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Abstract
The suffix array, perhaps the most important data structure in modern string processing, needs
to be augmented with the longest-common-prefix (LCP) array in many applications. Their
construction is often a major bottleneck especially when the data is too big for internal memory.
We describe two new algorithms for computing the LCP array from the suffix array in external
memory. Experiments demonstrate that the new algorithms are about a factor of two faster than
the fastest previous algorithm.
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1 Introduction

The suffix array [22, 10], a lexicographically sorted list of the suffixes of a text, is the most
important data structure in modern string processing. It is frequently augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest common
prefixes between lexicographically adjacent suffixes. Together they are the basis of powerful
text indexes such as enhanced suffix arrays [1] and many compressed full-text indexes [25].
Modern textbooks spend dozens of pages in describing their applications, see e.g. [28, 21].

The construction of the suffix and LCP arrays has been heavily studied over the years.
Recently, several algorithms and implementations for constructing the suffix array in external
memory have been published [7, 4, 6, 11, 27, 26, 19, 15]. Such algorithms are frequently
needed for handling large texts or text collections that are too big to process in RAM. Some
of the algorithms can also compute the LCP array simultaneously with the suffix array [4, 6]
and others could probably be modified to do so. However, such a modification is unique to
each algorithm and can significantly increase the construction time as well as the disk space
usage of the algorithm [4].

A better solution for constructing the LCP array is to construct the suffix array separately
first and then compute the LCP array from the suffix array. This has been a standard
practice in internal memory for 15 years [18] but became possible in external memory only
recently with the introduction of the LCPscan algorithm [12, 13]. This led to a significant
improvement in construction time as well as in disk space usage over previous approaches.

Furthermore, since LCPscan can be combined with any suffix array construction algorithm,
it can immediately benefit from any progress in the fast developing field of suffix array
construction. For example, the recent pSAscan algorithm [15] can often construct the suffix
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Table 1 The time and I/O complexities of LCPscan and the new algorithms in the standard
external memory model [34]. The parameters are the text length n, the alphabet size σ, the available
RAM M (in units of logn bits), and the disk block size B (in units of logn bits).

Algorithm Time complexity I/O complexity

LCPscan O
(

n2

M(logσ n)2 + n logM
B

n
B

)
O
(

n2

MB(logσ n)2 + n
B

logM
B

n
B

)
Sparse-Φ O

(
n2

M
+ n logM

B

n
B

)
O
(

n2

MB(logσ n)2 + n
B

logM
B

n
B

)
SuccinctIrreducible O

(
n2

M(logσ n)2 + n logn
)

O
(

n2

MB(logσ n)2 + n logσ
B

+ n
B

logM
B

n
B

)

array significantly faster than the LCPscan algorithm can construct the LCP array [13,
Table IX]. Thus there is a need for even faster LCP array construction in external memory.

Our contribution. In this paper, we describe two new external memory algorithms for
constructing the LCP array from the suffix array. Although the new algorithms share some
features with LCPscan their more immediate ancestors are two semi-external algorithms
introduced in [16]. The semi-external algorithms need to keep the text and some additional
small data structures in RAM but the larger suffix and LCP arrays are kept on disk and are
accessed sequentially only. When there is enough RAM, these algorithms are many times
faster than LCPscan.

We show how the requirement to keep the text (and some additional data structures) can
be removed from the algorithms. Although this adds a significant amount of computation
and I/O, the resulting algorithms are still about a factor of two faster than LCPscan in our
experiments. Asymptotically, LCPscan has a slight advantage over the new algorithms (see
Table 1). The main disadvantage of LCPscan is that it relies heavily on external memory
sorting, which is completely avoided by the new algorithms.

The advantage of the new algorithms over LCPscan is particularly large when the text
is only slightly larger than the available RAM. This is a common situation when dealing
with compressed full-text self-indexes [25]. A compressed index can be significantly smaller
than an uncompressed text and fit in RAM even though the text does not. However, the
construction of the index still requires external memory computation.

Related work. Kasai et al. [18] introduced the first (internal memory) algorithm for com-
puting the LCP array from the suffix array. It is simple and fairly fast but requires a lot of
space. Thus a lot of the later work focused on reducing the space [20, 23, 30, 16, 33, 9, 3].
A culmination of this line of work are semi-external algorithms that keep most of the data
structures on disk but need to have at least the text in RAM [30, 16]. There is also recent
research on speeding up LCP computation by using parallelism [8, 32].

External memory algorithms for constructing the suffix array have been around since the
early days [10], but until recently the only way to construct the LCP array when the text
does not fit in RAM was as byproduct of a suffix array construction algorithm [17, 4, 6, 2].
To the best of our knowledge, LCPscan [12] is still the only external memory algorithm that
can construct the LCP array from the suffix array independently of how it was constructed.

