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Abstract
In the vertex cover problem we are given a graph G = (V, E) and an integer k and have
to determine whether there is a set X ⊆ V of size at most k such that each edge in E has at
least one endpoint in X. The problem can be easily solved in time O∗(2k), making it fixed-
parameter tractable (FPT) with respect to k. While the fastest known algorithm takes only time
O∗(1.2738k), much stronger improvements have been obtained by studying parameters that are
smaller than k. Apart from treewidth-related results, the arguably best algorithm for vertex
cover runs in time O∗(2.3146p), where p = k − LP (G) is only the excess of the solution size k

over the best fractional vertex cover (Lokshtanov et al. TALG 2014). Since p ≤ k but k cannot
be bounded in terms of p alone, this strictly increases the range of tractable instances.

Recently, Garg and Philip (SODA 2016) greatly contributed to understanding the paramet-
erized complexity of the vertex cover problem. They prove that 2LP (G)−MM(G) is a lower
bound for the vertex cover size of G, where MM(G) is the size of a largest matching of G, and
proceed to study parameter ` = k − (2LP (G) −MM(G)). They give an algorithm of running
time O∗(3`), proving that vertex cover is FPT in `. It can be easily observed that ` ≤ p

whereas p cannot be bounded in terms of ` alone. We complement the work of Garg and Philip
by proving that vertex cover admits a randomized polynomial kernelization in terms of `, i.e.,
an efficient preprocessing to size polynomial in `. This improves over parameter p = k − LP (G)
for which this was previously known (Kratsch and Wahlström FOCS 2012).
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1 Introduction

A vertex cover of a graph G = (V, E) is a set X ⊆ V such that each edge e ∈ E has at least
one endpoint in X. The vertex cover problem of determining whether a given graph G has
a vertex cover of size at most k has been an important benchmark problem in parameterized
complexity for both fixed-parameter tractability and (polynomial) kernelization,1 which are
the two notions of tractability for parameterized problems. Kernelization, in particular,
formalizes the widespread notion of efficient preprocessing, allowing a rigorous study (cf. [14]).
We present a randomized polynomial kernelization for vertex cover for the to-date
smallest parameter, complementing a recent fixed-parameter tractability result by Garg and
Philip [10].

1 Definitions can be found in the full version. Note that we use `, rather than k, as the default symbol for
parameters and use vertex cover(`) to refer to the vertex cover problem with parameter `.

© Stefan Kratsch;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 59; pp. 59:1–59:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


59:2 A Randomized Polynomial Kernelization for Vertex Cover

Let us first recall what is known for the so-called standard parameterization vertex
cover(k), i.e., with parameter ` = k: There is a folklore O∗(2k) time2 algorithm for testing
whether a graph G has a vertex cover of size at most k, proving that vertex cover(k)
is fixed-parameter tractable (FPT); this has been improved several times with the fastest
known algorithm due to Chen et al. [4] running in time O∗(1.2738k). Under the Exponential
Time Hypothesis of Impagliazzo et al. [11] there is no algorithm with runtime O∗(2o(k)). The
best known kernelization for vertex cover(k) reduces any instance (G, k) to an equivalent
instance (G′, k′) with |V (G′)| ≤ 2k; the total size is O(k2) [3]. Unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses there is no kernelization to size O(k2−ε) [8].

At first glance, the FPT and kernelization results for vertex cover(k) seem essentially
best possible. This is true for parameter ` = k, but there are smaller parameters `′ for
which both FPT-algorithms and polynomial kernelizations are known. The motivation for
this is that even when `′ = O(1), the value ` = k may be as large as Ω(n), making both
FPT-algorithm and kernelization for parameter k useless for such instances (time 2Ω(n) and
size guarantee O(n)). In contrast, for `′ = O(1) an FPT-algorithm with respect to `′ runs in
polynomial time (with only leading constant depending on `′). Let us discuss the relevant
type of smaller parameter, which relates to lower bounds on the optimum and was introduced
by Mahajan and Raman [19]; two other types are discussed briefly under related work.

Two well-known lower bounds for the size of vertex covers for a graph G = (V, E) are the
maximum size of a matching of G and the smallest size of fractional vertex covers for G; we
(essentially) follow Garg and Philip [10] in denoting these two values by MM(G) and LP (G).
Note that the notation LP (G) comes from the fact that fractional vertex covers come up
naturally in the linear programming relaxation of the vertex cover problem, where we
must assign each vertex a fractional value such that each edge is incident with total value
of at least 1. In this regard, it is useful to observe that the LP relaxation of the maximum
matching problem is exactly the dual of this. Accordingly, we have MM(G) ≤ LP (G) since
each integral matching is also a fractional matching, i.e., with each vertex incident to a total
value of at most 1. Similarly, using V C(G) to denote the minimum size of vertex covers of G

we get V C(G) ≥ LP (G) and, hence, V C(G) ≥ LP (G) ≥MM(G).
A number of papers have studied vertex cover with respect to “above lower bound”

parameters `′ = k −MM(G) or `′′ = k − LP (G) [24, 23, 7, 21, 17]. Observe that k ≥
k − MM(G) ≥ k − LP (G). For the converse, note that k can be unbounded in terms
of k − MM(G) and k − LP (G), whereas k − MM(G) ≤ 2(k − LP (G)) holds [16, 12].
Thus, from the perspective of achieving fixed-parameter tractability (and avoiding large
parameters) both parameters are equally useful for improving over parameter k. Razgon
and O’Sullivan [24] proved fixed-parameter tractability of almost 2-sat(k), which implies
that vertex cover(k −mm) is FPT due to a reduction to almost 2-sat(k) by Mishra et
al. [20]. Using k −MM(G) ≤ 2(k − LP (G)), this also entails fixed-parameter tractability of
vertex cover(k − lp).

After several improvements [23, 7, 21, 17] the fastest known algorithm, due to Lokshtanov
et al. [17], runs in time O∗(2.3146k−MM(G)). The algorithms of Narayanaswamy et al. [21] and
Lokshtanov et al. [17] achieve the same parameter dependency also for parameter k−LP (G).
The first (and to our knowledge only) kernelization result for these parameters is a randomized
polynomial kernelization for vertex cover(k − lp) by Kratsch and Wahlström [16], which
of course applies also to the larger parameter k −MM(G).

Recently, Garg and Philip [10] made an important contribution to understanding the

2 We use O∗ notation, which suppresses polynomial factors.



S. Kratsch 59:3

parameterized complexity of the vertex cover problem by proving it to be FPT with
respect to parameter ` = k− (2LP (G)−MM(G)). Building on an observation of Lovász and
Plummer [18] they prove that V C(G) ≥ 2LP (G)−MM(G), i.e., that 2LP (G)−MM(G) is
indeed a lower bound for the minimum vertex covers size of any graph G. They then design a
branching algorithm with running time O∗(3`) that builds on the well-known Gallai-Edmonds
decomposition for maximum matchings to guide its branching choices.

vertex cover(k − (2lp−mm))
Input: A graph G = (V, E) and an integer k ∈ N.
Parameter: ` = k−(2LP (G)−MM(G)) where LP (G) is the minimum size of fractional
vertex covers for G and MM(G) is the maximum cardinality of matchings of G.
Question: Does G have a vertex cover of size at most k, i.e., a set X ⊆ V of size at
most k such that each edge of E has at least one endpoint in X?

