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Abstract
We consider the #P-complete problem of counting the number of linear extensions of a poset
(#LE); a fundamental problem in order theory with applications in a variety of distinct areas. In
particular, we study the complexity of #LE parameterized by the well-known decompositional
parameter treewidth for two natural graphical representations of the input poset, i.e., the cover
and the incomparability graph. Our main result shows that #LE is fixed-parameter intractable
parameterized by the treewidth of the cover graph. This resolves an open problem recently posed
in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that #LE becomes
fixed-parameter tractable parameterized by the treewidth of the incomparability graph.
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1 Introduction

Counting the number of linear extensions of a poset is a fundamental problem of order
theory that has applications in a variety of distinct areas such as sorting [30], sequence
analysis [25], convex rank tests [27], sampling schemes of Bayesian networks [28], and
preference reasoning [24]. Determining the exact number of linear extensions of a given
poset is known to be #P-complete [6] already for posets of height at least 3. Informally, #P-
complete problems are as hard as counting the number of accepting paths of any polynomial
time nondeterministic Turing machine, implying that such problems are not tractable unless
P = NP. The currently fastest known method for counting linear extensions of a general
n-element poset is by dynamic programming over the lattice of downsets and runs in time
O(2n · n) [10]. Polynomial time algorithms have been found for various special cases such as
series-parallel posets [26] and posets whose cover graph is a (poly)tree [2]. Fully polynomial
time randomized approximation schemes are known for estimating the number of linear
extensions [13, 7].

Due to the inherent difficulty of the problem, it is natural to study whether it can
be solved efficiently by exploiting the structure of the input poset. In this respect, the
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parameterized complexity framework [12, 9] allows a refined view of the interactions between
various forms of structure in the input and the running time of algorithms. The idea of the
framework is to measure the complexity of problems not only in terms of input sizes, but
also with respect to an additional numerical parameter. The goal is then to develop so-called
fpt algorithms, which are algorithms that run in time f(k)nO(1) where n is the input size and
f is a computable function depending only on the parameter k. A less favorable outcome is
a so-called XP algorithm, which runs in time nf(k); the existence of such algorithms then
gives rise to the respective complexity classes FPT (fixed-parameter tractable) and XP.

The first steps in this general direction have been taken, e.g., in [19], using the decompo-
sition diameter as a parameter, in [15] using a parameter called activity for N-free posets,
and very recently in [22], where the treewidth of the so-called cover graph was considered as
a parameter. Also the exact dynamic programming algorithm [10] can be shown to run in
time O(nw · w) for a poset with n elements and width w (the size of the largest anti-chain).
Interestingly, none of these efforts has so far led to an fpt algorithm.

We believe that this uncertainty about the exact complexity status of counting linear
extensions with respect to these various parameterizations is at least partly due to the fact
that we deal with a counting problem whose decision version is trivial, i.e., every poset has at
least one linear extension. This fact makes it considerably harder to show that the problem
is fixed-parameter intractable; in particular, the usual approach for counting problems based
on parsimonious reductions (i.e., polynomial time one-one reductions) fails. On the other
hand, the same predicament makes studying the complexity of counting linear extensions
significantly more interesting, as noted also by Flum and Grohe [16]:

The theory gets interesting with those counting problems that are harder than their
corresponding decision versions.

1.1 Results
In this paper we study the complexity of counting linear extensions when the parameter is the
treewidth – a fundamental graph parameter which has already found a plethora applications
in many areas of computer science [18, 17, 29]. In particular, we settle the fixed-parameter
(in)tractability of the problem when parameterizing by the treewidth of two of the most
prominent graphical representations of posets, the cover graph (also called the Hasse diagram)
and the incomparability graph.

Our main result then provides the first evidence that the problem does not allow for
an fpt algorithm parameterized by the treewidth of the cover graph unless FPT = W[1].
We remark that this complements the XP algorithm of [22] and resolves an open problem
recently posed in the Dagstuhl seminar on Exact Algorithms [21]. The result is based on a
so-called fpt turing reduction from Equitable Coloring parameterized by treewidth [14],
and combines a counting argument with a fine-tuned construction to link the number of
linear extensions with the existence of an equitable coloring. To the best of our knowledge,
this is the first time this technique has been used to show fixed-parameter intractability of a
counting problem.

We complement this negative result by obtaining an fpt algorithm for the problem when
the parameter is the treewidth of the incomparability graph of the poset. To this end, we use
the so-called combined graph (also called the cover-incomparability graph [5]) of the poset,
which is obtained from the cover graph by adding the edges of the incomparability graph. We
employ a special normalization procedure on a decomposition of the incomparability graph
to show that the treewidth of the combined graph must be bounded by the treewidth of the
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incomparability graph. Once this is established, the result follows by giving a formulation
of the problem in Monadic Second Order Logic and applying an extension of Courcelle’s
Theorem for counting.

The paper is organized as follows. Section 2 introduces the required preliminaries and
notation. Section 3 is then dedicated to proving the fixed-parameter intractability of the
problem when parameterized by the treewidth of the cover graph, and the subsequent
Section 4 presents our positive results for the problem. Concluding notes are then provided
in Section 5.

2 Preliminaries

For standard terminology in graph theory, such as the notions of a graph, digraph, path, etc.
we refer readers to [11]. Given a graph G, we let V (G) denote its vertex set and E(G) its edge
set. The (open) neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) : (x, y) ∈ E(G)}
and is denoted by N(x). The closed neighborhood N [v] of x is defined as N(v) ∪ {v}. A
path between two disjoint vertex sets A,B ⊆ V (G) is a path with one endpoint in A, one
endpoint in B, and all internal vertices disjoint from A ∪B. A set X ⊆ V (G) is a separator
in G if G−X contains at least two connected components.

We use [i] to denote the set {0, 1, . . . , i}. The following fact about prime numbers will
also be useful later.

I Fact 1 ([6]). For any n ≥ 4, the product of primes strictly between n and n2 is at least
n!2n.

2.1 Treewidth
A tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T )), where T is a rooted tree
whose every vertex t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following properties hold:
(T1) ∪t∈V (T )Xt = V (G),
(T2) for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected subtree of

T (monotonicity), and
(T3) for each uv ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ Xt.