2 Basic Data Structures

Throughout we consider a string X = X[0..n) = X[0]X[1] . . .X[n − 1] of |X| = n symbols
drawn from an alphabet of size σ. Here and elsewhere we use [i..j) as a shorthand for
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Table 2 Examples of the arrays used by the algorithms for the text X = babaabbabbab.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
X[i] b a b a a b b a b b a b -

SA[i] 12 3 10 1 7 4 11 2 9 0 6 8 5
BWT[i] b b b b b a a a b $ b a a

Φ[i] 9 10 11 12 7 8 0 1 6 2 3 4 -
LCP[i] - 0 1 2 2 5 0 1 2 3 3 1 4

PLCP[i] 3 2 1 0 5 4 3 2 1 2 1 0 -
i+ PLCP[i] 3 3 3 3 9 9 9 9 9 11 11 11 -

Φ[i] + PLCP[i] 12 12 12 12 12 12 3 3 7 4 4 4 -

[i..j − 1]. For i ∈ [0..n], we write X[i..n) to denote the suffix of X of length n − i, that is
X[i..n) = X[i]X[i+ 1] . . .X[n− 1]. We will often refer to suffix X[i..n) simply as “suffix i”.

The suffix array [22, 10] SA of X is an array SA[0..n] which contains a permutation of
the integers [0..n] such that X[SA[0]..n) < X[SA[1]..n) < · · · < X[SA[n]..n). In other words,
SA[j] = i iff X[i..n) is the (j + 1)th suffix of X in ascending lexicographical order. Another
representation of the permutation is the Φ array [16] Φ[0..n) defined by Φ[SA[j]] = SA[j − 1]
for j ∈ [1..n]. In other words, the suffix Φ[i] is the immediate lexicographical predecessor
of the suffix i, and thus SA[n− k] = Φk[SA[n]] for k ∈ [0..n]. An example illustrating the
arrays is given in Table 2.

Let lcp(i, j) denote the length of the longest-common-prefix (LCP) of suffix i and suffix
j. For instance, in the example of Table 2, lcp(0, 6) = 3 = |bab| and lcp(7, 4) = 5 =
|abbab|. The longest-common-prefix array [22, 18], LCP[1..n], is defined such that LCP[i] =
lcp(SA[i],SA[i−1]) for i ∈ [1..n]. The permuted LCP array [16] PLCP[0..n) is the LCP array
permuted from the lexicographical order into the text order, i.e., PLCP[SA[j]] = LCP[j] for
j ∈ [1..n]. Then PLCP[i] = lcp(i,Φ[i]) for all i ∈ [0..n). Table 2 shows example LCP and
PLCP arrays. The last two rows in Table 2 illustrate the following property of the PLCP
array, which is the basis of all efficient algorithms for LCP array construction.

I Lemma 1 ([13]). Let i, j ∈ [0..n). If i ≤ j, then i+PLCP[i] ≤ j+PLCP[j]. Symmetrically,
if Φ[i] ≤ Φ[j], then Φ[i] + PLCP[i] ≤ Φ[j] + PLCP[j].

The succinct PLCP array [31] PLCPsucc[0..2n) represents the PLCP array using 2n bits.
Specifically, PLCPsucc[j] = 1 if j = 2i+ PLCP[i] for some i ∈ [0..n), and PLCPsucc[j] = 0
otherwise. Notice that the value 2i + PLCP[i] must be unique for each i by Lemma 1.
Any lcp value can be recovered by the equation PLCP[i] = select(PLCPsucc, i)− 2i, where
select(PLCPsucc, i) returns the location of the (i+ 1)th 1-bit in PLCPsucc. The select query
can be answered in O(1) time given a precomputed data structure of o(n) bits [5, 24].

For q ≥ 1, the sparse PLCP array PLCPq[0..dn/qe) is defined by PLCPq[i] = PLCP[iq],
i.e., it contains every qth entry of PLCP. It can be used as a compact representation of the
full PLCP array because the other entries can be bounded using the following lemma.

I Lemma 2 ([16]). For any i ∈ [0..n), let a = bi/qc and b = i mod q, so that i = aq + b. If
(a+ 1)q ≤ n− 1, then PLCPq[a]− b ≤ PLCP[i] ≤ PLCPq[a+ 1] + q− b. If (a+ 1)q > n− 1,
then PLCPq[a]− b ≤ PLCP[i] ≤ n− i ≤ q.

Let the slack, denoted by slackq(i), be the difference of the upper and lower bounds for
PLCP[i] given by Lemma 2. Although there is no non-trivial bound on an individual slack,
the sum of the slacks is bounded by the following lemma.
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I Lemma 3 ([16]).
∑
i∈[0..n) slackq(i) ≤ (q − 1)n+ q2.

The Burrows–Wheeler transform BWT[0..n] of X is defined by BWT[i] = X[SA[i]− 1] if
SA[i] > 0 and otherwise BWT[i] = $, where $ is a special symbol that does not appear in the
text. We say that that an lcp value LCP[i] = PLCP[SA[i]] is reducible if BWT[i] = BWT[i−1]
and irreducible otherwise. The significance of reducibility is summarized in the following two
lemmas.