Since LP (G) ≥ MM(G), we clearly have 2LP (G) − MM(G) ≥ LP (G) and hence
` = k − (2LP (G) −MM(G)) is indeed at most as large as the previously best parameter
k − LP (G). We can easily observe that k − LP (G) cannot be bounded in terms of `:
For any odd cycle C of length 2s + 1 we have LP (C) = 1

2 (2s + 1), V C(C) = s + 1, and
MM(C) = s. Thus, a graph G consisting of t vertex-disjoint odd cycles of length 2s + 1 has
LP (G) = 1

2 t(2s + 1), V C(G) = t(s + 1), and MM(G) = ts. For k = V C(G) = t(s + 1) we
get

` = k − (2LP (G)−MM(G)) = t(s + 1)− t(2s + 1) + ts = 0

whereas

k − LP (G) = t(s + 1)− 1
2 t(2s + 1) = 1

2 t(2s + 2)− 1
2 t(2s + 1) = 1

2 t.

Generally, it can be easily proved that LP (G) and 2LP (G)−MM(G) differ by exactly 1
2 on

any factor-critical graph (cf. Proposition 4).
As always in parameterized complexity, when presented with a new fixed-parameter

tractability result, the next question is whether the problem also admits a polynomial
kernelization. It is well known that decidable problems are fixed-parameter tractable if
and only if they admit a (not necessarily polynomial) kernelization.3 Nevertheless, not all
problems admit polynomial kernelizations and, in the present case, both an extension of the
methods for parameter k − LP (G) [16] or a lower bound proof similar to Cygan et al. [6] or
Jansen [12, Section 5.3] (see related work) are conceivable.

Our result. We give a randomized polynomial kernelization for vertex cover(k − (2lp−
mm)). This improves upon parameter k − LP (G) by giving a strictly smaller parameter for
which a polynomial kernelization is known. At high level, the kernelization takes the form of
a (randomized) polynomial parameter transformation from vertex cover(k − (2lp−mm))
to vertex cover(k −mm), i.e., a polynomial-time many-one (Karp) reduction with output
parameter polynomially bounded in the input parameter. It is well known (cf. Bodlaender et

3 We sketch this folklore fact for vertex cover(k − (2lp− mm)): If the input is larger than 3`, where
` = k − (2LP (G)−MM(G)), then the algorithm of Garg and Philip [10] runs in polynomial time and
we can reduce to an equivalent small yes- or no-instance; else, the instance size is bounded by 3`; in
both cases we get size at most 3` in polynomial time. The converse holds since a kernelization followed
by any brute-force algorithm on an instance of, say, size g(`) gives an FPT running time in terms of `.

ESA 2016



59:4 A Randomized Polynomial Kernelization for Vertex Cover

al. [2]) that this implies a polynomial kernelization for the source problem, i.e., for vertex
cover(k − (2lp−mm)) in our case. Let us give some more details of this transformation.

Since the transformation is between different parameterizations of the same problem, it
suffices to handle parts of any input graph G where the input parameter ` = k − (2LP (G)−
MM(G)) is (much) smaller than the output parameter k −MM(G). After the well-known
LP-based preprocessing (cf. [10]), the difference in parameter values is equal to the number
of vertices that are exposed (unmatched) by any maximum matching M of G. Consider the
Gallai-Edmonds decomposition V = A ∪̇B ∪̇D of G = (V, E), where D contains the vertices
that are exposed by at least one maximum matching, A = N(D), and B = V \ (A ∪ D).
Let M be a maximum matching and let t be the number of exposed vertices. There are t

components of G[D] that have exactly one exposed vertex each. The value 2LP (G)−MM(G)
is equal to |M |+ t when LP (G) = 1

2 |V |, as implied by LP-based preprocessing.
To reduce the difference in parameter values we will remove all but O(`4) components

of G[D] that have an exposed vertex; they are called unmatched components for lack of a
matching edge to A and we can ensure that they are not singletons. It is known that any such
component C is factor-critical and hence has no vertex cover smaller than 1

2 (|C|+ 1); this
exactly matches its contribution to |M |+ t: It has 1

2 (|C| − 1) edges of M and one exposed
vertex. Unless the instance is trivially no all but at most ` of these components C have a
vertex cover of size 1

2 (|C|+ 1), later called a tight vertex cover. The only reason not to use
a tight vertex cover for C can be due to adjacent vertices in A that are not selected; this
happens at most ` times. A technical lemma proves that this can always be traced to at
most three vertices of C and hence at most three vertices in A that are adjacent with C.

In contrast, there are (matched, non-singleton) components C of G[C] that together with
a matched vertex v ∈ A contribute 1

2 (|C| + 1) to the lower bound due to containing this
many matching edges. To cover them at this cost requires not selecting vertex v. This in
turn propagates along M -alternating paths until the cover picks both vertices of an M -edge,
which happens at most ` times, or until reaching an unmatched component, where it may
help prevent a tight vertex cover. We translate this effect into a two-way separation problem
in an auxiliary directed graph. Selecting both vertices of an M -edge is analogous to a adding
a vertex to the separator. Relative to a separator the question becomes which sets of at most
three vertices of A that can prevent tight vertex covers are still reachable by propagation.
At this point we can apply representative set tools from Kratsch and Wahlström [16] to
identify a small family of such triplets that works for all separators (and hence for all so-called
dominant vertex covers) and keep only the corresponding components.

Related work. Let us mention some further kernelization results for vertex cover with
respect to nonstandard parameters. There are two further types of interesting parameters:
1. Width-parameters: Parameters such as treewidth allow dynamic programming algorithms

running in time, e.g., O∗(2tw), independently of the size of the vertex cover. It is known
that there are no polynomial kernels for vertex cover (or most other NP-hard problems)
under such parameters [1]. The treewidth of a graph is upper bounded by the smallest
vertex cover, whereas graphs of bounded treewidth can have vertex cover size Ω(n).

2. “Distance to tractable case”-parameters: vertex cover can be efficiently solved on
forests. By a simple enumeration argument it is fixed-parameter tractable when ` is
the minimum number of vertices to delete such that G becomes a forest. Jansen and
Bodlaender [13] gave a polynomial kernelization to O(`3) vertices. Note that the vertex
cover size is an upper bound on `, whereas trees can have unbounded vertex cover size.
The FPT-result can be carried over to smaller parameters corresponding to distance from
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larger graph classes on which vertex cover is polynomial-time solvable, however, Cygan
et al. [6] and Jansen [12, Section 5.3] ruled out polynomial kernels for some of them. E.g.,
if ` is the deletion-distance to an outerplanar graph then there is no kernelization for
vertex cover(`) to size polynomial in ` unless the polynomial hierarchy collapses [12].