To distinguish between the vertices of the tree T and the vertices of the graph G, we will
refer to the vertices of T as nodes. The width of the tree-decomposition T is maxt∈V (T ) |Xt|−1.
The treewidth of G, tw(G), is the minimum width over all tree-decompositions of G.

A path-decomposition is a tree-decomposition where each node of T has degree at most 2,
and the notion of pathwidth is then defined analogously to treewidth. A tree-decomposition
T = (T,X ) is nice if T contains a root r, the root and all leaves have empty bags, and each
non-leaf node belongs to one of three categories: Introduce, Forget, Join (see, e.g., [9]).
A nice tree-decomposition (path-decomposition) can be obtained from a tree-decomposition
(path-decomposition) of the same width in polynomial time [23]. Observe that any path-
decomposition can be fully characterized by the order of appearance of its bags along T ,
and hence we will consider succinct representations of path-decompositions in the form
Q = (Q1, . . . , Qd), where Qi is the i-th bag in Q.

We list some useful facts about treewidth and pathwidth.

I Fact 2 ([3, 4]). There exists an algorithm which, given a graph G and an integer k, runs in
time O(kO(k3)n) and either outputs a tree-decomposition of G of width at most k or correctly
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identifies that tw(G) > k. Furthermore, there exists an algorithm which, given a graph G
and an integer k, runs in time O(kO(k3)n) and either outputs a path-decomposition of G of
width at most k or correctly identifies that pw(G) > k.

I Fact 3 (Folklore). Let T be a tree-decomposition of G and t ∈ V (T ). Then each connected
component of G − Xt lies in a single subtree of T − t. In particular, for each connected
component C of G−Xt there exists a subtree T ′ of T − t such that for each vertex a ∈ C
there exists ta ∈ V (T ′) such that a ∈ Xta .

We note that if G is a directed graph, then tw(G) and a tree-decomposition of G refers
to the treewidth and a tree-decomposition of the underlying undirected graph of G, i.e., the
undirected graph obtained by replacing each directed edge with an edge.

2.2 Monadic Second Order Logic
We consider Monadic Second Order (MSO) logic on (edge-)labeled directed graphs in terms
of their incidence structure whose universe contains vertices and edges; the incidence between
vertices and edges is represented by a binary relation. We assume an infinite supply of
individual variables x, x1, x2, . . . and of set variables X,X1, X2, . . . The atomic formulas are
V x (“x is a vertex”), Ey (“y is an edge”), Ixy (“vertex x is incident with edge y”), Hxy
(“vertex x is the head of the edge y”), Txy (“vertex x is the tail of the edge y”), x = y

(equality), x 6= y (inequality), Pax (“vertex or edge x has label a”), and Xx (“vertex or edge
x is an element of set X”). MSO formulas are built up from atomic formulas using the usual
Boolean connectives (¬,∧,∨,→,↔), quantification over individual variables (∀x, ∃x), and
quantification over set variables (∀X, ∃X).

Let Φ(X) be an MSO formula with a free set variable X. For a labeled graph G = (V,E)
and a set S ⊆ E we write G |= Φ(S) if the formula Φ holds true on G whenever X is
instantiated with S.

The following result (an extension of the well-known Courcelle’s Theorem [8]) shows that
if G has bounded treewidth then we can count the number of sets S with G |= Φ(S).

I Fact 4 ([1]). Let Φ(X) be an MSO formula with a free set variable X and w a constant.
Then there is a linear-time algorithm that, given a labeled directed graph G = (V,E) of
treewidth at most w, outputs the number of sets S ⊆ E such that G |= Φ(S).

2.3 Posets
A partially ordered set (poset) P is a pair (P,≤P ) where P is a set and ≤P is a reflexive,
antisymmetric, and transitive binary relation over P . The size of a poset P = (P,≤P ) is
|P| := |P |. We say that p covers p′ for p, p′ ∈ P , denoted by p′ CP p, if p′ ≤P p, p 6= p′,
and for every p′′ with p′ ≤P p′′ ≤P p it holds that p′′ ∈ {p, p′}. We say that p and p′ are
incomparable (in P), denoted p ‖P p′, if neither p ≤P p′ nor p′ ≤P p.

A chain C of P is a subset of P such that x ≤P y or y ≤P x for every x, y ∈ C. An
antichain A of P is a subset of P such that for all x, y ∈ A it is true that x ‖P y. A family
C1, . . . , C` of pairwise disjoint subsets of P forms a total order if for each i, j ∈ [`] and
each a ∈ Ci, b ∈ Cj , it holds that a ≤ b iff i < j. Furthermore, for each i ∈ [` − 1] we
say that Ci and Ci+1 are consecutive. We call a poset P such that every two elements of
P are comparable a linear order. A linear extension of a poset P = (P,≤P ) is a reflexive,
antisymmetric, and transitive binary relation � over P such that x � y whenever x ≤P y

and a poset P∗ = (P,�) is a linear order.
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We denote the number of linear extensions of P by e(P). For completeness, we provide a
formal definition of the problem of counting the number of linear extensions below.

#LE
Instance: A poset P.
Task: Compute e(P).

We consider the following graph representations of a poset P = (P,≤P). The cover graph
of P, denoted C(P), is the directed graph with vertex set P and edge set {(a, b) | a C b}.
The incomparability graph of P, denoted I(P), is the undirected graph with vertex set P
and edge set {{a, b} | a ‖ b}. The combined graph of P , denoted IC(P), is the directed graph
with vertex set P and edge set {(a, b) | (aC b)∨ (a ‖ b)}; observe that IC(P) can be obtained
by taking disjoint union of the edge sets of C(P) and I(P) and then replacing undirected
edges by two directed ones. Finally, the poset graph of P, denoted PG(P), is the directed
graph with vertex set P and edge set {(a, b) | a ≤ b}. We will use the following known fact
about tree-decompositions and path-decompositions of incomparability graphs.

I Fact 5 ([20, Theorem 2.1]). Let P be a poset. Then tw(I(P)) = pw(I(P)).

I Corollary 6 (of Fact 2 and 5). Let P be a poset and k = tw(I(P)). Then it is possible to
compute a nice path-decomposition Q of I(P) of width at most k in time O(kO(k3)n).

