variant of the stock size problem, the algorithms found in
[11] do not provide approximation guarantees since they do not necessarily produce feasible
solutions for the alternating problem. Indeed, even the optimal solutions for these two
problems on the same instance can differ greatly. The following example illustrates this.

X = {p− 1, . . . , p− 1︸ ︷︷ ︸
p entries

, 2, 1, . . . , 1︸ ︷︷ ︸
p(p−1) entries

},

Y = { p, . . . , p︸ ︷︷ ︸
p−1 entries

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
p(p−1)+2 entries

}.

For this instance, the optimal value for the alternating problem is at least 2p− 3, while it is
p for the original stock size problem. Thus, this example exhibits a gap arbitrarily close to 2
between the optimal solutions for the two problems.

We can show the following facts about the alternating problem. (i) There is always a
feasible solution. (ii) The problem is NP-hard (as is the stock size problem). (iii) It is still
the case that 2µ is an upper bound on the value of an optimal solution. Our main result for
this problem is to give an algorithm with an approximation guarantee of 1.79 in Section 2.
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1.2 Connections to the Gasoline Puzzle

The following well-known puzzle appears on page 31 in [12]:

Along a speed track there are some gas stations. The total amount of gasoline available
in them is equal to what our car (which has a very large tank) needs for going around
the track. Prove that there is a gas station such that if we start there with an empty
tank, we shall be able to go around the track without running out of gasoline.

Suppose that the capacity of each gas station is represented by a positive integer and the
distance of each road segment is represented by a negative integer. For simplicity, suppose
that it takes one unit of gas to travel one unit of road. Then the assumption of the puzzle
implies that the sum of the positive integers equals the absolute value of the sum of the
negative integers. In fact, if we are allowed to permute the gas stations and the road segments
(placing exactly one gas station between every pair of consecutive road segments), and our
goal is to minimize the size of the gas tank required to go around the track (beginning from
a feasible starting point), then this is exactly the alternating stock size problem.

This leads to the following natural problem: Suppose the road segments are fixed and
we are only allowed to rearrange (i.e. permute) the gas stations. In other words, between
each pair of consecutive road segments (represented by negative integers), there is a spot
for exactly one gas station (represented by positive integers, the capacities), and we can
choose which gas station to place in each spot. The goal is to minimize the size of the tank
required to get around the track, assuming we can choose our starting gas station. What is
the complexity of this problem?

We show in the full version of this paper that this problem is NP-hard [16]. Our algorithm
for the alternating stock size problem specifically requires that there is flexibility in placing
both the x-values and the y-values. Therefore, it does not appear to be applicable to this
problem, where the y-values are pre-assigned to fixed positions. Let us now formally define
the gasoline problem, which is the second problem we will consider in this paper.

1.3 The Gasoline Problem

As input, we are given the two sets of positive integers X = {x1 ≥ x2 ≥ · · · ≥ xn} and
Y = {y1, y2, . . . , yn}, where the yi’s are fixed in the given order and

∑n
i=1 xi =

∑n
i=1 yi. Our

goal is to find a permutation π that minimizes the value of η:

∀[k, `] :

∣∣∣∣∣ ∑
π(i)∈[k,`]

xi −
∑

i∈[k,`−1]

yi

∣∣∣∣∣ ≤ η. (1)

Given a circle with n points labeled 1 through n, the interval [k, `] denotes a consecutive
subset of integers assigned to points k through `. For example, [5, 8] = {5, 6, 7, 8}, and
[n− 1, 3] = {n− 1, n, 1, 2, 3}. We will often use µx to refer to x1, i.e. the maximum x-value,
which is a lower bound on the optimal value of a solution.

Observe that in (1) we consider only intervals that contain one more x-value than y-value.
One might argue that, in order to model our problem correctly, one also has to look at
intervals that contain one more y-value than x-value. However, let I be such an interval and
let I ′ = [1, n] \ I. Then the absolute value of the difference of the x-values and the y-values
is the same in I and I ′ (with inverted signs) due to the assumption

∑n
i=1 xi =

∑n
i=1 yi.

ESA 2016
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We can also write the constraint (1) as:

∀k :
∑

π(i)∈[1,k]

xi −
∑

i∈[1,k−1]

yi ≤ β, (2)

∀k :
∑

π(i)∈[1,k]

xi −
∑
i∈[1,k]

yi ≥ α, (3)

where α ≤ 0, β ≥ 0 and η = β−α. This version is slightly more general since it encompasses
the scenario where we would like to minimize β for some fixed value of α. (With these
constraints, it is no longer required that the sum of the xi’s equals the sum of the yi’s.)

What is the approximability of this problem? Getting a constant factor approximation
appears to be a challenge since the following example shows that it is no longer the case
that 2µ is an upper bound. Despite this, we show in Section 3 that there is in fact a
2-approximation algorithm for the gasoline problem.