Organization. Section 2 gives some preliminaries. In Section 3 we discuss vertex covers of
factor-critical graphs and prove the claimed lemma about critical sets. Section 4 introduces
a relaxation of the Gallai-Edmonds decomposition, called nice decomposition, and Section 5
explores the relation between nice decompositions and vertex covers. The kernelization for
vertex cover(k − (2lp−mm)) is given in Section 6. We conclude in Section 7.

2 Preliminaries

Parameterized complexity. We use standard definitions from parameterized complexity,
with the difference of using ` as the default symbol for the parameter. We use vertex
cover(`) to refer to the vertex cover problem parameterized by `, e.g., ` = k for the
standard parameterization or ` = k − LP (G). For a detailed introduction to parameterized
complexity we recommend the recent books by Downey and Fellows [9] and Cygan et al. [5].

Graphs. We require both directed and undirected graphs; all graphs are finite and simple,
i.e., they have no parallel edges or loops. Accordingly, an undirected graph G = (V, E)
consists of a finite set V of vertices and a set E ⊆

(
V
2
)
of edges; a directed graph H = (V, E)

consists of a finite set V and a set E ⊆ V 2 \ {(v, v) | v ∈ V }. For clarity, all undirected
graphs are called G and all directed graphs are called H (possibly with indices etc.). For
a graph G = (V, E) and vertex set X ⊆ V we use G −X to denote the graph induced by
V \X; we also use G− v if X = {v}. Analogous definitions are used for directed graphs H.

Let H = (V, E) be a directed graph and let S and T be two not necessarily disjoint vertex
sets in H. A set X ⊆ V is an S, T -separator if in G −X there is no path from S \X to
T \X; note that X may overlap both S and T and that S ∩ T ⊆ X is required. The set T

is closest to S if there is no S, T -separator X with X 6= T and |X| ≤ |T |, i.e., if T is the
unique minimum S, T -separator in G (cf. [16]). Both separators and closeness have analogous
definitions in undirected graphs but they are not required here.

I Proposition 1 (cf. [16]). Let H = (V, E) be a directed graph and let S, T ⊆ V such that
T is closest to S. For any vertex v ∈ V \ T that is reachable from S in H − T there exist
|T |+ 1 (fully) vertex-disjoint paths from S to T ∪ {v}.

Proof. Assume for contradiction that such |T |+ 1 directed paths do not exist. By Menger’s
Theorem there must be an S, T ∪ {v}-separator X of size at most |T |. Observe that X 6= T

since v is reachable from S in H − T . Thus, X is an S, T -separator of size at most |T | that
is different from T ; this contradicts closeness of T . J

For an undirected graph G = (V, E), a matching is any set M ⊆ E such that no two
edges in M have an endpoint in common. If M is a matching in G = (V, E) then we will say
that a path is M -alternating if its edges are alternatingly from M and from M := E \M .
An M, M -path is an M -alternating path whose first and last edge are from M ; it must
have odd length. Similarly, we define M, M -paths, M, M -paths (both of even length), and
M, M -paths (of odd length). If M is a matching of G and v is incident with an edge of M

then we use M(v) to denote the other endpoint of that edge, i.e., the mate or partner of
v. Say that a vertex v is exposed by M if it is not incident with an edge of M ; we say that

ESA 2016



59:6 A Randomized Polynomial Kernelization for Vertex Cover

v is exposable if it is exposed by some maximum matching of G. A graph G = (V, E) is
factor-critical if for each vertex v ∈ V the graph G− v has a perfect matching (a near-perfect
matching of G); observe that all factor-critical graphs must have an odd number of vertices.

We denote by LP (G) the optimum value of fractional vertex covers, which are exactly
the feasible solutions of the well-known LP-relaxation of vertex cover. It is known that
the extremal points x of that linear program are half-integral, i.e., x ∈ {0, 1

2 , 1}V . With this
in mind, we will tacitly assume that all considered fractional vertex covers are half-integral.
We use the shorthand [n] := {1, . . . , n}. By A ∪̇B to denote the disjoint union of A and B.

Gallai-Edmonds decomposition. We will now recall the Gallai-Edmonds decomposition
following the well-known book of Lovász and Plummer [18].4

I Definition 2. Let G = (V, E) be a graph. The Gallai-Edmonds decomposition of G is a
partition of V into three sets A, B, and D where

D consists of all vertices v of G such that there is a maximum matching M of G that
contains no edge incident with v, i.e., that leaves v exposed,
A is the set of neighbors of D, i.e., A := N(D), and
B contains all remaining vertices, i.e., B := V \ (A ∪D).

It is known (and easy to verify) that the Gallai-Edmonds decomposition of any graph G

is unique and can be computed in polynomial time. The Gallai-Edmonds decomposition has
a number of useful properties; the following theorem states some of them.

I Theorem 3 (cf. [18, Theorem 3.2.1]). Let G = (V, E) be a graph and let V = A ∪̇B ∪̇D

be its Gallai-Edmonds decomposition. The following properties hold:
1. The connected components of G[D] are factor-critical.
2. The graph G[B] has a perfect matching.
3. Every maximum matching M of G consists of a perfect matching of G[B], a near-perfect

matching of each component of G[D], and a matching of A into D.

3 Tight vertex covers of factor-critical graphs

In this section we study vertex covers of factor-critical graphs, focusing on those that are
of smallest possible size (later called tight vertex covers). We first recall the fact that any
factor-critical graph with n ≥ 3 vertices has no vertex cover of size less than 1

2 (n + 1). By a
similar argument such graphs have no fractional vertex cover of cost less than 1

2n.

I Proposition 4 (folklore). Let G = (V, E) be a factor-critical graph with at least three
vertices. Every vertex cover X of G has cardinality at least 1

2 (|V |+ 1) and every fractional
vertex cover x : V → R≥0 of G has cost at least 1

2 |V |.

Proof. Let X ⊆ V be a vertex cover of G. Since G has at least three vertices and is
factor-critical, it has a maximum matching M of size 1

2 (|V | − 1) ≥ 1. It follows that X

has size at least one. (This is not true for graphs consisting of a single vertex, which are
also factor-critical. All other factor-critical graphs have at least three vertices.) Pick any
vertex v ∈ X. Since G is factor-critical, there is a maximum matching Mv of G− v of size
1
2 (|V | − 1). It follows that X must contain at least one vertex from each edge of Mv, and no

4 We use B instead of C for V \ (A ∪D) to leave the letter C for cycles and connected components.
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vertex is contained in two of them. Together with v, which is not in any edge of Mv, this
gives a lower bound of 1 + 1

2 (|V | − 1) = 1
2 (|V |+ 1), as claimed.