I Lemma 4 ([16]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i − 1] − 1 and Φ[i] =
Φ[i− 1] + 1.

I Lemma 5 ([16, 14]). The sum of all irreducible lcp values is ≤ n logn.

3 Basic Semi-External Algorithms

We will next describe the two semi-external algorithms introduced by Kärkkäinen, Manzini
and Puglisi [16]. The semi-external versions are only briefly mentioned in [16] but they are
essentially the same as the space-efficient versions. Both algorithms need enough RAM for
the text and for either the succinct or the sparse PLCP array. The larger data structures SA
and LCP are stored on disk in the semi-external algorithms.

The first algorithm, which we call Sparse-Φ, performs the following main steps:
1. Compute a sparse version Φq of the Φ-array defined so that PLCPq[i] = lcp(qi,Φq[i]).
2. Compute PLCPq using Φq. When computing PLCPq[i], we take advantage of the fact

that PLCPq[i] ≥ PLCPq[i− 1]− q (Lemma 1).
3. Compute LCP using PLCPq based on Lemma 2.
The first two steps need O(n) time and the third step O(qn) time. The pseudocode for
Sparse-Φ is given in Figure 1. All accesses to SA and LCP are sequential allowing them to
be stored on disk.

The second algorithm is called SuccinctIrreducible and has the following steps:
1. Compute irreducible lcp values and store them in the succinct PLCP array PLCPsucc.
2. Compute the reducible lcp values using Lemma 4 and store them in PLCPsucc.
3. Compute LCP from PLCPsucc.
During steps 1 and 2 we also need a bitvector R[0..n] for marking the irreducible positions
in PLCP. The first step needs O(n logn) time by Lemma 5, and the other steps need O(n)
time. Again, all accesses to SA and LCP are sequential.

The algorithm also uses BWT (line 4). Since BWT[i] = X[SA[i]−1] (unless SA[i] = 0), we
can compute the values on-the-fly when the text X is in RAM as was done in [16]. However,
we want to get rid of the requirement that the text is in RAM and instead assume that the
BWT is available on disk and is accessed sequentially during the algorithm.

4 Moving Text into External Memory

The semi-external algorithms described above need to have the text X in RAM. While a
single comparison of two suffixes is sequential, the first character accesses in each comparison
are random accesses often enough so that any straightforward way to deal with texts larger
than RAM will not work. Instead, the computation in the steps involving text accesses
have to be completely reorganized as will be described in this section. Here we still assume
that Φq, PLCPq, PLCPsucc and R fit in RAM; handling them in a fully external memory
algorithm is covered in the next section.
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Sparse-Φ
— Step 1: Compute Φq

1: for i← 1 to n do
2: if SA[i] mod q = 0 then
3: Φq[SA[i]/q]← SA[i−1]
— Step 2: Compute PLCPq using Φq

4: `← 0
5: for i← 0 to dn/qe − 1 do
6: j ← Φq[i]
7: while X[qi+`] = X[j+`] do
8: `← `+1
9: PLCPq[i]← `

10: `←max (`− q, 0)
— Step 3: Compute LCP using PLCPq

11: for i← 1 to n do
12: j ← SA[i− 1]
13: k ← SA[i]
14: k′ ← bk/qc
15: `← PLCPq[k′]− (k − k′q)
16: `←max (`, 0)
17: while X[k+`] = X[j+`] do
18: `← `+1
19: LCP[i]← `

SuccinctIrreducible
— Step 1: Compute irreducible lcps

1: PLCPsucc[0..2n)← (0, 0, . . . , 0)
2: R[0..n]← (0, 0, . . . , 0, 1)
3: for i← 1 to n do
4: if BWT[i] 6= BWT[i− 1] then
5: j ← SA[i− 1]; k ← SA[i]
6: R[k]← 1
7: `← 0
8: while X[k+`] = X[j+`] do
9: `← `+1
10: PLCPsucc[2k + `]← 1
— Step 2: Fill in reducible lcps

11: i← 0; j ← 0
12: while i < n do
13: while PLCPsucc[j] = 0 do j ← j + 1

— Now j = PLCP[i] + 2i
14: i← i+ 1; j ← j + 1
15: while R[i] = 0 do
16: PLCPsucc[j]← 1
17: i← i+ 1; j ← j + 1
— Step 3: Compute LCP from PLCPsucc

18: Construct select-structure for PLCPsucc

19: for j ← 1 to n do
20: i← SA[j]
21: LCP[j]← select(PLCPsucc, i)− 2i

Figure 1 Two semi-external algorithms.

We will analyze the algorithms in the standard external memory model [34], where the
memory system consists of a fast random access memory (RAM) of size M and a slow (disk)
memory of unbounded size divided into blocks of size B, both measured in units of O(logn)
bits. We are primarily interested in the I/O complexity which measures the number of blocks
read from or written to disk. Notice that we can fit O(M logσ n) characters in RAM and
O(B logσ n) characters in a disk block.