Example showing unbounded gap between OPT and µ

Suppose X and Y each have the following n entries:

X = {1, 1, . . . , 1, 1, 1, . . . , 1︸ ︷︷ ︸
n entries

}, Y = {2, 2, . . . , 2︸ ︷︷ ︸
n
2 entries

, 0, 0, . . . , 0︸ ︷︷ ︸
n
2 entries

}.

In the example above, µ = 2. However, the optimal value is n/2.

1.4 Generalizations of the Gasoline Problem
The requirement that the x- and y-jobs alternate may seem to be somewhat artificial or
restrictive. A natural generalization of the gasoline problem (which we will refer to as the
generalized gasoline problem) is where the y-jobs are assigned to a set of predetermined
positions, which are not necessarily alternating. As in the gasoline problem, our goal is to
assign the x-jobs to the remaining slots so as to minimize the difference between the maximum
and the minimum prefix. There is a simple reduction from this seemingly more general
problem to the gasoline problem. Let X = {x1 ≥ x2 ≥ · · · ≥ xnx

} and Y = {y1, y2, . . . , yny
}

be the input, where the y-jobs are assigned to ny (arbitrary) slots. The remaining nx slots
are for the x-jobs. To reduce to an instance of the gasoline problem (with alternation), we
do the following. For each set of y-jobs assigned to adjacent slots, we add them up to form a
single job in a single slot. For each pair of consecutive x-slots, we place a new y-slot between
them where the assigned y-job has value zero. Thus, we obtain an instance of the gasoline
problem as originally defined in the beginning of this section.

Our new algorithm, developed in Section 3 to solve the gasoline problem, can also be
applied to a natural generalization of the alternating stock size problem, in which we relax
the required alternation between the x- and y-jobs and consider a scenario in which each
slot is labeled as an x- or a y-slot and can only accomodate a job of the designated type. In
other words, in the solution, the x-jobs and y-jobs will follow some specified pattern that
is not necessarily alternating. The goal is to find a feasible assignment of x- and y-jobs to
x- and y-slots, respectively, that minimizes the difference between the prefixes with highest
and lowest values. Since this is simply a generalization of the stock size problem with the
additional condition that each slot is slated as an x- or a y-slot, we refer to this problem as
the slated stock size problem.

Formally, we are given two sets of positive integers X = {x1 ≥ x2 ≥ · · · ≥ xnx} and
Y = {y1 ≥ y2 ≥ · · · ≥ yny

}, and n = nx + ny slots, each designated as either an x-slot or a
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y-slot. Let Ix and Iy denote the indices of the x- and y-slots, respectively, and let P denote
a prefix. Then, the objective is to find a permutation π that minimizes the value of β − α,
where

∀P : α ≤
∑

π(i)∈P∩Ix

xi −
∑

π(i)∈P∩Iy

yi ≤ β. (4)

For this problem, we obtain an algorithm with approximation guarantee OPT + µx + µy.
The details for this analysis as well as all proofs not provided in this extended abstract can
be found in the full version [16].

1.5 Related Work
The work most related to the alternating stock size problem is contained in the aforementioned
paper by Kellerer et al. [11]. Earlier, Abdel-Wahab and Kameda studied a variant of the
stock size problem in which the output sequence of the jobs is required to obey a given set
of precedence constraints, but the stock size is also allowed to be negative. They gave a
polynomial-time algorithm for the case when the precedence constraints are series parallel [1].
The gasoline problem and its generalization are related to those found in a widely-studied
research area known as resource constrained scheduling, where the goal is usually to minimize
the completion time or to maximize the number of jobs completed in a given timeframe while
subject to some limited resources [4, 6]. For example, in addition to time on a machine, a
job could require a certain amount of another resource and would be eligible to be scheduled
only if the inventory for this resource is sufficient.

A general framework for these types of problems is called scheduling with non-renewable
resources. Here, non-renewable means not abundantly available, but rather replenished
according to some rules, such as periodically and in pre-determined increments (as in the
gasoline problem), or in specified increments that can be scheduled by the user (as in
the alternating stock size problem), or at some arbitrary fixed timepoints. Examples for
scheduling problems in this framework are described by Briskorn et al., by Györgyi and Kis,
and by Morsy and Pesch [5, 8, 9, 14]. While the admissibility of a schedule is affected by the
availability of a resource (e.g. whether or not there is sufficient inventory), minimizing the
inventory is not a main objective in these papers.

For example, suppose we are given a set of jobs to be scheduled on a single machine.
Each job consumes some resource, and is only allowed to be scheduled at a timepoint if
there is sufficient resource available for that job at this timepoint. Jobs may have different
resource requirements. Periodically, at timepoints and in increments known in advance,
the resource will be replenished. The goal is to minimize the completion time. If at some
timepoint, there is insufficient inventory for any job to be scheduled, then no job can be
run, leading to gaps in the schedule and ultimately a later completion time. This problem
of minimizing the completion time is polynomial time solvable (sort the jobs according to
resource requirement), but an optimal schedule may contain idle times.

