
SimBa: An Efficient Tool for Approximating
Rips-Filtration Persistence via Simplicial
Batch-Collapse∗

Tamal K. Dey1, Dayu Shi2, and Yusu Wang3

1 Dept. of Computer Science and Engineering, and Dept. of Mathematics,
The Ohio State University, Columbus, OH, USA
tamaldey@cse.ohio-state.edu

2 Dept. of Computer Science and Engineering, and Dept. of Mathematics,
The Ohio State University, Columbus, OH, USA
shiday@cse.ohio-state.edu

3 Dept. of Computer Science and Engineering, and Dept. of Mathematics,
The Ohio State University, Columbus, OH, USA
wang.1016@osu.edu

Abstract
In topological data analysis, a point cloud data P extracted from a metric space is often analyzed
by computing the persistence diagram or barcodes of a sequence of Rips complexes built on P
indexed by a scale parameter. Unfortunately, even for input of moderate size, the size of the
Rips complex may become prohibitively large as the scale parameter increases. Starting with
the Sparse Rips filtration introduced by Sheehy, some existing methods aim to reduce the size of
the complex so as to improve the time efficiency as well. However, as we demonstrate, existing
approaches still fall short of scaling well, especially for high dimensional data. In this paper, we
investigate the advantages and limitations of existing approaches. Based on insights gained from
the experiments, we propose an efficient new algorithm, called SimBa, for approximating the
persistent homology of Rips filtrations with quality guarantees. Our new algorithm leverages a
batch collapse strategy as well as a new sparse Rips-like filtration. We experiment on a variety
of low and high dimensional data sets. We show that our strategy presents a significant size
reduction, and our algorithm for approximating Rips filtration persistence is order of magnitude
faster than existing methods in practice.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Rips filtration, Homology groups, Persistence, Topological data analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.35

1 Introduction

In recent years, topological ideas and methods have emerged as a new paradigm for analyzing
complex data [8, 24]. An important line of work in this direction is the theory and applications
of persistent homology. It provides a powerful and flexible framework to inspect data for
characterizing and summarizing important features that persist across different scales. Since
its introduction [25, 26, 34], there have been many fundamental developments [7, 9, 10, 12,
14, 17, 18, 19, 39] both to generalize the framework and to provide theoretical understanding

∗ This work has been supported by NSF grants CCF-1318595 and CCF-1526513.

© Tamal K. Dey, Dayu Shi, and Yusu Wang;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

for various aspects of it (such as its stability). These developments help to provide foundation
and justification of the practical usage of persistent homology; see e.g, [13, 15, 22, 37, 33].

A determining factor in applying persistent homology to a broad range of data analysis
problems is the availability of efficient and scalable software. Given the rapidly increasing
size of modern data, the "efficiency" necessarily concerns both time and space complexities.
The original algorithm to compute persistent homology takes O(n3) time and O(n2) space
for a filtration involving n number of total simplices [25]. Various practical improvements
have been suggested [16, 20]. An early software widely used for computing persistence is
Morozov’s Dionysus [23]. Later, Bauer et al. developed the PHAT toolbox [3], based on
several efficient matrix reduction strategies (mostly focusing on time efficiency) as described
in [2]. A more recently developed library called GUDHI [38] considers the improvement both
in time and space efficiencies. In particular, it uses an efficient data structure, called the
simplex tree [5], to encode input simplicial complexes, and uses the compressed annotation
matrix [4] to implement the persistent cohomology algorithm. Dionysus, PHAT, and GUDHI
offer efficient software for computing persistence induced by inclusions. For our algorithm,
we need persistence induced by more general simplicial maps for which we use Simpers [36]
developed on the basis of the algorithm in [21].