Let x : V → R≥0 be a fractional vertex cover of G. We use again the matching M of size
at least one from the previous case; let {u, v} ∈M . It follows that x(u) + x(v) ≥ 1; w.l.o.g.
we have x(v) ≥ 1

2 . Let Mv be a maximum matching of G− v of size 1
2 (|V | − 1). For each

edge {p, q} ∈Mv we have x(p) + x(q) ≥ 1. Since the matching edges are disjoint we get a
lower bound of

∑
p∈V \{v} x(p) ≥ 1

2 (|V | − 1). Together with x(v) ≥ 1
2 we get the claimed

lower bound of 1
2 |V | for the cost of x. J

Note that Proposition 4 is tight for example for all odd cycles of length at least three, all
of which are factor-critical. We now define tight vertex covers and critical sets.

I Definition 5 (tight vertex covers, critical sets). Let G = (V, E) be a factor-critical graph
with |V | ≥ 3. A vertex cover X of G is tight if |X| = 1

2 (|V |+ 1). Note that this is different
from a minimum vertex cover, and a factor-critical graph need not have a tight vertex cover;
e.g., odd cliques with at least five vertices are factor-critical but have no tight vertex cover.

A set Z ⊆ V is called a bad set of G if there is no tight vertex cover of G that contains Z.
The set Z is a critical set if it is a minimal bad set, i.e., no tight vertex cover of G contains
Z but for all proper subsets Z ′ of Z there is a tight vertex cover containing Z ′.

Observe that a factor-critical graph G = (V, E) has no tight vertex cover if and only if
Z = ∅ is a critical set of G. It may be interesting to note that a set X ⊆ V of size 1

2 (|V |+ 1)
is a vertex cover of G if and only if it contains no critical set. (We will not use this fact and
hence leave its two line proof to the reader.) The following lemma proves that all critical
sets of a factor-critical graph have size at most three; this is of central importance for our
kernelization. For the special case of odd cycles, the lemma has a much shorter proof and we
point out that all critical sets of odd cycles have size exactly three.

I Lemma 6. Let G = (V, E) be a factor-critical graph with at least three vertices. All critical
sets Z of G have size at most three.

Proof. Let ` ∈ N with ` ≥ 1 such that |V | = 2` + 1; recall that all factor-critical graphs have
an odd number of vertices.

Assume for contradiction that there is a critical set Z of G of size at least four. Let
w, x, y, z ∈ Z be any four pairwise different vertices from Z. Let M be a maximum matching
of G− w. Since G is factor-critical, we get that M is a perfect matching of G− w and has
size |M | = `. Observe that any tight vertex cover of G that contains w must contain exactly
one vertex from each edge of M , since its total size is (

|V |+ 1) = ` + 1. We will first analyze
G and show that the presence of certain structures would imply that some proper subset
Z ′ of Z is bad, contradicting the assumption that Z is critical. Afterwards, we will use the
absence of these structures to find a tight vertex cover that contains Z, contradicting the
fact that it is a critical set.

If there is an M, M -path from x to y then {w, x, y} is a bad set, i.e., no tight vertex
cover of G contains all three vertices w, x, and y, contradicting the choice of Z: Let
P = (v1, v2, . . . , vp−1, vp) denote an M, M -path from v1 = x to vp = y. Accordingly, we
have {v1, v2}, . . . , {vp−1, vp} ∈M and the path P has odd length. Assume that X is a tight
vertex cover containing w, x, and y. It follows, since w ∈ X, that X contains exactly one
vertex per edge in M ; in particular it contains exactly one vertex per matching edge on the
path P . Since v1 = x ∈ X we have v2 /∈ X. Thus, as {v2, v3} is an edge of G, we must
have v3 ∈ X to cover this edge; this in turn implies that v4 /∈ X since it already contains v3
from the matching edge {v3, v4}. Continuing this argument along the path P we conclude

ESA 2016



59:8 A Randomized Polynomial Kernelization for Vertex Cover

that vp−1 ∈ X and vp /∈ X, contradicting the fact that vp = y ∈ X. Thus, if there is an
M, M -path from x to y then there is no tight vertex cover of G that contains w, x, and
y, making {w, x, y} a bad set and contradicting the assumption that Z is a critical set. It
follows that there can be no M, M -path from x to y. The same argument can be applied
also to x and z, and to y and z, ruling out M, M -paths connecting them.

Similarly, if there is an edge {u, v} ∈M such that z reaches both u and v by (different,
not necessarily disjoint) M, M -paths then no tight vertex cover of G contains both w and
z, contradicting the choice of Z: Let P = (v1, v2, . . . , vp−1, vp) denote an M, M -path from
v1 = z to vp = u with {v1, v2}, {v3, v4}, . . . , {vp−2, vp−1} ∈ M . Let X be a tight vertex
cover of G that contains w and z. It follows (as above) that v1, v3, . . . , vp−2 ∈ X and
v2, v4, . . . , vp−1 /∈ X, by considering the induced M, M -path from z = v1 to vp−1. The
fact that vp−1 /∈ X directly implies that vp = u ∈ X in order to cover the edge {vp−1, vp}.
Repeating the same argument on an M, M -path from z to v we get that v ∈ X. Thus, we
conclude that u and v are both in X, contradicting the fact that X must contain exactly one
vertex of each edge in X. Hence, there is no tight vertex cover of G that contains both w

and z. We conclude that {w, z} is a bad set, contradicting the choice of Z. Hence, there is
no edge {u, v} ∈M such that z has M, M -paths (not necessarily disjoint) to both u and v.

Now we will complete the proof by using the established properties, i.e., the non-existence
of certain M -alternating paths starting in z, to construct a tight vertex cover of G that
contains all of Z, giving the final contradiction. Using minimality of Z, let X be a tight
vertex cover of G that contains Z \ {z}; by choice of Z we have z /∈ X. We construct the
claimed vertex cover X ′ ⊇ Z from X ′ = X as follows:
1. Add vertex z to X and remove M(z), i.e., remove the vertex that z is matched to.
2. Add all vertices v to X ′ that can be reached from z by an M, M -path.
3. Remove all vertices from X ′ that can be reached from z by an M, M -path of length at

least three. (There is a single such path of length one from z to M(z) which, for clarity,
was handled already above.)

We need to check four things: (1) The procedure above is well-defined, i.e., no vertex can be
reached by both M, M - and M, M -paths from z. (2) The size of X ′ is at most |X| = ` + 1.
(3) X ′ is a vertex cover. (4) The set X ′ contains w, x, y, and z.

(1) Assume that there is a vertex v such that z reaches v both by an M, M -path P =
(v1, v2, . . . , vp) with v1 = z and vp = v, and by an M, M -path P ′. Observe that {vp−1, vp} ∈
M since P is an M, M -path and, hence, that P ′′ = (v1, . . . , vp−1) is an M, M -path from v to
vp−1. Together, P ′ and P ′′ constitute two M, M -paths from z to both endpoints vp−1 and
vp of the matching edge {vp−1, vp}; a contradiction (since we ruled out this case earlier).