Suppose that we have some investment amount α that we can add to the inventory in
advance to ensure that there is always sufficient inventory to schedule some job, resulting in
a schedule with no empty timeslots, i.e. the optimal completion time. There is a natural
connection between this scenario and the gasoline problem: Let |α| in Equation (3) denote
the available investment. For this investment, suppose we wish to minimize β, which is the
maximum inventory, in order to complete the jobs in the optimal completion time. For any
feasible α and β, our algorithm in Section 3 produces a schedule with the optimal completion
time using inventory size at most β + µ.

ESA 2016
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There are other works that directly address the problem of minimizing the maximum
or cumulative inventory. Monma considers a problem in which each job has a specified
effect on the inventory level [13]. Neumann and Schwindt consider a scheduling problem in
which the inventory is subject to both upper and lower bounds [15]. However, to the best
of our knowledge, our work is the first to give approximation algorithms for the problem
of minimizing the maximum inventory for non-renewable resource scheduling with fixed
replenishments.

The stock size problem is also closely related to the Steinitz problem, which is a well-known
problem in discrepancy theory [2]. Given a set of vectors v1, v2, . . . vn ∈ Rd where ||vi|| ≤ 1
for some fixed norm and

∑n
i=1 vi = 0, the Steinitz problem is to find a permutation of the

vectors so that the norm of the sum of each prefix is bounded. There exists a permutation in
which the norm of each prefix is at most d [7, 3]. It has been conjectured that this bound
can be improved to O(

√
d), but only O(

√
d log2.5 n) is known [10]. The stock size problem is

the one-dimensional analogue of the Steinitz problem. The variants of the stock size problem
that we introduce in this paper can be extended to higher dimensions.

2 Algorithms for the Alternating Stock Size Problem

The existence of a feasible solution for the alternating stock size problem follows from the
solution for the gasoline puzzle. Furthermore, the upper bound of 2µ is also tight for the
alternating problem. If we modify the example given in [11], we have an example for the
alternating problem with an optimal stock size of 2p− 3, while µ = p.

X = {p− 1, . . . , p− 1︸ ︷︷ ︸
p entries

, 2}, Y = { p, . . . , p︸ ︷︷ ︸
p−1 entries

, 1, 1}.

In this section, we will present algorithms for the alternating stock size problem. We will
use the notion of a (q, T )-pair, which is a special case of a (q, T )-batch introduced and used
by [11] for the stock size problem.

I Definition 2. [11] A pair of jobs {x, y}, for x ∈ X and y ∈ Y , is called a (q, T )-pair for
positive reals T and q ≤ 1, if:
(i) x, y ≤ T , (ii) |x− y| ≤ qT .

The following lemma is a special case of Lemma 3 in [11], and the proofs are identical.

I Lemma 3. For positive T , q ≤ 1 and a set of jobs partitioned into (q, T )-pairs, we can
find an alternating sequence of the jobs with maximum stock size less than (1 + q)T .

2.1 The Pairing Algorithm
We now consider the simple algorithm that pairs x- and y-jobs, and then applies Lemma 3 to
sequence the pairs. Suppose that there is some specific pairing that matches each xi to some
yj , and consider the difference xi − yj for each pair. Let α1 ≥ ... ≥ αn1 denote the positive
differences, and let β1 ≥ ... ≥ βn2 denote the absolute values of the negative differences,
where n1 + n2 = n.

I Lemma 4. The matching M? that matches xi and yi for all i ∈ {1, . . . , n} minimizes both
α1 and β1.

The pairing given byM? directly results in a 2-approximation for the alternating stock size
problem, by applying Lemma 3. Without loss of generality, let us assume that max{α1, β1} =
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α1, and observe that α1 ≤ µ. Then M? partitions the input into (α1/µ, µ)-pairs. Applying
Lemma 3, we obtain an algorithm that computes a solution with value at most µ+ α1 ≤ 2µ.
We note that if α1 ≤ (1− ε)µ, then we have a (2− ε)-approximation.

2.2 Lower Bound for the Alternating Stock Size Problem
In order to obtain an approximation ratio better than 2, we need to use a lower bound that
is more accurate than µ. We now introduce a lower bound closely related to the one given
for the stock size problem in [11] (Lemma 8). We refer to a real number C, which divides
the sets X and Y into sets of small jobs and big jobs, as a barrier. Let C ≤ µ be a barrier
such that:

X = {a1 ≥ a2 ≥ ... ≥ ana
≥ C > vk ≥ vk−1 ≥ ... ≥ v1}, (5)

Y = { b1 ≥ b2 ≥ ... ≥ bnb
≥ C > w′1 ≥ w′2 ≥ ...w′na−nb

≥ w1 ≥ w2 ≥ ... ≥ wk}, (6)

where, without loss of generality, na ≥ nb. (If not then by swapping the x’s and the y’s we
have a symmetric sequencing problem with na ≤ nb). The elements of (5) are all the x-jobs
(partitioned into the sets A and V ) and the elements of (6) are all the y-jobs. The jobs in Y
that have value at most C are partitioned into W ′ and W .

Let A′ = {anb+1, . . . ana} = {a′1, . . . a′na−nb
}, let Vi denote the i smallest vj ’s, i.e.