The above results and software cater to general persistence computations. In practice,
often the persistence needs to be computed for a particular filtration called the Vietoris-Rips
or Rips filtration in short. Given a set of points P embedded in Rd (or in more general metric
spaces), the Rips complex Rα(P) with radius or scale α is the clique complex induced by the
set of edges {(p, p′) | d(p, p′) ≤ α, p, p′ ∈ P}. One is interested in the persistent homology
induced by the sequence of Rips complexes Rα1 ⊆ Rα2 ⊆ · · · ⊆ Rαm for a growing sequence
of radii α1 ≤ α2 ≤ . . . ≤ αm. Intuitively, the Rips complex at a specific scale α approximates
the union of radius-α balls around sample points in P . Thus, it captures the structure formed
by input points P at different scales.

Unfortunately, even for a modest size of n (in the range of thousands), the size of Rips
complex (as well as the slightly more economical Čech complex) becomes prohibitively large
as the radius α increases. In [35], Sheehy proposed an elegant solution for this problem
by introducing a sparse Rips filtration to approximate the persistent homology of the Rips
filtration for a set of points P . An alternative approach of collapsing input points in batches
with increasing radius α was proposed in [21], which leveraged the persistence algorithm
proposed in the same paper for filtrations arising out of simplicial maps.

New work

Given the importance of the Rips filtration in practice, our goal is to investigate the practical
performance of the existing proposed methods, understand their advantages and limitations,
and develop an efficient implementation for approximating the persistent homology of Rips
filtrations. To this end, we make the following contributions.
1. We investigate the advantages and limitations of three existing methods, two based on

Sparse Rips [35, 11], and another on Batch-collapse [21]. Specifically, experiments show
that while the sparse Rips algorithm by Sheehy [35] has a theoretical guarantee on the
size of the filtration and gives good approximation of the persistence diagrams for the
Rips filtration in practice, it generates simplicial complexes of large size even for input of
moderate size. This problem becomes more severe as the dimension of the input data
increases. The algorithm fails to finish for several high dimensional data sets of rather
moderate size. See Table 1 for some examples. The batch-collapse approach is much
more space efficient (which leads to time efficiency as well). Nevertheless, we find that its
size still becomes prohibitive for high dimensional data.

T.K. Dey, D. Shi, and Y. Wang 35:3

2. Based on the insights gained from experimenting with the existing approaches, we propose
a new algorithm called SimBa that approximates a Rips filtration persistence via simplicial
batch-collapses. Our algorithm is a modification of the previous batch-collapse of Rips
filtration proposed in [21]. While theoretically, the modification may not seem major,
empirically, it reduces the size of the filtration significantly and thus leads to a much
more efficient approximation of the Rips filtration persistence. Furthermore, we show
that this modification maintains a similar approximation guarantee as the batch-collapse
of Rips filtration proposed in [21]. We describe the details of an efficient and practical
implementation of SimBa, the software for which has been made publicly available from
[36].

Two concepts, homology groups of a simplicial complex, and simplicial maps between two
complexes are used throughout this paper. We refer the reader to any standard text such
as [32] for details. We denote the p-dimensional homology group of a simplicial complex K
under Z2 coefficients by Hp(K).

2 Rips filtration and its approximation

Given a set of points P ⊂ Rd, let 〈p0, . . . , ps〉 denote the s-dimensional simplex spanned by
vertices p0, . . . , ps ∈ P . The Rips complex at scalar α is defined as Rα(P) = {〈p0, . . . , ps〉 |
‖pi − pj‖ ≤ α, for any i, j ∈ [0, s]}. Now consider the following Rips filtration:

{Rα(P)}α>0 := Rα1(P) ↪→ Rα2(P) · · · ↪→ Rαn(P) · · · (1)

The inclusion maps between consecutive complexes above induce homomorphisms between
respective homology groups, giving rise to a so called persistence module for dimension p:

Hp(Rα1(P))→ Hp(Rα2(P))→ . . .→ Hp(Rαn(P)) · · · (2)

If a homology class is created at Rαi(P) (i.e, does not have pre-image under homomorphism
Hp(Rαi−1)→ Hp(Rαi)) and dies entering Rαj (P) (i.e, its image vanishes under homomorph-
ism Hp(Rαj−1(P)) → Hp(Rαj (P)), then αi is its birth time, αj is its death time, and the
difference αj − αi is called the persistence of the class. In each dimension, the persistence
barcodes capture the persistence of such homology classes by using a horizontal bar with
left and right end points at αi and αj respectively. These persistence barcodes of the above
Rips filtration are often the target summary of P and/or of the space P samples, which one
wishes to compute in topological data analysis.