(2) In the first step, we add z and remove M(z). Note that z /∈ X implies that M(z) ∈ X

(we start with X ′ = X). Thus the size of X ′ does not change. Consider a vertex v that is
added in the second step, i.e., with v /∈ X: There is an M, M -path P from z to v. Since
w ∈ X we know that v 6= w. Thus, since M is a perfect matching of G − w, there is a
vertex u with u = M(v). The vertex u := M(v) must be in X to cover the edge {v, u} ∈M ,
as v /∈ X. Moreover, u cannot be on P since that would make it incident with a second
matching edge other than {u, v}. Thus, by extending P with {v, u} we get an M, M -path
from z to u, implying that u is removed in the second step. Since u ∈ X the total size
change is zero. Observe that the vertex u = M(v) used in this argument is not used for any
other vertex v′ added in the second step since it is only matched to v. Similarly, due to (1),



S. Kratsch 59:9

the vertex u is not also added in the second step since it cannot be simultaneously have an
M, M -path from z.

(3) Assume for contradiction that some edge {u, v} is not covered by X ′, i.e., that u, v /∈ X ′.
Since w ∈ X ′ is the only unmatched vertex it follows that both u and v are incident with
some edge of M . We distinguish two cases, namely (a) {u, v} ∈M and (b) {u, v} /∈M .

(3.a) If {u, v} ∈M then without loss of generality assume u ∈ X (as X is a vertex cover).
By our assumption we have u /∈ X ′, which implies that we have removed it on account
of having an M, M -path P from z to u. Since {u, v} ∈ M the path P must visit v as its
penultimate vertex; there is no other way for an M, M -path to reach u. This, however,
implies that there is an M, M -path from z to v, and that we have added v in the second
step; a contradiction.

(3.b) In this case we have {u, v} /∈ M . Again, without loss of generality, assume that
u ∈ X. Since u /∈ X ′ there must be an M, M -path P from z to u. If P does not contain v

then extending P by edge {u, v} /∈M would give an M, M -path from z to v and imply that
v ∈ X ′; a contradiction. In the remaining case, the vertex v is contained in P ; let P ′ denote
the induced path from z to v (not containing u as it is the final vertex of P ). Since v /∈ X ′

we know that P ′ cannot be an M, M -path, or else we would have v ∈ X ′, and hence it must
be an M, M -path. Now, however, extending P ′ via {v, u} /∈M yields an M, M -path from z

to u, contradicting (1). Altogether, we conclude that X ′ is indeed a vertex cover.

(4) Clearly, z ∈ X ′ by construction. Similarly, w ∈ X ′ since it is contained in X and it
cannot be removed since there is no incident M -edge (i.e., no M, M -paths from z can end in
w). Finally, regarding x and y, we proved earlier that there are no M, M -paths from z to x

or from z to y. Thus, since both x and y are in X they must also be contained in X ′.

We have showed that under the assumption of minimality of Z and using |Z| ≥ 4 one can
construct a vertex cover X ′ of optimal size ` + 1 that contains Z entirely. This contradicts
the choice of Z and completes the proof. J

4 Nice decompositions

The well-known Gallai-Edmonds decomposition plays an important role in the FPT-algorithm
of Garg and Philip [10]. It is, in principle, also very useful for our kernelization result, but
it is much more convenient to use a form that is both relaxed (in part) but also includes a
certain maximum matching of the graph, called nice decomposition. Due to space restrictions,
we give the definition directly rather than first defining a natural intermediate form.

I Definition 7 (nice decomposition). Let G = (V, E) be a graph. A nice decomposition of G

is a tuple (A, B, D, M) where V = A ∪̇B ∪̇D and M is a maximum matching of G such that
1. A = N(D), i.e., all vertices not in D that are adjacent to D,
2. each connected component of G[D] is factor-critical,
3. M restricted to B is a perfect matching of G[B],
4. M restricted to any component C of G[D] is a near-perfect matching of G[C],
5. each vertex of A is matched by M to a vertex of D, and
6. for each singleton component {v} of G[D] there is a vertex u ∈ A with {u, v} ∈M .
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For a nice decomposition (A, B, D, M) of G it will be of importance for us which com-
ponents of G[D] are matched to a vertex in A. Since M induces a near-perfect matching on
each component of G[D], there is always at most one such vertex per component of G[D].

I Definition 8 (matched/unmatched components of G[D]). Let G = (V, E) be a graph and
let (A, B, D, M) be a nice decomposition of G. We say that a connected component C of
G[D] is matched if there are vertices v ∈ C and u ∈ N(C) ⊆ A such that {u, v} ∈M ; we will
also say that u and C are matched to one another. Otherwise, we say that C is unmatched.
Note that edges of M with both ends in C have no influence on whether C is matched or
unmatched.

We use C1 to denote the set of matched singleton components in G[D]; a nice decomposition
has no unmatched singleton components. We use C3 and Ĉ3 for matched and unmatched
non-singleton components. By A1 and A3 we denote the set of vertices in A that are matched
to singleton respectively non-singleton components of G[D]; note that A = A1 ∪̇A3.

Our main reason for preferring nice decompositions is captured in the following lemma,
namely that deleting certain types of components, e.g., in a reduction rule, allows the obtained
graph G′ to effectively inherit a nice decomposition.

I Lemma 9. Let G = (V, E) be a graph, (A, B, D, M) a nice decomposition, and C ∈ Ĉ3 an
unmatched component of G[D]. Then (A, B, D′, M ′) is a nice decomposition of G′ = G− C

where M ′ is M restricted to V (G′) = V \ C and where D′ := D \ C. The corresponding sets
A1, A3, C1, and C3 are the same as for G. For Ĉ3 we have Ĉ′3 = Ĉ3 \ {C}.

5 Nice decompositions and vertex covers

Due to space restrictions, this section gives a brief summary of the relation between a nice
decomposition (A, B, D, M) of a graph G and (certain) vertex covers of G. We first prove a
lower bound on V C(G) in terms of (A, B, D, M) and relate it to 2LP (G)−MM(G). Note
that Garg and Philip [10] proved that 2LP (G)−MM(G) is a lower bound for the vertex cover
size for every graph G, but we require the bound of |M |+ |Ĉ3| related to our decompositions,
and the equality to 2LP (G)−MM(G) is “only” required to complete the kernelization later.

I Lemma 10. Let G = (V, E) be a graph and let (A, B, D, M) be a nice decomposition of G.
Each vertex cover of G has size at least |M |+ |Ĉ3| = 2LP (G)−MM(G).

Intuitively, a vertex cover X of size at most |M |+ |Ĉ3|+ ` can “overpay” only ` times as
compared to spending one vertex per edge of M and 1

2 (|C|+ 1) for any component C ∈ Ĉ3.
Conversely, X must induce tight vertex covers of all but at most ` components C ∈ Ĉ3.