{v1, v2, . . . , vi}, and let Wi denote the i largest wj ’s in W , i.e. {w1, w2, . . . , wi}. (Note
that A′, Vi, and Wi each depend on C, but in order to avoid cumbersome notation, we do not
use superscript C.) Let s ∈ {1, . . . , na − nb}. After fixing a barrier C, let h be the (unique)
index such that wh > vh and wh+1 ≤ vh+1 , and recall that S∗ is the value of an optimal
ordering. Then we obtain the following lower bound on S∗.

I Lemma 5. For na > nb, 1 ≤ s ≤ na − nb, the following inequality holds:

S∗ ≥ LB(C) = 1
na − nb − s+ 1

(
2
na−nb∑
i=s

a′i −
na−nb∑
i=s

w′i +
h∑
i=1

(vi − wi)
)
.

2.3 Alternating Batches: Definition
We need a few more tools before we can outline our new algorithm. The notion of batches
introduced in [11], to which we briefly alluded before Lemma 3, is quite useful for the stock
size problem. For B ⊆ X ∪ Y , let x(B) and y(B) denote the total value of the x-jobs and
y-jobs, respectively, in B. In its original form, the batching lemma (Lemma 3, [11]) calls
for a partition of the input into groups or batches such that for some fixed positive real
numbers T and q ≤ 1, each group B has the following properties: x(B), y(B) ≤ T and
|x(B)− y(B)| ≤ qT . Given such a partition of the input, a sequence with stock size at most
(1 + q)T can be produced.

This approach is not directly applicable to the alternating stock size problem, because
the output is not necessarily an alternating sequence. However, we will now show that the
procedure can be modified to yield a valid ordering. With this goal in mind, we define a new
type of batch, which we call an alternating batch. An alternating batch will either contain
two jobs (small) or more than two jobs (large).

The modified procedure to construct an ordering of the jobs first partitions the input into
alternating batches, then orders these batches, and finally orders the jobs contained within
each batch. In the case of a small alternating batch, the batch will contain both an x-job
and a y-job, and the last step simply preserves this order. A large alternating batch will be

ESA 2016
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required to fulfill certain additional properties that allow the elements to be sequenced in a
way that is both alternating and feasible, i.e. all prefixes are nonnegative.

Suppose B = {(x′1, y′1), (x′2, y′2), . . . , (x′`, y′`)}, and consider the following four proper-
ties:
(i)

∑`
i=1 x

′
i −
∑`
i=1 y

′
i ≥ 0,

(ii) x′1 − y′1 ≥ 0,
(iii) x′i − y′i ≤ 0, for 2 ≤ i ≤ `,
(iv) y′1 ≥ y′2 ≥ ... ≥ y′`.

I Lemma 6. If a batch B satisfies properties (i), (ii), (iii) and (iv), then we can sequence
the elements in B so that the items alternate, each prefix is non-negative and the maximum
height (or prefix sum) of the sequence is x′1.

IDefinition 7. We call a setB a (1−ε)-alternating batch ifB = {(x′1, y′1), (x′2, y′2), . . . , (x′`, y′`)}
such that:
(1) |

∑`
i=1 x

′
i −
∑`
i=1 y

′
i| ≤ (1− ε)µ,

(2) if ` > 1, then conditions (i) to (iv) hold.

I Definition 8. We say that a (1− ε)-alternating batch with more than two jobs is a large
alternating batch. In other words, a large alternating batch obeys conditions (1) and (2) in
Definition 7. A small alternating batch contains only two jobs and obeys condition (1) in
Definition 7.

Note that, by definition, in a large alternating batch B, the sum of the x-jobs in B is at
least the sum of the y-jobs in B.

I Lemma 9. If the sets X and Y can be partitioned into large and small (1− ε)-alternating
batches, then we can find an alternating sequence with maximum stock size less than (2− ε)µ.

2.4 Alternating Batches: Construction
In this section, we present the final tool required for our algorithm. Suppose that for some
some ε : 0 ≤ ε ≤ 1, the following conditions hold for an input instance to the alternating
stock size problem: α1 > (1− ε)µ, and LB(C) < 2

2−εµ, for C = (1− ε)µ. Then, we claim,
there is some value of ε (to be determined later) for which the above two conditions can
be used to partition the input into (1− ε)-alternating batches, to which we can then apply
Lemma 9. In this section, we will heavily rely on the notation introduced in Section 2.2.

The sets A′ = {a′1, . . . , a′na−nb
} and W ′ = {w′1, . . . , w′na−nb

} contain exactly the pairs
in M? that are split by barrier C. Let s be the smallest index such that w′s < εµ. To see
that such an s actually exists, we note the following. Let i? denote the index such that
xi? − yi? = α1. Then yi? < εµ and the pair (xi? , yi?) is split by C. Thus, yi? corresponds to
some w′i′ , and therefore s ≤ i′. See Figure 1 for a schematic drawing.