The main bottleneck for computing the barcodes of a Rips filtration stems from its size
blowup. As the parameter α grows, the Rips complex Rα(P) can become huge very quickly.
To address this blowup in size, Sheehy [35] suggested a novel approach of sparsifying the
point set P as one proceeds with increasing α in a way that does not alter the barcodes too
much. The idea is to replace the original Rips filtration {Rα(P)}α>0 on P with a sequence
of smaller complexes {Sα}α>0 and show that the two sequences interleave at the homology
level. Then, appealing to the results of interleaving persistence modules [12], one can show
that the barcodes of {Sα}α>0 approximate those of {Rα(P)}α>0 reasonably. The complexes
Sα are constructed as the union of Rips-like complexes built on a sequence of subsets of P
rather than the entire set P .

The union allows the complexes in {Sα}α>0 to be connected with inclusions and hence
permits using efficient algorithms and software designed for inclusion induced persistence.
However, the size of Sα may still be large due to the union operation. An alternative is to

ESA 2016

35:4 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

avoid the union operation but allow deletion or collapse of vertices (and simplices) at larger
scale α [11, 35] resulting into a sequence of Rips-like complexes connected with simplicial
maps instead of inclusions. This approach, which we refer to as Sparse Rips with collapse,
however achieves only moderate improvements in size reduction. We find that much more
aggressive size reduction can be achieved by considering the collapse in a batched fashion
that gives rise to the approach of Batch-collapsed Rips [21].

Finally, building on the batch-collapse idea, we propose a new approach, called SimBa
that significantly reduces the size of Rips-like complexes and their computations. This is
achieved primarily by replacing inter-point distances with set distances while computing the
complexes. We prove that this approach still provably approximates the barcodes of the
original Rips filtration in sequence (1).

In what follows, we provide more details about each existing method along with its
performance in practice, which explains the motivation behind the new tool SimBa.

2.1 Sparse Rips filtration (inclusions)
Let P be a set of points in a metric space (M, d). A greedy permutation {p1, .., pn} of
P is defined recursively as follows: Let p1 ∈ P be any point and define pi recursively as
pi = argmaxp∈P\Pi−1 d(p, Pi−1), where Pi−1 = {p1, ..., pi−1}. This gives rise to a nested
sequence of subsets P1 ⊂ P2 ⊂ · · ·Pn = P . Furthermore, each subset Pi is locally dense
and uniform (net) in the following sense. Define the insertion radius λpi of a point pi
as λpi = d(pi, Pi−1). Each Pi is a λpi-net of P , meaning that d(p, Pi) ≤ λpi for every
p ∈ P and d(p, q) ≥ λpi for every distinct pairs p, q ∈ Pi. These nets can be extended to a
single-parameter family of nets as {Nγ} where Nγ = {p ∈ P |λp > γ} is a γ-net of P .

Using the idea of Sheehy [35], Buchet et al. [6] define a Rips-like filtration using the above
specific nets and assigning weights to points whose geometric interpretation is explained
in [11]. Each point p ∈ P is associated with a weight wp(α) at scale α as

wp(α) =


0 if α ≤ λp

ε

α− λp
ε if λpε < α ≤ λp

ε(1−ε)

εα if λp
ε(1−ε) ≤ α

where 0 < ε < 1 is an input constant that controls the sparsity of the filtration. Then, the
perturbed distance between pairs of points is defined as

d̂α(p, q) = d(p, q) + wp(α) + wq(α).