I Definition 11 (active component). Let G = (V, E) be a graph, let (A, B, D, M) be a nice
decomposition of G, and let X be a vertex cover of G. A component C ∈ Ĉ3 is active (w.r.t.
X) if X contains more than 1

2 (|C|+ 1) vertices of C, i.e., if X ∩C is not a tight vertex cover
of G[C].

I Definition 12 (set Xop). Let G = (V, E) be a graph and let (A, B, D, M) be a nice
decomposition of G. For X ⊆ V define Xop = Xop(A1, A3, M, X) ⊆ A ∩ X to contain all
vertices v that fulfill either of the following two conditions:
1. v ∈ A1 and X contains both v and M(v).
2. v ∈ A3 and X contains v.
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Both conditions of Definition 12 capture parts of the graph where X contains more
vertices than implied by the lower bound. To see this for the second condition, note that
if v ∈ A3 ∩X then X still needs at least 1

2 (|C|+ 1) vertices of the component C ∈ C3 that
v is matched to; since there are 1

2 (|C|+ 1) matching edges that M has between vertices of
C ∪{v} we find that X (locally) exceeds the lower bound, as |X ∩ (C ∪{v})| ≥ 1 + 1

2 (|C|+ 1).
Conversely, if X does match the lower bound on C ∪ {v} then it cannot contain v.

We now prove formally that a vertex cover X of size close to the lower bound of Lemma 10
has only few active components and only a small set Xop ⊆ X.

I Lemma 13. Let G = (V, E) be a graph, let (A, B, D, M) be a nice decomposition of
G, let X be a vertex cover of G, and let Xop = Xop(A1, A3, M, X). The set Xop has
size at most ` and there are at most ` active components in Ĉ3 with respect to X where
` = |X| − (|M |+ |Ĉ3|) = |X| − (2LP (G)−MM(G)).

The central question is of course how the different structures where X exceeds the lower
bound interact. We are only interested in aspects that are responsible for not allowing a
tight vertex cover for any (unmatched, non-singleton) components C ∈ Ĉ3. This happens
exactly due to vertices in A that are adjacent to C and that are not selected by X. Between
components of G[B] and non-singleton components of G[D] there are M -alternating paths
with vertices alternatingly from A and from singleton components of G[D] since vertices in A

are all matched to D and singleton components in G[D] have all their neighbors in A. Unless
X contains both vertices of a matching edge, it contains the A- or the D-vertices of such
a path. Unmatched components of G[D] and components of G[B] have all neighbors in A.
Matched components C in G[D] with matched neighbor v ∈ A enforce not selecting v for X

unless X spends more than the lower bound; in this way, they lead to selection of D-vertices
on M -alternating paths. Intuitively, this leads to two “factions” that favor either A- or
D-vertices and that are effectively separated when X selects both A- and D-endpoint of a
matching edge. An optimal solution need not separate all neighbors in A of any component
C ∈ Ĉ3, and C may still have a tight vertex cover or paying for a larger cover of C is overall
beneficial. The following auxiliary directed graph H captures this situation and for certain
vertex covers X reachability of v ∈ A in H −Xop will be proved to be equivalent with v /∈ X.

I Definition 14 (auxiliary directed graph H). Let G = (V, E) be a graph and let (A, B, D, M)
be a nice decomposition of G. Define a directed graph H = H(G, A, B, D, M) on vertex set
A by letting (u, v) be a directed edge of H, for u, v ∈ A, whenever there is a vertex w ∈ D

with {u, w} ∈ E \M and {w, v} ∈M .

There are three important properties of vertex covers in relation to the corresponding
graph H. Two of them hold only for what we call dominant vertex covers and their proofs
build on a fairly technical replacement argument. We will define dominant vertex covers
next and then summarize the properties in a single lemma.

I Definition 15 (dominant vertex cover). Let G = (V, E) be a graph and let (A, B, D, M)
be a nice decomposition of G. A vertex cover X ⊆ V of G is dominant if G has no vertex
cover of size less than |X| and no vertex cover of size |X| contains fewer vertices of D.

I Lemma 16. Let G = (V, E) be a graph, let (A, B, D, M) be a nice decomposition of G,
and X a vertex cover of G. Let H = H(G, A, B, D, M) and let Xop = Xop(A1, A3, M, X).
The following properties hold:
1. If X is dominant then Xop is closest to A3 in H.
2. If v ∈ A is reachable from A3 in H −Xop then X does not contain v.
3. If X is dominant and v ∈ A is not reachable from A3 in H −Xop then X contains v.
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All three properties are crucial for applying the matroid tools of Kratsch and Wahl-
ström [16]. Closeness of Xop is needed to translate between reachability and independence
in an appropriate matroid. The latter two properties are required to translate between the
directed graph, where the tools are applied, and the undirected input graph G.

6 Randomized polynomial kernelization

In this section, we describe our randomized polynomial kernelization for vertex cover(k−
(2lp−mm)). For convenience, let us fix an input instance (G, k, `), i.e., G = (V, E) is a graph
for which we want to know whether it has a vertex cover of size at most k; the parameter is
` = k− (2LP (G)−MM(G)), where LP (G) is the minimum cost of a fractional vertex cover
of G and MM(G) is the size of a largest matching.

From previous work of Garg and Philip [10] we know that the well-known linear program-
based preprocessing for vertex cover (cf. [5]) can also be applied to vertex cover(k −
(2lp − mm)); the crucial new aspect is that this operation does not increase the value
k − (2LP −MM). The LP-based preprocessing builds on the half-integrality of fractional
vertex covers and a result of Nemhauser and Trotter [22] stating that all vertices with value
1 and 0 in an optimal fractional vertex cover x : V → {0, 1

2 , 1} are included respectively
excluded in at least one minimum (integral) vertex cover. Thus, only vertices with value
x(v) = 1

2 remain and the best LP solution costs exactly 1
2 times number of (remaining)

vertices. For our kernelization we only require the fact that if G is reduced under this
reduction rule then LP (G) = 1

2 (|V (G)|); e.g., we do not require x : V → { 1
2} to be the unique

optimal fractional vertex cover. Without loss of generality, we assume that our given graph
G = (V, E) already fulfills LP (G) = 1

2 |V |.

I Observation 17. If LP (G) = 1
2 |V | then 2LP (G) −MM(G) = |V | −MM(G). In other

words, if M is a maximum matching of G then the lower bound 2LP (G) − MM(G) =
|V | −MM(G) = |V | − |M | is equal to cardinality of M plus the number of isolated vertices.

As a first step, let us compute the Gallai-Edmonds decomposition V = A ∪̇ B ∪̇D of
G; this can be done in polynomial time.5 Using LP (G) = 1

2 |V | we can find a maximum
matching M of G such that (A, B, D, M) is a nice decomposition of G.

I Lemma 18. Given G = (V, E) with LP (G) = 1
2 |V | and a Gallai-Edmonds decomposition

V = A ∪̇ B ∪̇D of G one can in polynomial time compute a maximum matching M of G

such that (A, B, D, M) is a nice decomposition of G.