For i in {1, . . . , na − nb}, we define α′i = a′i − w′i and for j in {1, . . . , h}, β′j = wj − vj .
(Recall that for j ∈ {1, . . . , h}, wj − vj > 0.) Furthermore, let Ai denote the pair {a′i, w′i}
and let Bj denote the pair {vj , wj}. Since w′s < εµ, it follows that all wi’s in W also have
value less than εµ. Moreover, β′j < εµ for j ∈ {1, . . . , h}.

Our goal is now to construct (1− ε)-alternating batches. For each i ∈ {1, . . . s− 1}, note
that α′i ≤ (1− ε)µ. The set Ai therefore forms a small (1− ε)-alternating batch. For each
Ai where i ∈ {s, . . . , na − nb}, we will find a set of Bj ’s that can be grouped with this Ai to
create a large (1− ε)-alternating batch. However, to do this, we require that the condition
on ε found in Claim 10 be satisfied.
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a1 · · · anb

b1 · · · bnb

anb+1
=
a′1 · · · a′s · · · a′i′ · · ·

ana

=
a′na−nb

w′1 · · · w′s · · · w′i′ · · · w′na−nb

vk · · · vh+1 vh · · · v1

w1 · · · wh wh+1 · · · wk

≥ (1 − ε)µ

≥ (1 − ε)µ < εµ

α′1 α′s
α′i′

= α1
α′na−nb

β′1

β′h

Figure 1 An illustration of the various elements used in the construction of the lower bound.

I Claim 10. The condition

2(1− ε)− 2
2− ε > 2ε (7)

is satisfied when ε = .21.

I Lemma 11. If LB(C) < 2µ/(2 − ε), C = (1 − ε)µ, and 2(1 − ε) − 2
2−ε > 2ε, then∑h

i=1 β
′
i +
∑na−nb

i=s w′i > 2εµ(na − nb − s+ 1).

For ease of notation, we set d = na − nb − s+ 1. In the following lemma, we show that
we can also construct a (1− ε)-alternating batch for each Ai for i ∈ [s, na − nb].

I Lemma 12. There exists d disjoint subsets S1, . . . , Sd of {B1, . . . ,Bh} such that for all i
in {1, . . . , d}, the set Si ∪ Ai+s−1 is a (1− ε)-alternating batch.

Now we want to complete the construction of the (1 − ε)-alternating batches, so that
we can apply Lemma 9. For the sets Ai, where i ∈ {s, . . . , na − nb}, we construct batches
according to Lemma 12. Let yi∗ = w′s. For all i < i∗, the pair (xi, yi) form a small (1− ε)-
alternating batch. This follows from the fact that for all i < i∗, yi∗ ≥ εµ, by definition of
s. Finally, if there are remaining elements, they are vi’s and wi’s, which can be paired up
arbitrarily to construct more small (1− ε)-alternating batches, since each remaining vi has
value stictly less than (1− ε)µ due to our choice of barrier, and each remaining wi has value
at most εµ. Since the only limits on the value of ε are imposed by Lemma 11, we can set
ε = .21 and partition the input into .79-alternating batches.

2.5 A 1.79-Approximation Algorithm
We are now ready to present an algorithm for the alternating stock size problem with an
approximation guarantee of 1.79.

I Theorem 13. Algorithm 1 is a 1.79-approximation for the alternating stock size problem.

3 Gasoline Problem

Let the variable zij be 1 if gas station xi is placed in position j, and be 0 otherwise. Then
we can formulate the gasoline problem as the following integer linear program whose solution
matrix Z is a permutation matrix.
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Algorithm 1 1.79-approximation
1: Input: the sets X and Y of positive numbers sorted in nonincreasing order.
2: Output: a sequence that is a 1.79-approximation.
3: Set ε = .21, C = (1− ε)µ.
4: Match each xi with yi.
5: if α1 ≤ (1− ε)µ or if LB(C) ≥ 2

2−εµ then
6: return solution for the Pairing Algorithm with guarantee of most µ+ α1.
7: else
8: Partition the input into (1− ε)-alternating batches described in Section 2.4.
9: Run algorithm from Lemma 9 on the (1− ε)-alternating batches.

10: end if

min β − α

∀j ∈ [1, n] :
n∑
i=1

zij = 1, ∀i ∈ [1, n] :
n∑
j=1

zij = 1, ∀i, j ∈ [1, n] : zij ∈ {0, 1},

∀k ∈ {1, . . . , n} :
k∑
j=1

n∑
i=1

zij · xi −
k−1∑
j=1

yj ≤ β, (8)

∀k ∈ {1, . . . , n} :
k∑
j=1

n∑
i=1

zij · xi −
k∑
j=1

yj ≥ α. (9)

Observe that (8) and (9) imply that for every interval I = [k, `] the sum of the xi’s assigned
to I by Z and the sum of the yi’s in I differ by at most β−α. If we replace zij ∈ {0, 1} with
the constraint zij ∈ [0, 1], then the solution to the linear program, Z, is an n × n doubly
stochastic matrix. Now we have the following rounding problem. We are given an n × n
doubly stochastic matrix Z = {zij} and we define zj to be the total fractional value of the
xi’s that are in position j, i.e., zj =

∑n
i=1 zij · xi. Our goal is to find a permutation of the

xi’s such that the xi assigned to position j is roughly equal to zj .
A natural approach would be to decompose Z into a convex combination of permutation

matrices and see if one of these gives a good permutation of the elements in X. However,
consider the following example:

X = {1, 1, . . . , 1︸ ︷︷ ︸
n−k entries

, B,B, . . . , B︸ ︷︷ ︸
k entries

}, ∀i ∈ [1, n] : yi = γ = k ·B + n− k
n

.