Using the perturbed distance d̂α, the Sparse Rips complex at scale α is defined as

Qα = {σ ⊂ Nε(1−ε)α | ∀p, q ∈ σ, d̂α(p, q) ≤ 2α}.

The sequence of {Qα}α>0 does not form a nested sequence of spaces because the vertex
set of each Qα comes from the net Nε(1−ε)α and may decrease as α increases. However,
one can take Sα =

⋃
α′≤αQα

′ and build a natural filtration {Sα ↪→ Sα′}α<α′ connected by
inclusions. It is shown that the persistence barcodes of the filtration {Sα}α>0 approximate
those of the Rips filtration {Rα}α>0 [35].

We use the code from [6] to compute this sparse Rips filtration {Sα}α>0. We then use
GUDHI [38] to compute its persistent barcodes as GUDHI has the state-of-the-art performance
for handling large complexes due to a compression technique [4] for inclusion-based filtrations.

As a common test case to illustrate the performance of various existing methods, we
use a 3-dimensional point set sampled from a surface model called MotherChild; see Figure

T.K. Dey, D. Shi, and Y. Wang 35:5

(a) MotherChild model (b) S.R. + GUDHI (original) (c) S.R. + GUDHI (denoised)

0
0.4 0.5 0.6 0.7 0.8 0.9 1

co
m

p
le

x
si

ze

#108

0

1

2

3

4

5

6

7

(d) cumulative size (e) S.R. + Simpers (original) (f) S.R. + Simpers (denoised)

Figure 1 MotherChild surface model and its persistence barcodes computed by Sparse Rips
(S.R.) based approaches. Since the surface has genus 4, its barcodes contain long bars: 1 for H0, 8
for H1, and 1 for H2. The minimum cumulative size for complexes, which is about 43 million, is
achieved around ε = 0.8.

1a. We choose this model because the ground truth is available and also because existing
methods have trouble (to different degrees) handling high-dimensional data. The size of the
point set is 23075. For indicating memory consumption, we refer to cumulative size which is
the total number of simplices arising in the filtration, and also to maximum size which is
the maximum over all complexes arising in the filtration. For Sparse Rips filtrations two
sizes coincide at the last complex due to inclusions. Figure 1d shows the cumulative size
with different Sparse Rips parameter ε. It is minimum when ε is between 0.8 and 0.9. So,
we choose ε = 0.8 to achieve the best performance while observing that the approximation
quality does not suffer much as predicted by the theory.

The original persistence barcodes are shown in Figure 1b. Since it becomes hard to
see the main (long) bars in presence of all spurious ones creating excessive overlaps, we
remove all short bars whose ratio between death and birth time is smaller than a threshold
for 1-dimensional homology group H1. The bars for H0 and H2 are not denoised. Unless
specified otherwise, all barcodes are denoised in the same way. The denoised barcodes are
shown in Figure 1c, one for H0, four short and four long for H1 (MotherChild has genus 4),
and one for H2. The cumulative size of the Sparse Rips complexes in the filtration is 43.5
million and the total time cost is about 350 seconds.

2.2 Sparse Rips with collapse

The persistence barcodes for the inclusion-based filtration {Sα}α>0 are the same as the
barcodes of the filtration {Qα}α>0 connected by simplicial maps Qα → Qα′ for α < α′.
Specifically, these simplicial maps originate from vertex collapses defined by the following

ESA 2016

35:6 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

projection map:

µα(p) =

p if p ∈ Nε(1−ε)α

argmin
q∈Nεα

d(p, q) otherwise

For any scale α, the projection µα maps the points of P to the net Nε(1−ε)α ⊇ Nεα. One
can view it as p being deleted at time (scale) αp = λp

ε(1−ε) . We can construct the sequence
of Sparse Rips complexes {Qα}α>0 connected with simplicial maps induced by insertions
and vertex collapses as α increases: Specifically, we delete the vertex p and all its incident
simplices by collapsing it to its projection µαp(p) where αp = λp

ε(1−ε) , when entering complex
Qαp . See [11] for more details.