We fix a nice decomposition (A, B, D, M) of G obtained via Lemma 18. We have already
learned about the relation of dominant vertex covers X, their intersection with the set A,
and separation of A vertices from A3 in H −Xop, where H = H(G, A, B, D, M). It is safe to
assume that solutions are dominant vertex covers as among minimum vertex covers there is
a minimum intersection with D. We would now like to establish that most components of Ĉ3
can be deleted (while reducing k by the cost for corresponding tight vertex covers). Clearly,
since any vertex cover pays at least for tight covers of these components, we cannot turn a
yes- into a no-instance this way. However, if the instance is no then it might become yes.

5 The main expenditure is finding the set D. A straightforward approach is to compute a maximum
matching Mv of G − v for each v ∈ V . If |Mv| = MM(G) then v is in D as Mv is maximum and
exposes v; otherwise v /∈ D as no maximum matching exposes v.
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In the following, we will try to motivate both the selection process for components of
Ĉ3 that are deleted as well as the high-level proof strategy for establishing correctness. We
will tacitly ignore most technical details, like parameter values, getting appropriate nice
decompositions, etc., and refer to the formal proof instead. Assume that we are holding a
no-instance (G, k, `). Consider for the moment, the effect of deleting all components C ∈ Ĉ3
that have tight vertex covers and updating the budget accordingly; for simplicity, say they
all have such vertex covers. Let (G0, k0, `) be the obtained instance; if this instance is no as
well, then deleting any subset of Ĉ3 also preserves the correct answer (namely: no). Else,
if (G0, k0, `) is yes then pick any dominant vertex cover X0 for it. We could attempt to
construct a vertex cover of G of size at most k by adding back the components of C and
picking a tight vertex cover for each; crucially, these covers must also handle edges between C

and A. Since (G, k, `) was assumed to be a no-instance, there must be too many components
C ∈ Ĉ3 for which this approach fails. For any such component, the adjacent vertices in A\X0

force a selection of their neighbors ZA = N(A)∩C that cannot be completed to a tight vertex
cover of C. To avoid turning the no-instance (G, k, `) into a yes-instance (G′, k′, `) we have
to keep enough components of Ĉ3 in order to falsify any suggested solution X ′ of size at most
k′ for G. The crux is that there may be an exponential number of such solutions and that we
do not know any of them. This is where the auxiliary directed graph and related technical
lemmas as well as the matroid-based tools of Kratsch and Wahlström [16] are essential.

Let us outline how we arrive at an application of the matroid-based tools. Crucially, if C

(as above) has no tight vertex cover containing ZA = N(A) ∩ C then, by Lemma 6, there is
a set Z ⊆ ZA of size at most three such that no tight vertex cover contains Z. Accordingly,
there is a set T ⊆ A \X0 of size at most three whose neighborhood in C contains Z. Thus,
the fact that X0 contains no vertex of T is responsible for not allowing a tight vertex cover
of C. This in turn, by Lemma 16 means that all vertices in T are reachable from A3 in
H −X0

op. Recalling that a set X0
op corresponding to a dominant vertex cover is also closest

to A3, we can apply a result from [16] that generates a sufficiently small representative set
of sets T corresponding to components of Ĉ3. If a dominant vertex cover has any reachable
sets T then the lemma below guarantees that at least one such set is in the output. For
each set we select a corresponding component C ∈ Ĉ3 and then start over on the remaining
components. After ` + 1 iterations we can prove that for any not selected component C,
which we delete, and any proposed solution X ′ for the resulting graph that does not allow a
tight vertex cover for C, there are ` + 1 other selected components on which X ′ cannot be
tight. This is a contradiction as there are at most ` such active components by Lemma 13.

Concretely, we will use the following lemma about representative sets of vertex sets of
size at most three regarding reachability in a directed graph (modulo deleting a small set of
vertices). Notation of the lemma is adapted to the present application. The original result is
for pairs of vertices in a directed graph (see [15, Lemma 2]) but extends straightforwardly to
sets of fixed size q and to sets of size at most q. We provide a proof in the full version for
completeness. Note that the lemma is purely about reachability of small sets in a directed
graph (like the digraph pair cut problem studied in [15, 16]) and we require the structural
lemmas proved so far to negotiate between this an vertex cover(k − (2lp−mm)).

I Lemma 19. Let H = (VH , EH) be a directed graph, let SH ⊆ VH , let ` ∈ N, and let T be a
family of nonempty vertex sets T ⊆ VH each of size at most three. In randomized polynomial
time, with failure probability exponentially small in the input size, we can find a set T ∗ ⊆ T
of size O(`3) such that for any set XH ⊆ VH of size at most ` that is closest to SH if there
is a set T ∈ T such that all vertices v ∈ T are reachable from SH in H −XH then there is a
corresponding set T ∗ ∈ T ∗ satisfying the same properties.
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Using the lemma we will be able to identify a small set Crel of components of Ĉ3 that
contains for each dominant vertex cover X of G of size at most k all active components
with respect to X. Conversely, if there is no solution of size k, we will have retained enough
components of Ĉ3 to preserve this fact. Concretely, the set Crel is computed as follows:
1. Let C0

rel contain all components C ∈ Ĉ3 that have no vertex cover of size at most 1
2 (|C|+1).

Clearly, these components are active for every vertex cover of G. We know from Lemma 13
that there are at most ` such components if the instance is yes. We can use the algorithm
of Garg and Philip [10] to test in polynomial time whether any C ∈ Ĉ3 has a vertex cover
of size at most kC := 1

2 (|C|+ 1): We have parameter value

kC − (2LP (G[C])−MM(G[C])) = 1
2(|C|+ 1)− (|C| − 1

2(|C| − 1)) = 0.

We could of course also use an algorithm for vertex cover parameterized above
maximum matching size, where we would have parameter value 1. If there are more than
` components C with no vertex cover of size 1

2 (|C| + 1) then we can safely reject the
instance. Else, as indicated above, let C0

rel contain all these components and continue.
2. Let i = 1. We will repeat the following steps for i ∈ {1, . . . , ` + 1}.
3. Let T i contain all nonempty sets T ⊆ A of size at most three such that there is a

component C ∈ Ĉ3 \ (C0
rel ∪ . . . ∪ Ci−1

rel ) such that:
a. There is a set Z ⊆ NG(T )∩C of at most three neighbors of T in C such that no vertex

cover of G[C] of size 1
2 (|C|+ 1) contains Z. Note that Z 6= ∅ since C /∈ C0

rel implies
that it has at least some vertex cover of size 1

2 (|C|+ 1).
b. For each C and Z ⊆ C of size at most three, existence of a vertex cover of G[C] of size

kC := 1
2 (|C|+ 1) containing Z can be tested by the algorithm of Garg and Philip [10]

since the parameter value is constant. Concretely, run the algorithm on G[C \ Z] and
solution size kC − |Z| and observe that the parameter value is

(kC − |Z|)− (2LP (G[C \ Z])−MM(G[C \ Z])).