2.4 Parameterized Complexity
We refer the reader to [12, 9, 16] for an in-depth introduction to parameterized complexity.
In particular, we will need the notions of parameterized (decision) problem, the complexity
classes W [1] and FPT, fpt algorithm, and fpt turing reduction. Informally, recall that an fpt
turing reduction from problem A to problem B is an fpt-algorithm that solves A using an
oracle for B. A parameterized counting problem P is a function Σ∗ × N→ N for some finite
alphabet Σ. We call a parameterized counting problem P fixed-parameter tractable (FPT) if
P can be computed in time f(k) · |x|O(1) where f is an arbitrary computable function and
(x, k) is the instance. To avoid confusion, we remark that there also exists the complexity
class #W[1] which is an analog of #P for parameterized counting problems. Our main
negative result is based on an fpt turing reduction from the following fairly well-known
W[1]-hard decision problem [14].

Equitable Coloring[tw]
Instance: A graph G and an integer r.
Parameter : tw(G) + r.
Question: Does G admit a proper r-coloring such that the number of vertices in any two
color classes differ by at most one?

We denote by #EC(G, r) the number of equitable colorings of graph G with r colors.

3 Fixed-Parameter Intractability of Counting Linear Extensions

The goal of this section is to prove Theorem 7, stated below.

I Theorem 7. #LE parameterized by the treewidth of the cover graph of the input poset
does not admit an fpt algorithm unless W[1]=FPT.
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We begin by giving a brief overview of the proof, whose general outline follows the
#P-hardness proof of the problem [6]. However, since our parameter is treewidth, we needed
to reduce from a problem that is not fixed-parameter tractable parameterized by treewidth.
Consequently, instead of reducing from SAT, we will use Equitable Coloring. This made
the reduction considerably more complicated and required the introduction of novel gadgets,
which allow us to encode the problem without increasing the treewidth too much.

The proof is based on solving an instance (G, r) of Equitable Coloring[tw] in FPT
time using an oracle that solves #LE in FPT time parameterized by the treewidth of
the cover graph (i.e., an fpt turing reduction). The first step is the construction of an
auxiliary poset P(G, r) of size 2(r− 1)|V (G)|+ (r2 − 1)|E(G)|. Then, for a given sufficiently
large (polynomially larger than |V (G)|) prime number p, we show how to construct a poset
P(G, r, p) such that e(P(G, r, p)) ≡ e(P(G, r))·#EC(G, r)·Ap mod p, where Ap is a constant
that depends on p and is not divisible by p. Therefore, if we choose a prime p that does not
divide e(P(G, r)) ·#EC(G, r), then e(P(G, r, p)) will not be divisible by p. Using Fact 1 we
show that if #EC(G, r) 6= 0, then there always exists a prime p within a specified polynomial
range of |V (G)| such that p does not divide e(P(G, r)) ·#EC(G, r).

From the above, it follows that there exists an equitable coloring of G with r colors if and
only if, for at least one prime p within a specified (polynomial) number range, the number of
linear extensions of P(G, r, p) is not divisible by p. Moreover, we show that all inputs for the
oracle will have size polynomial in the size of G and treewidth bounded by polynomial in
tw(G) + r. Before proceeding to a formal proof of Theorem 7, we state two auxiliary lemmas
which will be useful for counting linear extensions later in the proof.

I Lemma 8. If a poset P is a disjoint union of posets P1, . . . ,Pk for some positive integer
k, then

e(P) =
(
∑k
i=1 |Pi|)!∏k
i=1 |Pi|!

k∏
i=1

e(Pi) .

I Lemma 9. Let p be a prime number and Q be a connected component of poset P such that
|Q| = p− 1. If the number of linear extensions of P is not divisible by p, then the number of
elements in each connected component of P other than Q is divisible by p.

We now proceed to the proof of the theorem.

Proof of Theorem 7. The proof is structured into the construction of P(G, r), the con-
struction of P(G, r, p), establishing the desired properties of P(G, r, p) and P(G, r), and the
conclusion.

Construction of P(G, r) and the main gadget

Let (G, r) be an instance of Equitable Coloring[tw] such that |V (G)| is divisible by
r (if this is not the case, then this can be enforced by padding the instance with isolated
vertices, see also [14]). We begin by constructing the poset P(G, r), which will play an
important role later on. For every vertex v of V (G) we create 2(r − 1) elements denoted
vi,j , where 1 ≤ i ≤ r − 1 and j ∈ {0, 1}, such that the only dependencies in the poset
between these elements are vi,1 ≤ vi,0 for all v ∈ V (G), for all i ∈ {1, . . . , r − 1}. For
every edge e = uv ∈ E(G) we create r2 − 1 pairwise-incomparable elements ei,j , such that
(i, j) ∈ ({0, . . . , r− 1}2 \ {(0, 0)}). The dependencies of ei,j are: if i > 0 then ui,0 ≤ ei,j , and
if j > 0 then vj,0 ≤ ei,j (see also Fig. 1).
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v1,0

v1,1

v2,0

v2,1

u1,0

u1,1

u2,0

u2,1

e1,0 e2,0 e1,1 e1,2 e2,1 e2,2 e0,1 e0,2

Figure 1 The cover graph for an edge e = uv in P(G, 3).

a

p− b

Figure 2 An (a, b)-flower.

p− 1

ai−1

ai Ai

Figure 3 Each level consists of a chain of length p − 1 and a few flowers. The set of petals
associated with level Li is denoted by Ai.

Let us now fix a prime number p such that p does not divide e(P(G, r)) and p >

2r|V (G)|+ r2|E(G)|. The main gadget in our reduction is a so-called (a, b)-flower, which
consists of an antichain of a vertices (called the petals) covering a chain of p− b elements
(called the stalk); see Fig. 2. Due to Lemma 9, (a, b)-flowers will later allow us to force a
choice of exactly b vertices out of a.