In this case, zj = γ for all j ∈ [1, n]. Thus, a possible decomposition into permutation
matrices could look like:

{B,B, . . . , B, 1, 1, . . . , 1, 1}
{1, B,B, . . . , B, 1, 1, . . . , 1}

. . .

{1, 1, . . . , 1, 1, B,B, . . . , B}.

Each of these permutations has an interval with very large value, while the optimal permuta-
tion of the elements in X is

{1, 1, . . . 1, B, 1 . . . , 1, B, 1, . . . 1}.
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Algorithm 2 shift(Z, j, i1, i2, i3, δ)
1: ∀i ∈ {1, . . . , n} \ {i1, i2, i3} : ai = zij ;
2: ai2 = zi2j + δ;
3: if xi1 = xi3 then
4: ai1 = zi1j − δ; ai3 = zi3j ;
5: else
6: ai1 = zi1j − δ ·

xi2−xi3
xi1−xi3

; ai3 = zi3j − δ ·
xi1−xi2
xi1−xi3

;
7: end if
8: return a

Algorithm 3 transform(Z, j, i1, i2, i3)

1: The jth column of Z ′ equals shift(Z, j, i1, i2, i3, δ) for δ > 0 to be chosen later.
2: Let j′ > j denote the smallest index larger than j with zi2j′ > 0. Such an index

must exist because row i2 is not finished in Z in column j. The (j′)th column of Z ′
equals shift(Z, j′, i1, i2, i3,−δ).

3: All columns of Z and Z ′, except for columns j and j′, coincide.
4: The value δ is chosen as the largest value for which all entries of Z ′ are in [0, 1]. This

value must be strictly larger than 0 due to our choice of j, j′, i1, i2, and i3.
5: return Z ′

3.1 Transformation
Given a doubly stochastic matrix Z = {zij}, we transform it into a doubly stochastic
matrix T = {tij} with special properties. First of all, for each j, zj =

∑n
i=1 tij · xi. This

means that if (Z,α, β) is a feasible solution to the linear program then (T, α, β) is also a
feasible solution. In particular, if Z is an optimal solution, for which β − α is as small as
possible, then T is also optimal.

We call a row i in a doubly stochastic matrix A = {aij} finished at column ` if
∑`
j=1 aij = 1.

We say that a matrix T has the consecutiveness property if the following holds: for each
column j and any rows i1 and i3 with i1 < i3, ti1j > 0, and ti3j > 0, each row i2 ∈
{i1 + 1, . . . , i3 − 1} is finished at column j.

Our procedure to transform the matrix Z into a matrix T with the desired property relies
on the following transformation rule. Assume that there exist indices j, i1, i3, and i2 ∈ {i1 +
1, . . . , i3− 1} such that zi1j > 0, zi3j > 0, and row i2 is not finished in matrix Z at column j.
Then the procedure shift shown as Algorithm 2 computes a column vector a = (a1, . . . , an),
which satisfies the following lemma.

I Lemma 14. For any δ ≥ 0, the vector a returned by shift(Z, j, i1, i2, i3, δ) satisfies∑n
i=1 ai · xi = zj.

Let Z ′ denote the matrix that we obtain from Z if we replace the jth column by the
vector a returned by the procedure shift. The previous lemma shows that Z ′ satisfies (8)
and (9) for the same β and α as Z because the value zj is not changed by the procedure.
However, the matrix Z ′ is not doubly stochastic because the rows i1, i2, and i3 do not add
up to one anymore. In order to repair this, we have to apply the shift operation again to
another column with −δ. Formally, let us redefine the matrix Z ′ = {z′ij} as the outcome of
the operation transform shown as Algorithm 3.

Observe that Z ′ is a doubly stochastic matrix because the rows i1, i2, and i3 sum up
to one and all entries are from [0, 1]. Applying Lemma 14 twice implies that (Z ′, β, α) is a
feasible solution to the linear program if (Z, β, α) is one.
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We will transform Z by a finite number of applications of the operation transform.
As long as the current matrix T (which is initially chosen as Z) does not have the con-
secutiveness property, let j be the smallest index for which there exist indices i1, i3,
and i2 ∈ {i1 + 1, . . . , i3 − 1} such that ti1j > 0, ti3j > 0, and row i2 is not finished
in T at column j. Furthermore, let i1 and i3 be the smallest and largest index with ti1j > 0
and ti3j > 0, respectively, and let i2 be the smallest index from {i1 + 1, . . . , i3 − 1} for which
row i2 is not finished at column j. We apply the operation transform(T, j, i1, i2, i3) to
obtain a new matrix T .