Using that LP (G[C \ Z]) ≥ LP (G[C]) − |Z| and MM(G[C \ Z]) ≤ MM(G[C]) =
1
2 (|C| − 1) this value can be upper bounded by

kC − |Z| − 2LP (G[C]) + 2|Z|+ MM(G[C])

= 1
2(|C|+ 1)− |Z| − |C|+ 2|Z|+ 1

2(|C| − 1) = |Z|.

Since |Z| ≤ 3 the parameter value is at most three and the FPT-algorithm of Garg
and Philip [10] runs in polynomial time.

Intuitively, C must always be active for vertex covers not containing T , but for the formal
correctness proof that we give later the above description is more convenient.

4. Apply Lemma 19 to graph H = H(G, A, B, D, M) on vertex set VH = A, set SH = A3 ⊆
A, integer `, and family T i of nonempty subsets of A of size at most three to compute a
subset T i∗ of T i in randomized polynomial time. The size of |T i∗| is O(`3).

5. Select a set Ci
rel as follows: For each T ∈ T i∗ add to Ci

rel a component C ∈ Ĉ3 \ (C0
rel ∪

. . . ∪ Ci−1
rel ) such that C fulfills the condition for T in Step 3, i.e., such that:

a. There is a set Z ⊆ NG(T )∩C of at most three neighbors of T in C such that no vertex
cover of G[C] of size 1

2 (|C|+ 1) contains Z. (We know that Z must be nonempty.)
Clearly, the size of |Ci

rel| is O(`3). Note that the same component C can be chosen for
multiple sets T ∈ T i∗ but we only require an upper bound on |Ci

rel|
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6. If i < `+1 then increase i by one and return to Step 3. Else return the set Crel :=
⋃`+1

i=0 Ci
rel.

The size of Crel is O(`4) since it is the union of ` + 2 sets that are each of size O(`3).

In particular, we will be interested in the components C ∈ Ĉ3 that are not in Crel. We
call these irrelevant components and let Cirr := Ĉ3 \ Crel denote the set of all irrelevant
components. (Of course we still need to prove that they are true to their name.)

I Lemma 20. Let G′ be obtained by deleting from G all vertices of irrelevant components,
i.e., G′ := G−

⋃
C∈Cirr

C, and let k′ = k −
∑

C∈Cirr

1
2 (|C|+ 1), i.e., k′ is equal to k minus

the lower bounds for vertex covers of the irrelevant components. Then G has a vertex
cover of size at most k if and only if G′ has a vertex cover of size at most k′. Moreover,
k − (2LP (G) −MM(G)) = k′ − (2LP (G′) −MM(G′)), i.e., the instances (G, k, `) and
(G′, k, `′) of vertex cover(k − (2lp−mm)) have the same parameter value ` = `′.

We can now complete our kernelization. According to Lemma 20 we may delete all
irrelevant components and update k. We obtain a graph G′ and integer k′ such that:
1. G′ has a vertex cover of size at most k′ if and only if G has a vertex cover of size at most

k, i.e., the instances (G, k) and (G′, k′) for vertex cover are equivalent.
2. As a part of the proof of Lemma 20 we showed that k′ = |M ′|+ |Ĉ′3|+ ` where Ĉ′3 is the

set of unmatched non-singleton components of G′[D′] with respect to M ′.
3. From Lemma 9 we know that Ĉ′3 is equal to the set Ĉ3 minus the components C ∈ Cirr

that were removed to obtain G′. In other words, Ĉ′3 = Ĉ3 \ Cirr = Crel.
4. We know from Step 6 that |Crel| = O(`4). Hence, |Ĉ′3| = O(`4).
5. Let us consider p := k′ − |M ′|, which is the parameter value of (G′, k′) when considered

as an instance of vertex cover parameterized above the size of a maximum matching.
Clearly, p = k′ − |M ′| = |M ′|+ |Ĉ′3|+ `− |M ′| = ` +O(`4) = O(`4).

6. We can now apply the randomized polynomial kernelization for vertex cover(k −mm)
[16] to get a polynomial kernelization for vertex cover(k − (2lp−mm)). On input of
(G′, k′, p) it returns an equivalent instance (G∗, k∗, p∗) of size O(pc) for some constant c.
We may assume that k∗ = O(pc) since else it would exceed the number of vertices in G∗ and
we may as well return a yes-instance of constant size. Let `∗ = k∗−(2LP (G∗)−MM(G∗)),
i.e., the parameter value of the instance (G∗, k∗, `∗) of vertex cover(k − (2lp−mm)).
Clearly, `∗ ≤ k∗ = O(pc). Thus, (G∗, k∗, `∗) has size and parameter value O(pc).

I Theorem 21. vertex cover(k− (2lp−mm)) has a randomized polynomial kernelization
with error probability exponentially small in the input size.

7 Conclusion

We have presented a randomized polynomial kernelization for vertex cover(k−(2lp−mm))
by giving a (randomized) polynomial parameter transformation to vertex cover(k −mm).
This improves upon the smallest parameter, namely k − LP (G), for which such a result
was known [16]. The kernelization for vertex cover(k − mm) [16] involves reductions
to and from almost 2-sat(k), which can be done without affecting the parameter value
(cf. [23]). We have not attempted to optimize the total size. Given an instance (G, k, `) for
vertex cover(k-(2lp-mm)) we get an equivalent instance of almost 2-sat(k) with O(k24)
variables and size O(k48), which still needs to be reduced to a vertex cover instance.

It seems likely that the kernelization can be improved if one avoids the blackbox use
of the kernelization for vertex cover(k −mm) and the detour via almost 2-sat(k). In
particular, the underlying kernelization for almost 2-sat(k) applies, in part, the same
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representative set machinery to reduce the number of a certain type of clauses. Conceivably
the two applications can be merged, thus avoiding the double blow-up in size. As a caveat,
it appears to be likely that this would require a much more obscure translation into a
directed separation problem. Moreover, the kernelization for almost 2-sat(k) requires an
approximate solution, and it is likely that the same would be true for this approach. It would
of course also be interesting whether a deterministic polynomial kernelization is possible, but
this is, e.g., already not known for almost 2-sat(k) and vertex cover(k −mm).

We find the appearance of a notion of critical sets of size at most three and the derived
separation problem in the auxiliary directed graph quite curious. For the related problem
of separating at least one vertex from each of a given set of triples from some source s by
deleting at most ` vertices (a variant of digraph paircut [16]) there is a natural O∗(3`) time
algorithm that performs at most ` three-way branchings before finding a solution (if possible).
It would be interesting whether a complete encoding of vertex cover(k− (2lp−mm)) into
a similar form would be possible, since that would imply an algorithm that exactly matches
the running time of the algorithm of the algorithm by Garg and Philip [10].
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