Construction of P(G, r)

Let G be a graph, r be an integer and p be a prime number as above. Recall that |V (G)|
is divisible by r and let s = |V (G)|

r (note that this implies that each color in an equitable
coloring of G must occur precisely s times in G). We proceed with a description of the poset
P(G, r, p). The poset P(G, r, p) is split into r + 3 “levels” L1, . . . , Lr+3 by linearly ordered
elements a0 ≤ a1 ≤ · · · ≤ ar+2 ≤ ar+3, called the anchors. Each of these levels, besides
Lr+3, will consist of some flowers and a chain of p− 1 elements which we call a stick; each of
these flowers and the stick will always be pairwise incomparable. The anchors a0 and ar+3
are the unique minimum and maximum elements, respectively. The stick and all the stalks
of flowers in level Li will always lie between two consecutive elements ai−1 and ai, and the
petals of these flowers will be incomparable with ai as well as some anchors above that (as
defined later). Observe that while the relative position of any stalk and any anchor is fixed
in every linear extension, petals can be placed above ai.

We say that a flower (or its stalk, petals, or elements) is associated with the level in
which it is constructed, i.e., with the level Li such that ai−1 ≤ c ≤ ai for stalk elements c
and ai−1 ≤ d and d ‖ ai for petals d. We denote the set of all petals associated with level Li
as Ai (see Fig. 3).

For the construction, it will be useful to keep in mind the following intended goal:
whenever an (a, b)-flower is placed in level i, it will force the selection of precisely b petals
(from its total of a petals), where selected elements remain on level i (i.e., between ai−1 and
ai) in the linear extension and unselected elements are moved to level r + 2 (i.e., between
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ar+2 and ar+3) in the linear extension. We will later show that the total number of linear
extensions which violate this goal must be divisible by p, and hence such extensions can all
be disregarded modulo p.

The first r levels are so-called color class levels, each representing one color class. We use
these levels to make sure that every color class contains exactly s vertices. Aside from the
stick, each such level contains a single (|V (G)|, s)-flower. Recall that the stalk and the stick
on level 1 ≤ i ≤ r both lie between anchors ai−1 and ai, and that the stick and the flower
are incomparable. We associate each petal of the flower at level Li with a unique vertex
v ∈ V (G) and denote the petal vi. Each petal vi will be incomparable with all anchors above
ai−1 up to ar+3, i.e., vi ‖ aj for i ≤ j ≤ r + 2 and vi ≤ ar+3. Intuitively, the flower in each
color class level will later force a choice of s vertices to be assigned the given color.

Level Lr+1 is called the vertex level and consists of one stick and |V (G)|-many (r, 1)-
flowers; the purpose of this level is to ensure that every vertex is assigned exactly one color.
Each flower is associated with one vertex v ∈ V (G) and we denote the petals of the flower
associated with vertex v as vi for 1 ≤ i ≤ r. We set vi ≤ vi for all v ∈ V (G) and 1 ≤ i ≤ r.

Level Lr+2 is called the edge level, and its purpose is to ensure that the endpoints of
every edge have a different color. It consists of a stick and |E(G)|-many (r2, 1)-flowers. Each
flower is associated with one edge e = uv ∈ V (G) and we denote the petals of the flower
associated with e as ei,j for 1 ≤ i ≤ r and 1 ≤ j ≤ r. Moreover, for edge e = uv we set
ui ≤ ei,j , vj ≤ ei,j , and we set ar+2 ≤ ei,j whenever i = j. Observe that this forces any
petal ei,i to lie between ar+2 and ar+3 in every linear extension (i.e., prevents ei,i from being
“selected”).

Level Lr+3 is called the trash level. It does not contain any new elements in the poset,
but it plays an important role in the reduction: we will later show that any petals which are
interpreted as “not selected” must be located between ar+2 and ar+3 in any linear extension
that is not automatically “canceled out” due to counting modulo p.

A high-level overview of the whole constructed poset P(G, r, p) is presented in Fig. 4.

Establishing the desired properties of P(G, r, p) and P(G, r)

We begin by formalizing the notion of selection. Let a configuration be a partition φ of petals
of all flowers into r + 3 sets Lφ1 , . . . , L

φ
r+3. Let Φ denote a set of all configurations. We say

that a linear extension � of P(G, r, p) respects the configuration φ if Lφ1 � a1 � Lφ2 � a2 �
· · · � ar+2 � Lφr+3 and we denote the set of all linear extensions of P(G, r, p) that respects φ
by Lφ. We say that a configuration φ is consistent if Lφ is non-empty; this merely means
that Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 does not violate any inequalities in P(G, r, p).
Observe that if φ is consistent, then Lφ is exactly the set of linear extension of the partial
order Pφ(G, r, p), where Pφ(G, r, p) is obtained by enriching P(G, r, p) with the relations
Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 and performing transitive closure (in other words,
Pφ(G, r, p) is obtained by enforcing φ onto P(G, r, p)).

Since every linear extension of P(G, r, p) respects exactly one configuration, it is easy
to see that e(P(G, r, p)) =

∑
φ∈Φ |Lφ| =

∑
φ∈Φ e(Pφ(G, r, p)). Intuitively, a configuration φ

contributes to the above sum modulo p if e(Pφ(G, r, p)) is not divisible by p. We shall prove
that the only configurations which contribute to this sum modulo p are those where from
every (a, b)-flower there are exactly b petals in the same level as the stalk, and the remaining
a− b petals are in the trash. Furthermore, in each configuration φ which contributes to the
above sum modulo p, the petals in Lφr+1 represent a proper equitable coloring of G with r
colors, and each such configuration is respected by the same number of linear extensions.
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p− 1p− 1

p− 1 p− 1

p− 1 p− s

r
|V (G)|

|V (G)|

r

|E(G)|

r2

u1 v1

ur vr

u1 ur v1 vr

e1,1 e1,r er,1 er,r

ar+3

ar+2

ar+1

ar

ar−1

a1

a0

Figure 4 The cover graph of P(G, r, p). The edge e is the edge in G between vertices u and v.

Let us first remark that for any configuration φ, the anchors a0, a1, . . . , ar+3 are com-
parable to all elements of Pφ(G, r, p). Now, let PφLi

be the poset induced by all elements
e ∈ Pφ(G, r, p) such that ai−1 ≤ e ≤ ai. It is readily seen that e(Pφ(G, r, p)) =

∏r+3
i=1 e(P

φ
Li

).
We proceed by stating a series of claims about our construction.

I Claim 10. For each i ∈ {1, . . . , r}, it holds that either e(PφLi
) ≡ 0 mod p, or e(PφLi

) =
s!
(2p−1

p

)
and Lφi contains exactly s petals of Ai and no other petals.