In this approach we need to compute the persistence induced with simplicial maps. For
this, we use the only available software Simpers [36] based on the algorithm presented in [21].
Our experimental results on the MotherChild model of Figure 1a with ε = 0.8 are given in
Figure 1e and 1f. The barcodes are exactly the same as those in Figure 1b and 1c. The
cumulative size of the entire sequence is the same, 43.5 million, because the final complex in
Sα is the union of all complexes in {Qα}α>0. However, the maximum size in the sequence
is 24.9 million due to vertex collapses in contrast to the maximum size for {Sα}α>0 which
equals the cumulative size. The time cost for this approach is 463.7 seconds which is larger
than that for Sparse Rips with GUDHI. So compared to Sparse Rips with GUDHI, this
approach has smaller maximum size due to collapse but costs more time for computing
persistence since Simpers computes persistence over collapses which are slower operations
than inclusions.

While the size of these Sparse Rips complexes is linear in the number of input points,
the hidden constant factor depends exponentially on the doubling dimension of the metric
space where points are sampled from. Empirically, we note that the size is still large, and
becomes much worse as the dimension of data increases. For example, for the Gesture Phase
data in Table 1 which has only 1747 points in R18, the cumulative size of the Sparse Rips
filtration is 45.6 million, which approaches the limit GUDHI or Simpers can handle. For
other larger data sets such as Primary Circle or Survivin, the complex reaches a size beyond
this limit. Moreover, one has to pre-compute a greedy permutation of the input point set
before constructing the Sparse Rips filtration. This computation is usually costly requiring
furthest point computations for which software as efficient as ANN (for nearest neighbors) is
not available. This motivates us to consider the batched approach considered next.

2.3 Batch-collapsed Rips
For handling large and high dimensional data, we need a more aggressive sparsification than
the Sparse Rips filtration. We consider the Batch-collapsed Rips filtration, which has been
proposed previously in [21] (section 6.1).

Given a set of points P , first set V0 := P and compute the shortest pairwise distance α.
We next construct a sequence of vertex sets Vk, k ∈ [0,m] such that Vk+1 is an αck+1-net
of Vk where c > 1 is a parameter that controls the rate of the scale increase. Consider the
vertex map πk : Vk → Vk+1, for k ∈ [0,m− 1], such that for any v ∈ Vk, πk(v) is v’s nearest
neighbor in Vk+1. It can be shown that each vertex map πk induces a well-defined simplicial
map sk : Rαc

k 3c−1
c−1 (Vk)→ Rαc

k+1 3c−1
c−1 (Vk+1). The Batch-collapsed Rips filtration is:

R0(V0) s0−→ Rαc
3c−1
c−1 (V1) · · · sm−1−−−→ Rαc

m 3c−1
c−1 (Vm). (3)

T.K. Dey, D. Shi, and Y. Wang 35:7

Using the line of proof in [21], one can show that the persistence of this sequence is a
3 log(2

c−1 + 3)-approximation of the persistence diagram of Rips filtration given below.

R0(V0) ↪→ Rαc(V0) · · · ↪→ Rαc
m

(V0). (4)