All text accesses in both algorithms happen in loops where the goal is to compute
lcp(i,Φ[i]) for some i. The basic idea is to divide the text into segments of size at most
m = O(M logσ n) such that two segments fit in RAM. For each pair of segments at a time, we
load them into RAM and compute lcp(i,Φ[i]) for each i such that i and Φ[i] are in those two
segments. Further details we will consider separately for each step involving text accesses.

Step 1 in SuccinctIrreducible. The computation on lines 1–10 in SuccinctIrreducible
including the text access loop on line 8 is replaced by the following steps:
1.1. Scan SA and BWT to form a pair (i,Φ[i]) for each i such that PLCP[i] is irreducible.

The pairs are written to disk where there is a separate file for each pair of text segments.
Simultaneously, compute the bitvector R, which is kept in RAM during the step and
written to disk at the end of the step.

1.2. For each pair of text segments, load them to RAM and compute PLCP[i] = lcp(i,Φ[i])
for each pair (i,Φ[i]) obtained from the associated file. For each computed PLCP[i], we
store the value 2i+ PLCP[i] to disk.

1.3. With PLCPsucc in RAM, read the output of the previous step and set the corresponding
bits of PLCPsucc to 1. Then read R from disk.

ESA 2016
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The rest of the algorithm is as in Section 3. The total number of additional I/Os resulting
from this procedure is O((n/ logσ n)2/(MB)).

An additional detail to consider in step 1.2 is that although i and Φ[i] are in the segments
in RAM, the common prefix of those suffixes may continue beyond the end of the segments.
To deal with this, we also keep the first B logσ n symbols after the segments in RAM. These
are called overflow buffers. If the comparison continues beyond the overflow buffers, we
read the relevant parts of the text from disk sequentially. Since the total length of the
irreducible lcps is O(n logn), the additional number of I/Os from this is never more than
O((n logn)/(B logσ n)) = O((n log σ)/B).

Step 3 in Sparse-Φ. The loop on lines 11-19 in Sparse-Φ including the text access loop
on line 17 is replaced with the following steps:
3.1. Scan SA to generate all (i,Φ[i]) pairs. For each pair use PLCPq (stored in RAM) to

compute the lower bound `min (and the upper bound `max) for PLCP[i]. Write the pair
(i+ `min,Φ[i] + `min) to disk, where there is a separate file for each pair of text segments.

3.2. For each pair of text segments, load them to RAM and compute lcp(i, j) for each pair
(i, j) obtained from the associated file. The resulting value lcp(i, j) is written to disk to a
separate file for each pair of text segments. The order of the lcp values in the output file
must be the same as the order of the pairs in the input file.

3.3. Scan SA to generate all (i,Φ[i]) pairs. For each pair, compute `min as in step 1 and read
the value `′ = lcp(i+`min,Φ[i]+`min) from the appropriate file. Then PLCP[i] = `min +`′

is the next value in the LCP array.
The total number of additional I/Os from reading text segments is O((n/ logσ n)2/(MB)).

Again, we have to deal with lcp comparisons continuing beyond the end of the segments in
step 3.2. In step 3.1, we use the upper bound `max to determine whether such an overflow is
possible, and if it is, we generate additional pairs/triples for each possible boundary crossing.
For example, if for some `′ ∈ [`min..`max] we find out that i+ `′ is at a segment boundary,
we generate the triple (i+ `′,Φ[i] + `′, `max − `′). The third value is used as an upper bound
for the length of the comparison, which might be needed in the case where lcp(i,Φ[i]) < `′.
Otherwise, the triple is treated as a normal pair in step 3.2. All the comparisons in step 3.2
end at a segment boundary. In step 3.3, we generate pairs and triples as in step 3.1, read the
corresponding lcp values from the appropriate files, and combine them to obtain the final lcp
value. The total number of the extra triples is at most O(n+ qn/(M logσ n)). Also notice
that the total number of character comparisons is still bounded by O(qn).

Step 2 in Sparse-Φ. The third and final place with a text access loop is on line 7 in
algorithm Sparse-Φ. In this case, the text segment size is 2m and only one segment is kept
in RAM while the rest of the text is scanned sequentially. The loop on lines 5–10 is replaced
with the following steps:
2.1. Scan Φq to generate all pairs (i,Φ[i]) such that i is a multiple of q. Write the pairs to

disk into the file associated with the text segment that contains Φ[i]. Notice that the
pairs in each file are sorted by i.

2.2. For each segment, load the segment into RAM. Read the pairs (i,Φ[i]) from the
associated file while simultaneously scanning the text so that the position X[i] is reached
when the pair (i,Φ[i]) is processed. For each pair, compute lcp(i,Φ[i]) and write it to
disk into a separate file for each segment. When computing ` = lcp(i,Φ[i]) we use the
fact that ` ≥ lcp(i′,Φ[i′])− (i− i′), where (i′,Φ[i′]) is the pair processed just previously.
This ensures that the text scan never needs to backtrack.
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2.3. Scan Φq and for each i ∈ [0..dn/qe) read PLCPq[i] from the file associated with the text
segment containing Φq[i].