Proof of the claim. Assume that e(PφLi
) 6≡ 0 mod p and recall that level Li contains a

stick, which is a chain of p − 1 elements that is incomparable with all elements of PφLi
in

every configuration φ. By Lemma 9 this implies that every connected component of PφLi

has size divisible by p. Clearly, Lφi contains only those stalks that are associated with the
level Li, and it contains all such stalks. It is readily seen from the construction that any
petal in ∪j<iAj would necessarily form a component of size one in PφLi

. Hence, PφLi
contains

only elements associated with level Li, namely elements of the chain with p− 1 vertices and
elements of a (|V (G)|, s)-flower. Moreover, by Lemma 9 and the fact that |V (G)|+p−s < 2p,
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each such flower has exactly p elements in level PφLi
. Since the p− s elements of the stalk

must be in PφLi
, the poset PφLi

contains exactly s elements of Ai. Clearly, the number of
linear extensions of the petals of the (|V (G)|, s)-flower in PφLi

is s! and hence by Lemma 8
e(PφLi

) = s!
(2p−1

p

)
, which concludes the proof. J

I Claim 11. Either e(PφLr+1
) ≡ 0 mod p, or e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| and Lφr+1

contains exactly |V (G)| elements of Ar+1, specifically one petal for each (r, 1)-flower on level
Lr+1.

Proof of the claim. Assume e(PφLr+1
) 6≡ 0 mod p, and let us first examine elements that

are not associated with level Lr+1. Clearly, no element associated with level Lr+2 can appear
in PφLr+1

and the only elements associated with any level i < r + 1 that can end up in
PφLr+1

are petals. Each of these elements is smaller then exactly one petal at level Lr+1 and
independent to all other elements associated with this level. It is easy to see that largest
possible size of a connected component of PφLr+1

is p − 1 + 2r < 2p. By Lemma 9, every
connected component in PφLr+1

(except for the stick) will have size p, and therefore PφLr+1
will

contain exactly one element for every antichain associated with Lr+1 and no other elements.
Hence, PφLr+1

consists of |V (G)| chains of length p and one chain of length p − 1. Then
e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| follows from Lemma 8. J

I Claim 12. Either e(PφLr+2
) ≡ 0 mod p, or e(PφLr+2

) = (|E(G)|p+p−1)!
(p−1) !(p!)|E(G)| and Lφr+2

contains exactly |E(G)| elements of Ar+2, specifically one petal for each (r2, 1)-flower on
level Lr+2.

Proof of the claim. The idea of the proof is similar to the proof of the previous claim, with
one additional obstacle: that several flowers can be connected with petals from lower levels
into one connected component on level Lr+2 through the petals of flowers on level Lr+1.
So, assume e(PφLr+2

) contains a connected component C which contains at least a single
stalk. For each stalk in C, there must be at least one petal in the same flower (otherwise the
stalk cannot be connected to the rest of C); in other words, the intersection of each flower
and C contains at least p vertices. Let a denote the number of flowers which intersect C,
b2 denote |Ar+2 ∩ C|, b1 denote |Ar+1 ∩ C| and b0 denote

∑r
i=1 |Ar ∩ C|. Then it follows

that |C| = p · a+ (b2 − a) + b1 + b0 ≤ p · a+ r2|E(G)|+ r|V (G)|+ r|V (G)|, and recall that
r2|E(G)|+ r|V (G)|+ r|V (G)| < p. Furthermore, if b1 > 0 (and at least one petal from Ar+1
is required unless C contains only a single flower), we have a · p < |C| < (a+ 1) · p. Hence
any such C cannot have size divisible by p and by Lemma 9 we have e(PφLr+2

) ≡ 0 mod p.
Otherwise, if no two flowers are connected through a petal of a flower associated with level
Lr+1, then every connected component of PφLr+2

of size p must consist of a stalk and exactly
one petal and the claim follows analogously as the proof of Claim 11. J

I Claim 13. If φ is a consistent configuration and for all i ∈ {1, . . . , r + 2} it holds that
e(PφLi

) 6≡ 0 mod p, then the petals in Lφr+1 encode a proper equitable coloring of V (G) where
vertex v receives color i iff the petal vi lies in Lφi and PφLr+3

is isomorphic with P(G, r).

Proof of the claim. From Claims 10, 11 and 12 together with the assumption that e(PφLi
) 6≡ 0

mod p, it follows that each of the levels Lφ1 , . . . , Lφr contains exactly s petals associated with
the corresponding level, level Lφr+1 contains exactly one petal for each vertex of G and level
Lφr+2 contains exactly one petal for each edge of G.
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For the first part of this claim, we observe that each pair of petals in Lφ1 , . . . , L
φ
r are

associated with distinct vertices of G. If this were not the case, then since |V (G)| = rs there
would exist a vertex v such that no element of Lφ1 , . . . , Lφr is associated with v. But due to
the construction at level r+ 1 there exists some i ∈ 1, . . . , r such that vi ∈ Lφr+1. Then, since
vi ≤ vi and vi can only occur either in level Lφi or Lφr+3 (the latter of which lies above vi
in the linear extension due to the configuration φ), this would lead to a contradiction. In
particular, we conclude that there is a matching between the petals in level r + 1 (encoding
the color for each vertex) and the union of petals in levels 1, 2, . . . r (encoding the vertices
assigned to each color class), and by Claim 10 it follows that there are exactly s petals in
Lr+1 associated with each color class.

We now argue that the coloring is proper. Observe that by the same argument as above,
if an edge e = uv satisfies ei,j ∈ Lφr+2, then ui ∈ L

φ
r+1 and vj ∈ Lφr+1. From the construction

of P(G, r, p) it follows that if i = j, then ei,j 6∈ Lr+2. Combining these two facts we get that
the coloring encoded in Lφr+1 is indeed proper.