The blowup in scale by the factor of 3c−1
c−1 results from the proof, which in practice causes

some problems. We elaborate this further. To satisfy the approximation guarantee, one
has to show that the persistence modules arising from Batch-collapsed Rips in sequence (3)
and the standard Rips in sequence (4) interleave. In particular, this requires that we have
well-defined simplicial maps from complexes in sequence (3) to those in sequence (4) and
vice versa. The multiplicative factor 3c−1

c−1 is needed to ensure that there is a well-defined
simplicial map Rαck(V0)→ Rαc

k 3c−1
c−1 (Vk), as Rαc

k 3c−1
c−1 (Vk) has to be sufficiently connected

to include all the images of the simplices in the domain Rips complex Rαck(V0). The side
effect of this is that the Batch-collapsed Rips complex has to be built at a much larger scale
than the Rips complex, and it ends up with many unnecessary connections and thus more
simplices in practice. This also causes a trade-off: Larger c reduces the over-connection
but results in a worse approximation factor leading to a worse approximation quality. It is
not clear how to set an increase rate that achieves both good approximation quality and
efficiency for a specific data set.

We experimented Batch-collapsed Rips with Simpers on the same MotherChild model.
Figure 2a, 2b and 2c show the persistence barcodes for different values of c. Observe that
smaller values of c give better approximation. The barcode for c = 1.3 is the most similar
among the three to that of Sparse Rips filtration in Figure 1b which is supposed to be more
accurate theoretically. On the other hand, when c grows more than 1.8, it starts to lose
some main bars in H1 and noisy bars get longer in H2. On the other hand, Figure 3 shows
that, as c increases, both complex size and time cost decrease drastically. When c = 2.0, it
only involves less than 216K simplices and takes time 9.4 seconds while, although c = 1.3
gives more accurate barcode, its size (22.5 million) and time (325s) approach those of the
Sparse Rips. This demonstrates the dilemma that Batch-collapsed Rips faces in practice. We
address this issue in our new approach SimBa. In particular, when c ≤ 2, SimBa performs
better than Batch-collapsed Rips for both size and time as shown in Figure 3 while capturing
all main bars correctly as shown in Figure 2.

3 SimBa

To tame the over-connection in Batch-collapsed Rips, we replace the sequence in (3) with
the sequence below where the parameter does not incur the extra factor 3c−1

c−1 :

B0(V0)→ Bαc(V1)→ · · · Bαc
m

(Vm) (5)

The complexes Bαck(Vk) are built on the same vertex sequence {Vk} as in Batch-collapsed
Rips, but the distances among the vertices of Vk are replaced with a set distance which allows
us to avoid the over-connection. For two sets of points (clusters) A,B ⊂ P , we define their
set distance as d(A,B) = mina∈A,b∈B d(a, b). The sets that we consider are the pre-images
of the vertices in Vk under the composition of projections πi’s, namely, for a vertex v ∈ Vk,
we consider the set

Bkv = {p ∈ V0 | π̂k(p) = v} where π̂k : V0 → Vk is defined as π̂k = πk−1 ◦ · · · ◦ π0.

The complex Bαck(Vk) is simply the clique complex induced by edges {(u, v) ∈ Vk |
d(Bku, Bkv) ≤ αck}. Observe that d(u, v) ≥ d(Bku, Bkv) which ensures that the normal connec-

ESA 2016

35:8 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

tion between u and v for a Rips filtration at the respective scale is not missed by considering
the set distance while still avoiding the over-connection.

It turns out that each vertex map (nearest neighbor projection) πk : Vk → Vk+1 induces a
simplicial map hk : Bαck(Vk)→ Bαck+1(Vk+1). Instead of recomputing the simplicial complex
each time, we generate elementary insertion and collapse operations incrementally for each
hk in three steps: (i) collapse each v ∈ Vk \ Vk+1 to its image πk(v) in Vk+1 along with all
incident simplices, (ii) insert new edges between two vertices in Vk+1 if the distance between
the two sets they represent are smaller than or equal to the current scale, and (iii) insert all
new clique simplices containing new edges generated by (i) and (ii). Each hk is processed in
one batch, starting from a simplicial complex on vertices in Vk and resulting in a simplicial
complex on vertices in Vk+1. The collapse and insertions of new simplices are exactly what
Simpers need for computing the persistence.