The total number of additional I/Os from scanning the text is O((n/ logσ n)2/(MB)).
Here too, we have the possibility that the position Φ[i] + ` moves beyond the end of the

segment during the comparison. We deal with this again by having an overflow buffer of
O(B logσ n) characters and by reading text from disk when the overflow buffer is not enough.
Then the extra I/Os for reading the positions Φ[i] + ` is never more than the regular I/Os
for reading the positions i+ `.

As a final note, both algorithms distribute pairs into O(s2) files at some point, where
s = O(n/(M logσ n)) is the number of segments. To do this efficiently we need to have enough
RAM for O(s2) buffers of size O(B) each, which means that we must have s = O(

√
M/B) and

thus n = O
(
M
√
M/B logσ n

)
. We can get rid of this constraint by doing the distribution in

multiple rounds. That is, we first distribute the pairs into O(M/B) files and then those files
are divided into smaller files and so on. The I/O complexity of the multiround distribution is
the same as for external memory sorting, O((n/B) logM/B(n/B)), and the time complexity
is O(n logM/B(n/B)).

5 Fully External Memory Algorithms

Let us now complete the transformation of the semi-external algorithms into external memory
algorithms by describing how to deal with Φq, PLCPq, PLCPsucc and R.

Consider first Sparse-Φ. We set q = min{n/M,M logσ n}. This choice ensures that
the number of extra triples generated in Step 3 is O(n + qn/(M logσ n)) = O(n). When
n ≤M2 logσ n, we have q = Θ(n/M) so that Φq and PLCPq fit in RAM and the algorithm
is exactly as described above. When n > M2 logσ n, we divide Φq and PLCPq into s =
O(n/(M2 logσ n)) segments that fit in RAM. In Steps 1 and 3, instead of scanning SA once,
we scan it s times, once for each segment. Step 3 also produces s subsequences of LCP
which are then merged with the help of one more scan of SA. The additional I/O from the
extra scans is O(n2/(M2B logσ n)), which is less than the I/O for text scanning (assuming
M = Ω(logσ n)).

The time complexity has three main components: O(qn) time for comparing suffixes,
O(n2/(M(logσ n)2)) for loading text segments and scanning the text, and O(n logM/B(n/B))
time for multiround distribution. This gives the following result.

I Theorem 6. Given a text of length n over an integer alphabet [0..σ) and its suffix array,
the associated LCP array is computed by Sparse-Φ in

O
(

min
{
n2

M
,nM logσ n

}
+ n2

M(logσ n)2 + n logM
B

n

B

)
= O

(
n2

M
+ n logM

B

n

B

)
time

and O
(

n2

MB(logσ n)2 + n

B
logM

B

n

B

)
I/Os using O(n/B) blocks of disk space.

Consider then SuccinctIrreducible. Since we cannot make PLCPsucc and R arbitrarily
small, we must be able to handle them even if they do not fit in RAM. We do this by dividing
them into segments that are small enough. Consider first the computation of R. While
scanning BWT and SA we create a list of irreducible positions, which are then distributed into
files corresponding to segments of R. Then each segment of R can be computed by scanning
the corresponding file. Similarly, the irreducible bits in PLCPsucc are set one segment at
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a time by reading the 2i + PLCP[i] values from disk, which are now in separate files for
each segment. The reducible bits in PLCPsucc can be easily set by scanning PLCPsucc and
R simultaneously. None of this increases the complexity of the algorithm.

Finally, the last stage of SuccinctIrreducible is performed as follows when PLCPsucc
does not fit in RAM:
3.1. Scan SA and store each value SA[i] into the file corresponding to the PLCPsucc segment

that contains the (SA[i] + 1)th 1-bit in PLCPsucc.
3.2. For each segment of PLCPsucc read the SA[i] values from the corresponding file, compute

LCP[i] by a select query, and write it to a separate file for each segment.
3.3. Scan SA and for each element SA[i] determine which segment file contains LCP[i] and

move it to the final output file.
Again, none of this increases the complexity of the algorithm.

The following theorem summarizes the complexities of SuccinctIrreducible. The
O(n logn) and O((n log σ)/B) terms come from the irreducible lcp comparisons.

I Theorem 7. Given a text of length n over an integer alphabet [0..σ) and its suffix array
and BWT, the associated LCP array is computed by SuccinctIrreducible in

O
(

n2

M(logσ n)2 + n logn
)

time and O
(

n2

MB(logσ n)2 + n log σ
B

+ n

B
logM

B

n

B

)
I/Os

using O(n/B) blocks of disk space.