Now let us take a look at level Lφr+3. To prove the claim, we will construct an isomorphism
f from elements of PφLr+3

to elements of P(G, r). For every vertex v ∈ V (G), precisely one
element vi ∈ Lφr+1 and precisely one of the first r levels contains an element associated with
v; to be precise, vi ∈ Lφi and vj ∈ Lφr+3 and hence also vj ∈ Lφr+3 for all j 6= i. We set
f(vj) = vj,0 and f(vj) = vj,1, whenever j 6= i and j < r. For the last remaining elements,
we set f(vr) = vi,0 and f(vr) = vi,1. Next, for every edge e = uv there is exactly one
ea,b ∈ Lφr+2. Moreover, if ea,b ∈ Lφr+2 then ua ∈ Lφr+1 and vb ∈ Lφr+1, and all other petals
for this edge e are in Lφr+3. Let gi(r) = i, gi(i) = 0, and gi(k) = k otherwise. Then we set
f(ei,j) = ega(i),gb(j). Observe that, since ea,b does not lie in Lφr+3, no edge is mapped to the
non-existent element e0,0 in P(G, r). It is straightforward to verify that f is really bijective
mapping between elements of PφLr+3

and P(G, r). Moreover, f(u) ≤ f(v) in P(G, r) if and
only if u ≤ v in PφLr+3

. Therefore, PφLr+3
is isomorphic with P(G, r) and the claim holds. J

I Claim 14. e(P(G, r, p)) 6≡ 0 mod p if and only if e(P(G, r)) ·#EC(G, r) 6≡ 0 mod p.

I Claim 15. If #EC(G, r) 6= 0, then there is a prime number p greater than 2r|V (G)| +
r2|E(G)| and smaller than (2r|V (G)|+ r2|E(G)|)2 such that p does not divide e(P(G, r)) ·
#EC(G, r).

I Claim 16. tw(C(P(G, r, p))) ≤ r · (tw(G) + 3) + 6.

Concluding the proof

Let us summarize the fpt turing reduction used to prove Theorem 7. Given an instance (G, r)
of Equitable Coloring[tw], we loop over all primes p such that 2r|V (G)|+ r2|E(G)| <
p < (2r|V (G)| + r2|E(G)|)2, and for each such prime we construct the poset P(G, r, p);
from Claim 15 it follows that if #EC(G, r) 6= 0, then at least one such prime will not
divide e(P(G, r)) ·#EC(G, r), and by Claim 16 each of the constructed posets P(G, r, p)
has bounded treewidth of the cover graph. For each such poset P(G, r, p), we compute
e(P(G, r, p)) by the black-box procedure provided as part of the reduction. If for any prime p
we get e(P(G, r, p)) 6≡ 0 mod p, then we conclude that (G, r) is a yes-instance, and otherwise
we reject (G, r), and this is correct by Claim 14. J

We remark that the above construction can be extended to also compute the exact number
of equitable colorings. However, because Equitable Coloring[tw] is not known to be
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#W[1]-hard, this does not immediately imply #W[1]-hardness for counting the number of
linear extensions.

4 Fixed-Parameter Tractability of Counting Linear Extensions

This section is dedicated to proving our algorithmic result, stated below.

I Theorem 17. #LE is fixed-parameter tractable parameterized by the treewidth of the
incomparability graph of the input poset.

The proof of Theorem 17 is divided into two steps. First, we apply a transformation
process to a path-decomposition Q of small width (the existence of which is guaranteed by
Corollary 6) of I(P) which results in a tree-decomposition T of I(P) satisfying certain special
properties. We call these “blocked tree-decompositions” and the construction is given in
Lemma 21. The properties of T are then used to prove that IC(P) has treewidth bounded by
the treewidth of I(P) (Corollary 26). In the second step, we construct an MSO formulation
which enumerates all the linear extensions of P using IC(P), and apply Fact 4.

4.1 The Treewidth of Combined Graphs
We begin by arguing a useful property of separators in incomparability graphs.

I Lemma 18. Let S ⊆ V (I(P)). Then for each pair of distinct connected components C1, C2
in I(P)−S, it holds that for any a1, b1 ∈ C1 and any a2, b2 ∈ C2 we have a1 ≤ a2 iff b1 ≤ b2.
Namely, the poset contains a total order of all connected components in I(P)− S.

Proof. We begin by proving the following claim.

I Claim 19. Let a, b, c be three distinct elements of P such that a ‖ b and both pairs a, c
and b, c are comparable. Then a ≤ c iff b ≤ c.

Proof of the claim. Suppose that, w.l.o.g., a ≤ c and c ≤ b. Then by the transitivity of ≤,
we get a ≤ b which contradicts our assumption that a ‖ b. J

Now to prove Lemma 18, assume for a contradiction that, w.l.o.g., there exist a1, b1 ∈ C1
and a2, b2 ∈ C2 such that a1 ≤ b1 and b2 ≤ a2. Let Q1 be an a1-a2 path in I[C1]. By
Claim 19, a1 ≤ b1 implies that every element q on Q1 satisfies q ≤ b1, and in particular
a2 ≤ b1. Next, let Q2 be a b1-b2 path in I[C2]. Then Claim 19 also implies that each
element q′ on Q2 satisfies a2 ≤ q′. Since b2 lies on Q2, this would imply that a2 ≤ b2, a
contradiction. J

To proceed further, we will need some notation. Let T = (T,X ) be a rooted tree-
decomposition and t ∈ V (T ). We denote by L(t) the set of all vertices which occur in
the “branch” of T − t containing the root r; formally, L(t) = {v ∈ Xt′ \Xt | t′ lies in the
same connected component as r in T − t}. We then set R(t) = V (G) \ (L(t) ∪ Xt) (the
intuition behind L and R is that they represent “left” and “right”). We also let T rt denote
the connected component of T − t which contains the root r.

Next, recall that each connected component of the graph obtained after deleting Xt

must lie in a subtree of T − t (Fact 3). A block of a bag Xt in a rooted tree-decomposition
T = (T,X ) is a sequence of consecutive connected components in (I(P)−Xt) ∩R(t). We
say that a node t ∈ V (T ) has z blocks if there exist z distinct blocks of Xt. Blocks will
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play an important role in the tree-decomposition we wish to obtain from our initial path-
decomposition of I(P). The following lemma captures the operation we will use to alter our
path-decomposition.

I Lemma 20. Let T = (T,X ) be a rooted tree-decomposition of a graph G and let t ∈
V (T ) be such that there are z blocks of Xt. Then there is a tree-decomposition T ′(T ′,X ′)
satisfying:
1. The width of T ′ is at most the width of T .
2. The tree T ′ contains T rt as a subtree which is separated from the rest of T ′ by t.
3. The degree of t in T ′ is z + 1.
4. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other than

T rt such that for each block B of Xt, we have
⋃
s∈α(B)X

′
s \Xt = B.