3.1 Implementation Details
The advantage of SimBa (and Batch-collapsed Rips) over Sparse Rips filtrations is mainly
due to the batched approach, which requires us to compute δ-nets of a point set for some δ
repeatedly. Its advantage over the Batch-collapsed Rips is credited to the use of set distances.
These computations require k-nearest neighbor search and fixed radius search for which
efficient library like ANN [31] exists. We take advantage of this available software.

To compute a δ-net of a given point set (to obtain Vk+1 from Vk), we randomly pick
an untouched point, say p, use fixed-radius search to find all points in the ball of radius δ
around p, map them to it, and mark them processed. We do this repeatedly until there is no
untouched point left. We observe that this sub-sampling procedure can be carried out faster
at early stage when δ is small because those points whose nearest neighbor distances are
larger than the current δ can be taken directly into the net–they are all mapped to themselves
and no other points are mapped to them. So, we maintain a list L of the points ordered by
their nearest neighbor distances in increasing order and process them sequentially for δ-net
computations. To compute the net points Vk+1 from Vk, we carry out the full sub-sampling
process only on the points in Vk that are already known to have nearest neighbor distances
below δ and the new ones that qualify from L for increased δ. After δ becomes more than
the largest nearest neighbor distance, we convert to the usual net computation.

Next, we describe an efficient implementation of the set distance computation, which being
a basic operation in SimBa, speeds it up significantly. A straightforward implementation
requires quadratic time, but we can make it more efficient in practice with the help of the
ANN library. We use a hybrid strategy as follows. The sets Bku for vertices u ∈ Vk are
maintained by a union-find data structure. As vertices are collapsed while going from Vk
to Vk+1, the sets of the collapsed vertices are merged to that of the target vertex. At early
stages, when the number of sets (i.e, the size of Vk) is large and the diameter of each set
is potentially small, we avoid computing set distances for all pairs. For each processing set
Bku, we only need to find all the sets Bkv whose distances to Bku are smaller than the current
scale α′ = αck. If so, we add an edge between u and v. To find all these nearby sets, we can
do a fixed-radius search in V0 = P around each point in Bku within α′ distance. For each
point v returned by the search, we find v in the union-find data structure to identify its
image π̂k(v) ∈ Vk. If the representing set of v is different from that of u, we add the edge
π̂k(u)π̂k(v).

Later when α′ becomes large, it may not be efficient to continue this fixed-radius search,
as the number of candidate points from P may be too large (can be n in the worst case).
So we fall back on pairwise set distance computation. In particular, when the cardinality

T.K. Dey, D. Shi, and Y. Wang 35:9

of Vk becomes lower than a threshold, say 1/10 of the number of input points, we compute
a pairwise set distance matrix (of size |Vk| × |Vk|) among the surviving sets once and then
keep updating the matrix with batch collapse thereafter. In particular, note that given sets
A,B, and C, the set distance d(A ∪B,C) = min{d(A,C), d(B,C)}.

3.2 SimBa on MotherChild model

We compare SimBa with other approaches on the same MotherChild model. Figure 2d, 2e
and 2f show the persistence barcodes computed by SimBa with different values of c. We see
that SimBa captures all the main 0, 1, 2-dimensional bars for all values of c in the range
from 1.3 to 2.0 as opposed to Batch-collapsed Rips which fails to capture the main H1 bars
for c > 1.8. It tolerates larger range of c and thus is more robust than Batch-collapsed Rips.
As expected, larger values of c produce less bars since there are less batches. So, in practice,
we should choose smaller c, say less than 1.5. More importantly, as Figure 3 shows, the size
and time for SimBa are also stable against different values of c, all less than 100K simplices
and 10 seconds respectively for c ≤ 2. These are less than those for Batch-collapsed Rips and
significantly less than those for Sparse Rips: In particular, when c = 1.3, the maximum size
for SimBa is 100K, similar to when c = 2. However, for Batch-collapsed Rips, the maximum
size is closer to that of SimBa when c = 2, and is 22.5 and 1.4 million when c = 1.3 and
c = 1.5 respectively. This size difference becomes even more prominent for high dimensional
data, as Table 1 shows. Although the approximation quality of SimBa is slightly worse
than that of Sparse Rips based approaches, it does capture all the main bars, and more
importantly, costs significantly less time. This advantage allows SimBa to process much
larger high dimensional data sets which no previous approaches can handle, as we illustrate
in section 5.