I Lemma 15. After at most a polynomial number of transform operations, no further
such operation can be applied. Then T is a doubly stochastic matrix with the consecutiveness
property.

In the remainder, we will not need the matrix Z anymore but only matrix T . For
convenience, we will use the notation tj =

∑n
i=1 tij · xi instead of zj even though the

transformation ensures that tj and zj coincide.
We now define a graph whose connected components or blocks will correspond to the

row indices from columns that overlap. More formally, let V = {1, . . . , n} denote a set of
vertices and let G0 be the empty graph on V . Each column j of T defines a set Ej of edges
as follows: the set Ej is a clique on the vertices i ∈ V with tij > 0, i.e., Ej contains an edge
between two vertices i and i′ if and only if tij > 0 and ti′j > 0. We denote by Gj the graph
on V with edge set E1 ∪ . . . ∪ Ej .

I Definition 16. A block in Gj is a set of indices in [1, n] that forms a connected component
in Gj . A block in Gj is called finished if all rows in T corresponding to the indices it contains
are finished at column j. Similarly, if a block in Gj contains at least one unfinished row at
column j, it is called an unfinished block.

If B ⊆ {1, . . . , n} is a block in Gj with i ∈ B then we will say that block B contains
row i. For the following lemma it is convenient to define a matrix C = {cij}, which is the
cumulative version of T . To be more precise, the jth column of C equals the sum of the
first j columns of T .

I Lemma 17. The following three properties are satisfied for every j.
1. Let B be a block in Gj and let k =

∑
i∈B cij the denote the value of block B at column j.

The number of rows in B is k if B is finished and it is k + 1 if B is an unfinished block.
2. The set of blocks in Gj emerges from the set of blocks in Gj−1 by either merging exactly

two unfinished blocks or by making one unfinished block finished.
3. Let B1, . . . , B` denote the unfinished blocks in Gj. Then there exist non-overlapping

intervals I1, . . . , I` ⊆ [1, n] with Bi ⊆ Ii for every i.

One might ask if the consecutiveness property is satisfied by every optimal extreme point
of the linear program. Let us mention that this is not the case. A simple counterexample is
provided by the instance X = {9, 6, 4, 1} and Y = {5, 5, 5, 5}. In this instance, an optimal
extreme point would be, for example, to take one half of each of the items x1 and x4 in
steps one and three and to take one half of each of the items x2 and x3 in steps two and
four. This extreme point does however not satisfy the consecutiveness property. Hence, the
transformation described in this section is necessary.
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3.2 Rounding
In this section, we use the transformed matrix T to create the solution matrix R, which is a
doubly stochastic 0/1 matrix, i.e., a permutation matrix. We apply the following rounding
method.

1: for j = 1 to n do
2: Let B denote the active block in Gj , i.e., the block that contains the rows i with tij > 0.
3: Let p denote the smallest index in B such that rpi = 0 for all i < j.
4: Set rpj = 1 and rqj = 0 for all q 6= p.
5: end for
Observe that the first step is well-defined because all non-zero entries in column j belong

by definition to the same block of Gj . The resulting matrix R will be doubly stochastic,
since each column contains a single one, as does each row. We just need to prove that in
Line 3 there always exists a row p ∈ B that is unfinished in R at column j − 1. This follows
from the first part of the next lemma because, due to Lemma 17, the active block B in Gj
emerges from one or two unfinished blocks in Gj−1 and these blocks each contain a row that
is unfinished in R at column j − 1.

I Lemma 18. Let B be a block in Gj for some j ∈ {1, . . . , n}.
1. If B is an unfinished block in Gj and p is the largest index in B, then rpi = 0 for all

i ≤ j and all rows corresponding to B \ {p} are finished in R at column j.
2. If B is a finished block in Gj, then for all q ∈ B, row q is finished in R at column j.

We define the value of a permutation matrix M to be the smallest γ for which there
exist α′ and β′ with γ = β′ − α′ such that (M,α′, β′) is a feasible solution to the linear
program.

I Theorem 19. Let (T, α, β) be an optimal solution to the linear program. Then (R,α, β+µx)
is a feasible solution to the linear program. Hence, the value of the matrix R is at most
(β − α) + µx ≤ 2 ·OPT, where OPT denotes the value of the optimal permutation matrix.

For ease of notation, we define rj as follows: rj =
∑n
i=1 rij · xi. Note that rj corresponds to

the value of the element from Y that the algorithm places in position j. We will see later
that Theorem 19 follows easily from the next lemma.

I Lemma 20. For each k ∈ {1, . . . , n},

k∑
j=1

(rj − tj) ∈ [0, µx]. (10)

We need the following lemma in the proof of Lemma 20.

I Lemma 21. Let b be the largest index in an unfinished block B in Gj. Then,

cbj =
∑

i∈B\{b}

(1− cij).