5. For each t′ ∈ N [t] \ V (T rt ), we have Xt′ = Xt.

We proceed by showing how Lemma 20 is applied to transform a given path-decomposition.

I Lemma 21. Let Q be a nice path-decomposition of I(P). Then there is a rooted tree-
decomposition T = (T,X ) of I(P) with the following properties. T is rooted at a leaf r and
Xr = ∅, the width of T is at most the width of Q, and for any node t ∈ V (T ) with z > 1
blocks:
1. The degree of t in T is z + 1.
2. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other than

T rt such that for each block B of Xt, we have
⋃
s∈α(B)Xs \Xt = B.

3. For t′ ∈ N(t) ∩ V (T rt ) there exists a vertex v such that Xt′ = Xt \ {v}, and furthermore
t′ has degree 2 and 1 block.

4. For each pair of neighbors t, t′ ∈ V (T ), it holds that |Xt \Xt′ |+ |Xt′ \Xt| ≤ 1.

We call a tree-decomposition rooted at a leaf with Xr = ∅ which satisfies the properties
of Lemma 21 a blocked tree-decomposition. The next ingredient we will need for proving that
IC(P) has small treewidth is the notion of cover-guards.

Let T = (T,X ) be a tree-decomposition of I(P) rooted at r and let t 6= r. Then the
cover-guard of t, denoted At, is the set of vertices in L(t) which are incident to a cover
edge whose other endpoint lies in R(t); formally, At = {v ∈ L(t) | ∃u ∈ R(t) : (uv ∈
E(C(P)) ∨ vu ∈ E(C(P)))}. For a vertex v ∈ I(P), we let Av = {t ∈ V (T ) | v ∈ At} and
Xv = {t ∈ V (T ) | v ∈ Xt}.

Our next aim is to add all the cover-guards into each bag. The following lemma will
allow us to argue that the result is still a tree-decomposition; it is worth noting that the
assumption that the decomposition is blocked is essential for the lemma to hold.

I Lemma 22. Let T = (T,X ) be a blocked tree-decomposition of I(P) rooted at r and let
v ∈ I(P). Then T [Av ∪Xv] is a tree.

Next we show that the cover-guards in blocked tree-decompositions are never too large.

I Lemma 23. Let T = (T,X ) be a blocked tree-decomposition of I(P) of width k. Then for
each t ∈ V (T ) it holds that |At| ≤ 2k + 2.

Proof. First, observe that if a node t ∈ V (T ) has 0 blocks, then R(t) = At = ∅. So, consider
a node t which has exactly 1 block consisting of connected components (D1, . . . , Dj) in
(I(P)−Xt) ∩R(t).

I Claim 24. |At| ≤ 2k + 2.
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Proof of the claim. Assume for a contradiction that |At| > 2k + 2. By Lemma 18 we
have that (D1, . . . , Dj) are consecutive connected components in a total order of connected
components in I(P) − Xt. Hence any edge in C(P) − Xt between R(t) and L(t) must
necessarily have one endpoint in D1 ∪Dj . Furthermore, an element in At cannot be adjacent
to both D1 and Dj in C(P)−Xt due to transitivity and acyclicity. So, we may partition At
into A1

t = {v ∈ At | ∃u ∈ D1 : v CP u} and A2
t = {v ∈ At | ∃u ∈ Dj : uCP v}.

By Lemma 18, it also follows that A1
t and A2

t must each lie in separate connected
components of I(P) −Xt, say C1 and C2 respectively. Furthermore, each element in A1

t

is maximal in C1 and each element in A2
t is minimal in C2. In particular, each of A1

t , A2
t

forms a clique in I(P). But by our assumption on the size of At, at least one of A2
t and A1

t

must have size greater than k + 1, which implies that I(P) contains a clique of size at least
k + 2. It is well-known that each clique must be completely contained in at least one bag
of a tree-decomposition, and so we arrive at a contradiction with tw(I(P)) ≤ k. Hence we
conclude that |At| ≤ 2k + 2 and the claim holds. J

Finally, consider a node t which has at least 2 blocks. By Property 3 of Lemma 21, it
holds that t has a neighbor t′ in T rt such that Xt′ = Xt \ {v} and t′ has 1 block. By Claim 24
we know that At′ ≤ 2k + 2. Since L(t) = L(t′) and R(t) ⊆ R(t′), it follows that At ⊆ At′ ,
and in particular |At| ≤ |At′ |. We have now proved the desired bound for all nodes in T ,
and so the lemma holds. J

With Lemma 22 and Lemma 23, we have the tools necessary for arguing that there exists
a tree-decomposition of the combined graph of small width.

I Lemma 25. Let T = (T,X ) be a blocked tree-decomposition of I(P) such that tw(T ) ≤ k.
Then there exists a tree-decomposition T ′ of IC(P) of width at most 3k + 2.

Proof. Consider the tree-decomposition T ′ = (T,X ′) where X ′ = {X ′t | t ∈ V (T )} is defined
as follows. For each t ∈ V (T ) such that its unique neighbor s in T rt satisfies |Xt \Xs| = 1,
we set X ′t = Xt ∪As; it will be useful to observe that As ⊇ At. For all other nodes t ∈ V (T ),
we then set X ′t = Xt ∪ At. We call nodes of the first type non-standard and nodes of the
second type standard.

First, we note that the size of each bag in T ′ is at most 3k+ 2, since every node t ∈ V (T )
satisfies |At| ≤ 2k + 2 by Lemma 23. Furthermore, T ′ satisfies condition (T1) because T
was a tree-decomposition of I(P). T ′ also satisfies condition (T2); indeed, for each v ∈ P
it holds that X ′v restricted to standard nodes is a connected tree by Lemma 22, and by
construction every non-standard node t such that v ∈ X ′t \Xt is adjacent to a standard node
containing v. So, it only remains to argue condition (T3).

Obviously, condition (T3) holds for any edge of I(P). So, consider two elements u, v of
P such that u CP v or v CP u. If there exists a node t ∈ V (T ) such that u, v ∈ Xt, then
u, v ∈ X ′t and the condition also holds for this edge in IC(P). So, assume that Xv and Xu

are disjoint and let Q be the unique Xv-Xu path in T . By Property 4, the Xv-Xu path Q
in T must contain at least one internal node.