In practice, we have noticed that the n select queries performed at the last stage of
SuccinctIrreducible often dominate the time. In the implementation, we have replaced
PLCPsucc with the plain PLCP array, but only in the last stage. That is, instead of loading a
segment of PLCPsucc into RAM, we construct a segment of PLCP in RAM by reading a part
of PLCPsucc from disk. Then we use simple accesses to PLCP instead of select queries on
PLCPsucc. This modification does not affect the time or I/O complexities of the algorithm.

As a final note, SuccinctIrreducible needs the BWT. Any suffix array construction
algorithm can be modified to compute the BWT too with little overhead by storing BWT[i]
together with SA[i]. Since the algorithm has to access X[SA[i]] at some point, we can compute
BWT[i] at the same time. We have also implemented a simple external memory algorithm
for computing BWT from SA and show its performance in the next section.

6 Experimental Results

Algorithms. We performed experiments using the following algorithms:
LCPscan, the fastest external-memory LCP array construction algorithm in previous
studies [13]. The number of rounds of partial processing in LCPscan was set to 4, as this
gives a similar peak disk space usage (∼ 16n bytes) to the new algorithms presented in
this paper (see [13] for more details). In our experiments LCPscan serves as a baseline.
SE-SΦ, the semi-external version of the Sparse-Φ algorithm described by Kärkkäinen et
al. [16] (see also Section 3 of this paper).
EM-SΦ, the fully external-memory version of the Sparse-Φ algorithm described in
Sections 3–5. The algorithm is the first contribution of this paper.
EM-PLCP, the external-memory version of SuccinctIrreducible algorithm described
in this paper restricted to perform only Step 1 and 2, i.e., the algorithm produces the
PLCPsucc array but does not convert it to LCP array. We separately consider the construc-
tion of PLCPsucc because first, for some applications computing PLCPsucc is sufficient
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Table 3 Statistics of data used in the experiments. In addition to basic parameters, we show the
percentage of irreducible lcp values among all lcp values (expression 100r/n, where r denotes the
number of irreducible lcps) and the average length of the irreducible lcp value (Σr/r, where Σr is
the sum of all irreducible lcps).

Name n/230 σ 100r/n Σr/r
kernel 128.0 229 0.09 1494.76
geo 128.1 211 0.15 1221.49
wiki 128.7 213 16.71 29.40
dna 128.0 6 18.46 23.79
dna 512.0 6 16.13 27.25
debruijn 128.0 2 99.26 35.01

and avoiding the conversion to LCP array is a big time save, and second, this allows us
to visualize differences in the methods that convert PLCPsucc to LCP. Note: small files
than can be handled by the original semi-external version of SuccinctIrreducible are
processed using the original algorithm from [16]. The increase in I/O and runtime that
occurs when we switch to fully-external procedure is discussed in one of the experiments.
SE-SI, the semi-external version of the SuccinctIrreducible algorithm. It first runs
EM-PLCP and then converts PLCPsucc (held in RAM) to LCP using select queries as
originally described [16]. To implement the select queries, we use the variant of the darray
data structure [29] described in [16]. We set the darray overhead to 6.25% as we did not
observe a significant speedup from using more space (e.g., increasing the overhead to 50%
speeds up select queries only by about 10%).
This algorithm is essentially identical to the original semi-external algorithm in [16] when
the text and the bitvectors R[0..n] and PLCPsucc[0..2n) fit in RAM, but it can also extend
beyond that limit since it uses EM-PLCP. It is still a semi-external algorithm though as
it needs to have enough RAM for PLCPsucc[0..2n) in the last stage.
EM-SI, the fully-external version of the SuccinctIrreducible algorithm described in
Sections 3–5. It first uses EM-PLCP to compute PLCPsucc and then computes LCP
using plain accesses to PLCP segments instead of select queries on PLCPsucc segments
as described in Section 5. The time and I/O of EM-PLCP is included in the runtime and
I/O volume of EM-SI. Together with EM-PLCP this algorithm is the second contribution
of this paper.

All algorithms use 8 bits to represent characters and 40 bits to represent integers. The
implementations of all LCP array construction algorithms used in experiments are available
at http://www.cs.helsinki.fi/group/pads/.

Datasets. For the experiments we used the following files varying in the number of repeti-
tions and alphabet size (see Table 3 for some statistics):

kernel: a concatenation of ∼10.7 million source files from over 300 versions of Linux
kernel 1. This is an example of highly repetitive file;
geo: a concatenation of all versions (edit history) of Wikipedia articles about all countries
and 10 largest cities in the XML format. The resulting file is also highly repetitive;

1 http://www.kernel.org/
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wiki: a concatenation of English Wiki dumps (Wikipedia, Wikisource, Wikibooks,
Wikinews, Wikiquote, Wikiversity, and Wikivoyage 2) dated 20160203 in XML;
dna: a collection of DNA reads (short fragments produced by a sequencing machine) from
multiple human genomes3 filtered from symbols other than {A, C, G, T, N} and newline;
debruijn: a binary De Bruijn sequence of order k is an artificial sequence of length 2k+k−1
than contains all possible binary k-length substrings. A file of length n is obtained as a
prefix of a De Bruijn sequence of order dlogne. It contains nearly n irreducible lcps with
total length of nearly n logn (see [16, Lemma 5]) which is the worst case for LCPscan,
SE-SI and EM-SI algorithms.