Proof. Let the value of the unfinished block B be k =
∑
i∈B cij . By property 1 of Lemma

17, block B consists of k + 1 rows. Thus, we have:

cbj = k −
∑

i∈B\{b}

cij =
∑

i∈B\{b}

(1− cij). J
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Proof of Lemma 20. Let us consider the sets of finished and unfinished blocks in Gk, BF
and BU , respectively. For a block B ∈ BF ∪ BU , we denote by

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij)

its rounding error. Since each row is contained in exactly one block of Gk,

k∑
j=1

(rj − tj) =
k∑
j=1

n∑
i=1

xi(rij − tij) =
n∑
i=1

k∑
j=1

xi(rij − tij) =
∑

B∈BF∪BU

erk(B). (11)

Hence, in order to prove the lemma, it suffices to bound the rounding errors of the blocks.
If block B is finished in Gk, then all rows that belong to B are finished in T and in R

(due to property 2 of Lemma 18) at column k. Hence,

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij) =
∑
i∈B

xi ·

(
k∑
j=1

rij −
k∑
j=1

tij

)
=
∑
i∈B

xi · (1− 1) = 0. (12)

Now consider an unfinished block B in Gk, and let a and b denote the smallest and largest
index in B, respectively. By Lemma 18, all rows in the block except for b are finished in R
at column k (i.e.,

∑k
j=1 rij = 1 for i ∈ B \ {b} and

∑k
j=1 rbj = 0). The rounding error of B

can thus be bounded as follows (remember that cik =
∑k
j=1 tij):

erk(B) =
∑
i∈B

k∑
j=1

xi(rij − tij) =
∑
i∈B

xi

k∑
j=1

rij −
∑
i∈B

xi

k∑
j=1

tij

=
∑

i∈B\{b}

xi −
∑
i∈B

xicik =
∑

i∈B\{b}

xi(1− cik)− xbcbk

=
∑

i∈B\{b}

xi(1− cik)− xb
∑

i∈B\{b}

(1− cik) (13)

=
∑

i∈B\{b}

(xi − xb)(1− cik)

≤ (xa − xb)
∑

i∈B\{b}

(1− cik) (14)

= (xa − xb) · cbj (15)
≤ xa − xb. (16)

Equations (13) and (15) follow from Lemma 21. Inequality (16) follows from the fact that
cbj ≤ 1. Inequality (14) follows from the facts that 1− cik ≥ 0 and xi − xb ≥ 0 for all i ∈ B.
These facts also imply that erk(B) ≥ 0. Hence,

erk(B) ∈ [0, xa − xb]. (17)

Together (11) and (12) imply

k∑
j=1

(rj − tj) =
∑

B∈BF∪BU

erk(B) =
∑
B∈BF

erk(B) +
∑
B∈BU

erk(B) =
∑
B∈BU

erk(B). (18)

Now, let B1, . . . Bh denote the unfinished blocks in Gk, and for each block Bf in BU , let
af and bf denote the minimum and maximum indices, respectively, contained in the block.
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Property 3 of Lemma 17 implies that the intervals [af , bf ] are pairwise disjoint. Hence, (17)
implies

∑
B∈BU

erk(B) ∈
[

0,
h∑
f=1

(xaf
− xbf

)
]
⊆
[
0, x1 − xn

]
⊆ [0, µx].

Together with (18) this implies the lemma. J

Now we are ready to prove Theorem 19.

Proof of Theorem 19. Let (T, α, β) denote an optimal solution to the linear program. By
definition, our rounding method produces a permutation matrix R. Lemma 20 implies
that (R,α, β + µy) is also a feasible solution to the linear program because for each k ∈
{1, . . . , n},

k∑
j=1

xj −
k−1∑
j=1

n∑
i=1

rij · xi =
k∑
j=1

xj −
k−1∑
j=1

rj ≤
k∑
j=1

xj −
k−1∑
j=1

tj + µx ≤ β + µx

and

k∑
j=1

xj −
k∑
j=1

n∑
i=1

rij · xi =
k∑
j=1

xj −
k∑
j=1

rj ≥
k∑
j=1

xj −
k∑
j=1

tj ≥ α.

Now the theorem follows because OPT ≥ µx and OPT ≥ β − α. J

4 Conclusions

We have introduced two new variants of the stock size problem and have presented non-trivial
approximation algorithms for them. The most intriguing question for our variants as well as
for the original stock size problem is if the approximation guarantees can be improved. Each
of these problems is NP-hard but no APX-hardness is known. So it is conceivable that there
exists a PTAS. Closing this gap seems very challenging.

We note that the additive integrality gap of the linear program in Section 3 can be
arbitrarily close to µy. Consider the following instance:

x = (n− 1) + µ

n
, X = {x, . . . , x︸ ︷︷ ︸

n entries

}, Y = {µ, 1, 1, . . . , 1︸ ︷︷ ︸
n−1 entries

}.

Then the value of the linear program is x. However, the optimal value is µ, which can be
arbitrarily larger than x.
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