Consider the case where one of these subtrees, say w.l.o.g. Xv, lies in the connected
component T rt of T − Q. Then for each internal node q ∈ Q, it holds that v ∈ L(q) and
u ∈ R(q), which in turn implies that v ∈ Aq. Let qu be the endpoint of Q in Xu and let q0
be the neighbor of qu in Q. By Property 4 we have Xqu

\Xq0 = {u}, which implies that qu
is a non-standard node and in particular Aq0 ⊆ X ′qu

. Since q0 is an internal node of Q, it
follows that v ∈ X ′qu

which means that condition (T3) also holds for any edge uv in this case.
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Finally, consider the case where there exists a node q ∈ Q of degree at least 3 such that
each of Xu, Xv and r occur in different components of T − q. Then we reach a contradiction
similarly as in the proof of Lemma 22. In particular, since u, v ∈ R(q) due to the location of
the root and there is a cover edge between them, it follows that either u, v occur in the same
connected component of Xq or in two consecutive ones, but in either case u, v must lie in the
same block of q, say block B. But since u, v 6∈ Xq, this contradicts Property 2 in Lemma 21;
indeed, each tree in T − q contains at most one of v, u in its bags, and hence there exists
no tree T ′ in T − q satisfying

⋃
t′∈V (T ′)Xt′ \Xq = B. Hence this case in fact violates our

assumptions and cannot occur.
Summarizing the above arguments, we conclude that each bag in T ′ has size at most

3k + 2 and that T ′ satisfies all of the conditions of a tree-decomposition. J

I Corollary 26. Let P be a poset such that tw(I(P)) ≤ k. Then tw(IC(P)) ≤ 3k + 2.

Proof. By Corollary 6 we know that there exists a nice path-decomposition of I(P) of width
at most k. By Lemma 21, it follows that there exists a blocked tree-decomposition of I(P)
of width at most k. The corollary then follows by Lemma 25. J

4.2 MSO Formulation
In this subsection, we use Fact 4 to prove the following result, which forms the second
ingredient required for our proof of Theorem 17.

I Lemma 27. #LE is fixed-parameter tractable parameterized by the treewidth of the
combined graph of the input poset.

Sketch of the Proof. Let P := (P,≤P ) be a poset. Let G be the (edge-)labeled directed
graph obtained from IC(P) by directing every bidirectional edge of IC(P), i.e., every edge of
I(P), in an arbitrary way and labeling it with the label ‖.

For a set of edges E ⊆ E(G) with label ‖, let G[E] be the graph obtained from G after
reversing every edge in E. Moreover, for a linear extension � of P let EG(�) be the set
of edges (u, v) of G such that v � u. Note that because every linear extension of P has to
respect the direction of the edges in G given by C, it holds that every edge in EG(�) has
label ‖.

I Claim 28. EG(�) defines a bijection between the set of linear extensions of P and the set
of subsets E of edges of G with label ‖ such that G[E] is acyclic.

Proof of the claim. Let � be a linear extension of P. Then, as observed above, EG(�) is
a set of edges of G with label ‖. Moreover, because G[EG(�)] is a subgraph of PG(�) and
PG(�) is acyclic so is G[EG(�)]. Hence, EG(�) is a function from the set of linear extensions
of P to the set of subsets E of edges of G with label ‖ such that G[E] is acyclic. Towards
showing that EG(�) is injection assume for a contradiction that this is not the case, i.e.,
there are two distinct linear extensions �1 and �2 of P such that EG(�1) = EG(�2) and let
u and v be two elements of P ordered differently by �1 and �2. Then {u, v} ∈ I(P) and
hence either (u, v) ∈ G or (v, u) ∈ G the label of (u, v) or (v, u) respectively is ‖. W.l.o.g.
assume that (u, v) ∈ G with label ‖. But then, because �1 and �2 differ on u and v, either
(u, v) ∈ EG(�1) but not (u, v) ∈ EG(�2) or (u, v) ∈ EG(�2) but not (u, v) ∈ EG(�1). In
both cases we get a contradiction to our assumption that EG(�1) = EG(�2). It remains to
show that EG(�) is surjective. To see this let E be a subsets of the edges of G with label ‖
such that G[E] is acyclic. Because G[E] is acyclic it has a topological ordering, say �, of its
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vertices. Because G[E] contains C(P) as a subgraph and any topological ordering of C(P) is
a linear extension of P, we obtain that � is a linear extension and also E = EG(�). J

It follows from the above that instead of counting the number of linear extensions of P
directly, we can count the number of subsets E of the edges of G with label ‖ such that G[E]
is acyclic. It can be shown that there exists an MSO formula Φ (with length independent of
G) such that G |= Φ(X) if and only if X is a subset of the edges of G with label ‖ such that
G[X] is acyclic. Because of Fact 4, this implies that #LE is fixed-parameter tractable when
parameterized by tw(G) and hence also when parameterized by tw(IC(P)), concluding the
proof of the lemma. Generally speaking, Φ(X) only needs to check that X is a set of edges
of G with label ‖ and there is no non-empty set of edges C of G[X] that forms a cycle. J

We conclude this section by stating the proof of Theorem 17.

Proof of Theorem 17. Let P be the input poset and let k = tw(I(P)). Then tw(IC(P)) ≤
3k + 2 by Corollary 26, and the theorem follows by Lemma 27. J

5 Conclusions and Future Work

We have given the first parameterized intractability result for counting linear extensions. We
hope that the employed techniques will inspire similar results and expand our knowledge
about the parameterized complexity of counting problems. In particular, even for #LE
there remain many open questions concerning other very natural parameterizations such
as the width of the poset or the treewidth of the poset graph. Moreover, our intractability
result for the treewidth of the cover graph poses the question whether there are stronger
parameterizations under which #LE becomes tractable, e.g., the treewidth of the poset
graph, the treedepth or even vertex cover number of the poset- or cover graph, as well as
combinations of these parameters with parameters such as the width, the dimension, or the
height of the poset. These numerous examples illustrate that the parameterized complexity
of #LE is still largely unexplored. As a side note it would also be interesting to establish
whether our hardness result for #LE can be sharpened to #W[1]-hardness and to obtain
matching membership results.
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