Setup. We performed experiments on a machine equipped with two six-core 1.9GHz Intel
Xeon E5-2420 CPUs with 15MiB L3 cache and 120GiB of DDR3 RAM. For experiments
we limited the RAM in the system (with the kernel boot flag) to 4GiB and all algorithms
were allowed to use 3.5GiB. The machine had 6.8TiB of free disk space striped with RAID0
across four identical local disks achieving a (combined) transfer rate of about 480MiB/s.

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs were com-
piled using g++ version 4.9.2 with -O3 -DNDEBUG options. All tested LCP array construction
algorithms are sequential, i.e., only a single thread of execution was used for computation.
In the last experiment we used parallel algorithms to compute SA and BWT in order to
demonstrate the performance of currently fastest methods but those measurements have no
bearing on the findings of this paper. All reported runtimes are wallclock (real) times.

Experiments. In the first experiment we compare the scalability of the new external-memory
LCP array construction algorithms described in this paper (EM-SΦ, EM-SI) to LCPscan.
We executed the algorithms on increasing length prefixes of testfiles using 3.5GiB of RAM
and measured the runtime and the I/O volume.

The results are presented in Figure 2. The performance of EM-SI, similarly to LCPscan,
is related to the number of irreducible lcp values (see Table 3). However, avoiding the
external-memory sorting gives EM-SI a consistent speed and I/O advantage (of about 60n
bytes) over LCPscan. The EM-SI algorithm is at least two times faster than LCPscan and
even more on highly repetitive data. The computation time can be further reduced by
30–65% if one stops at the PLCPsucc array. Overall, if the BWT is given as input alongside
the text and the suffix array, EM-SI is the fastest way to compute the LCP array. Even if we
include the cost of the standalone construction of BWT from the suffix array, the algorithm
still outperforms LCPscan.

The performance of EM-SΦ is also related to the number of irreducible lcp values though
in a different way than EM-SI. Whenever during step 3.1 the exact value of PLCP[i] can be
deduced from the lower/upper bounds on PLCP[i] (i.e., `min = `max), the algorithm does
not write any data to disk. All other pairs are written to disk and processed in step 3.2,
which usually dominates the runtime. From Lemma 4 we expect the number of skipped
pairs to be high if the number of irreducible lcp values is low, and thus the algorithm runs
faster and uses less I/O (by about 20n bytes) on kernel and geo testfiles. However, even on
the non-repetitive data, EM-SΦ is still about two times faster than LCPscan. Furthermore,
when BWT is not available it usually also outperforms EM-SI, making it the algorithm of
choice in this case.

2 http://dumps.wikimedia.org/
3 http://www.1000genomes.org/

http://dumps.wikimedia.org/
http://www.1000genomes.org/
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Figure 2 Comparison of the runtime (left; in seconds per MiB of input text) and I/O volume
(right; in bytes per input symbol) of the new external-memory LCP array construction algorithms
(EM-SΦ, EM-SI) to LCPscan. All algorithms were allowed to use 3.5GiB of RAM. The unlabeled
curve shows the runtime and I/O volume of the standalone external-memory construction of BWT
from SA.
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Figure 3 Comparison of the runtime and I/O volume of the new external-memory LCP array
construction algorithms (EM-SΦ, EM-SI), to their original semi-external counterparts (SE-SΦ,
SE-SI) [16]. The setup is analogous to Figure 2, i.e., all algorithms are using 3.5GiB of RAM. The
unlabeled curve shows the runtime and I/O volume of the standalone external-memory construction
of BWT from SA (when the text fits in RAM, we run a semi-external version that needs less I/O).

In the second experiment we compare the EM-SΦ and EM-SI algorithms to their semi-
external counterparts SE-SΦ and SE-SI. More precisely, we analyse the transition between
semi-external and fully-external algorithms in terms of runtime and I/O volume.

The results are given in Figure 3. First, observe that at the point where we no longer
can accommodate the text and bitvectors PLCPsucc and R in RAM (i.e., between 2 and
3GiB prefixes) the I/O volume of EM-PLCP (and thus also SE-SI and EM-SI) increases
proportionally to the number of irreducible lcp values (up to 30n bytes for debruijn). The
extra I/O accounts mostly for scanning and does not significantly affect the runtime. Second,
note the difference of 25n bytes in the I/O volume of SE-SI and EM-SI. While SE-SI uses
the original semi-external method that performs select-queries over PLCPsucc bitvector (kept
in RAM) to convert PLCPsucc into LCP array [16], EM-SI uses the fully external-memory
(and thus more I/O-demanding) method that does not require PLCPsucc to fit in RAM,
and furthermore, replaces the select-queries with simple lookups (see Section 5). The I/O
increase is however compensated by faster computation and the fully-external method is
either comparable (kernel, debruijn) or faster (wiki) than the semi-external method.
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Table 4 Experimental results on the 512GiB instance of dna testfile using 120GiB of RAM.
The disk usage column gives a peak disk space usage including the input and output of the given
algorithm. pEM-BWT is a simple external-memory algorithm constructing BWT from SA. For
comparison with pSAscan we also parallelized the computation in pEM-BWT.

Algorithm Runtime I/O volume Disk usage
pSAscan 2.51 days 16.63TiB 3.75TiB
pEM-BWT 0.54 days 12.00TiB 5.50TiB
LCPscan 5.04 days 62.22TiB 6.33TiB
EM-SI 2.16 days 25.89TiB 6.12TiB
EM-SΦ 2.69 days 20.77TiB 5.50TiB
EM-PLCP 0.77 days 8.27TiB 4.36TiB

The transition between the SE-SΦ algorithm and EM-SΦ shows an increase in I/O by a
factor 2–3 at the point where the text no longer fits in RAM. This is due to the fact that
SE-SΦ reads the text once while EM-SΦ reads it in steps 2.2 and 3.2. Similarly, while SE-SΦ
reads SA once in Step 3, EM-SΦ needs two scans (steps 3.1 and 3.3). Moreover EM-SΦ
computes the values `min and `max twice for every processed pair (step 3.1 and 3.3), whereas
SE-SΦ does it only once. This causes a slowdown by a factor 1.6–2.3 at the transition point,
since these computations involve random accesses to the PLCPq array and thus attract
multiple cache misses. Note however that the increase in runtime and I/O volume is much
bigger if we consider the transition from SE-SΦ to LCPscan.

In the last experiment we compare the performance of the new external-memory algorithms
EM-SI and EM-SΦ to LCPscan on a full 512GiB instance of the dna file using all 120GiB of
RAM available on our test machine. Unlike in previous experiments, here we use LCPscan
with six rounds of processing since the four-round version ran out of disk space. The
performance of both modes is very similar.

The results are given in Table 4. For comparison we also present the resources used
by pSAscan [15] – currently the fastest practical way to construct suffix arrays in external
memory, and pEM-BWT – a simple parallel BWT-from-SA construction. Note that in all
previous experiments the algorithm for computing BWT from SA was sequential. Here
we decided to use the parallel version to make it comparable to pSAscan. The results are
consistent with previous experiments, i.e., both EM-SI and EM-SΦ are about two times
faster than LCPscan. When BWT is available alongside the suffix array, the processing time
is smaller for EM-SI. Otherwise, we need to additionally run a separate BWT construction
and as a result EM-SΦ has a slight edge over EM-SI. Finally, if one wishes to only compute
the PLCP array the processing time of EM-SI is reduced by about 65%.

Lastly, note that the new algorithms use a fairly moderate disk space. For EM-PLCP a
peak disk space usage is either achieved after step 1.1 where in addition to input, we have 2r
integers and the R bitvector stored on disk (recall that r is the number of irreducible lcp
values) or after step 2.3 where in addition to input we store the PLCPsucc bitvector on disk.
The resulting disk usage is 7.125n+ max(10r, 0.125n) bytes, assuming 40-bit integers. Given
that for the input instance we have 10r = 1.61n (see Table 3), the peak disk usage is 8.735n,
i.e., 4.36TiB. For EM-SI we obtain the full LCP array in the last stage and thus the disk
usage increases to 7.125n + max(10r, 5.125n) bytes, i.e., 12.25n for the tested input. For
EM-SΦ the disk usage is either maximized after step 3.1 or at the end of computation and is
equal to at most 16n bytes (we ignore the space needed for PLCPq). In practice it can be
less due to skipped (i,Φ[i]) pairs (see the discussion above) but it cannot be easily expressed
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in terms and n and r. In our experiment 55% of all pairs were skipped resulting in a peak
disk usage of about 11n bytes or 5.5TiB. We leave details for the full version of the paper.

7 Concluding Remarks

We have described two new external memory algorithms for LCP array construction. Our
experiments show that the new algorithms are about two times faster than the state of the
art. A common feature of the new algorithms is their avoidance of external-memory sorting.

One of the possible avenues for future work is reducing the disk space usage. In LCPscan
this is accomplished by splitting and processing the input text in multiple parts. Similar par-
titioning techniques can be applied to reduce the disk space usage of the presented algorithms.
Although the new algorithms are already quite disk space efficient, with partitioning their
peak disk space usage can be guaranteed to be little more than what is needed for the input
and the output.

Another possibility for improvement is to use parallelism. Both of the new algorithms
are compute-bound rather than I/O-bound in some stages of the computation. Parallel
computation in such stages can reduce the running time further.
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