4 Approximation guarantee of SimBa

Recall that the simplicial complex Bα(Vk) appearing in SimBa’s filtration is defined as:

Bα(Vk) = {σ ⊂ Vk | ∀u, v ∈ σ, d(Bku, Bkv) ≤ α}.

We prove that the persistence barcodes of SimBa’s filtration in sequence (5) approximates
those of the Rips filtration in (4) by showing that the persistence modules induced by these
two sequences interleave.

First, observe that each vertex map πk induces a well-defined simplicial map hk :
Bαck(Vk)→ Bαck+1(Vk+1). Indeed, for any edge {u, v} in Bαck(Vk), suppose u′ = πk(u), v′ =
πk(v), then Bku ⊂ Bk+1

u′ and Bkv ⊂ Bk+1
v′ . So we have d(Bk+1

u′ , Bk+1
v′) ≤ d(Bku, Bkv) ≤ αck <

αck+1. Therefore {u′, v′} must be an edge in Bαck+1(Vk+1) as well. Since each complex in
SimBa’s filtration is a clique complex determined by edges, every simplex in Bαck(Vk) has a
well-defined image in Bαck+1(Vk+1). Thus, each hk is well-defined.

Recall that the map π̂k : V0 → Vk+1 is defined as π̂k(v) = πk ◦ · · · ◦ π0(v), which
tracks the image of any point in V0 = P during the batch collapse process. Observe
that the vertex map π̂k also induces a simplicial map ĥk : Rαck(V0) → Bαck+1(Vk+1):
specifically, for any edge (u, v) ∈ Rαck(V0) with d(u, v) ≤ αck, it is easy to see that
d(Bkπ̂k(u), B

k
π̂k(v)) ≤ d(u, v) ≤ αck < αck+1, implying that (π̂k(u), π̂k(v)) is an edge in

Bαck+1(Vk+1). The key observation is the following lemma.

ESA 2016

35:10 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

(a) B.R. (c = 1.3) (b) B.R. (c = 1.5) (c) B.R. (c = 2.0)

(d) SimBa (c = 1.3) (e) SimBa (c = 1.5) (f) SimBa (c = 2.0)

Figure 2 Persistence barcodes computed by Batch-collapsed Rips plus Simpes (B.R.) and SimBa
on the same MotherChild model. B.R. captures main bars for H1 correctly for smaller values of c as
shown in Figure (a) and (b) and loses some for c = 2.0 as shown in Figure (c), while SimBa works
for c = 2.0.

I Lemma 1. Each triangle in the diagram below commutes at homology level, where ik and
jk are induced by inclusions, hk,t := hk+t−1 ◦ · · · ◦ hk, c > 1, t ≥ logc(2

c−1 + 3) and t ∈ Z.

Rαck(V0) �
� ik //

ĥk��

Rαck+t(V0)
ĥk+t��

Bαck(Vk)
' �

jk
55

hk,t // Bαck+t(Vk+t)

Proof. First, we prove that there is indeed an inclusion map jk : Bαck(Vk) ↪→ Rαck+t(V0). In
particular, we show for each edge (u, v) in Bαck(Vk), it’s also an edge in Rαck+t(V0). Suppose
the set distance d(Bku, Bkv) is achieved by the closest pair (u0, v0) between the two sets where
u0 ∈ Bku, v0 ∈ Bkv . Then d(Bku, Bkv) = d(u0, v0) ≤ αck. Since Vi+1 is an αci+1-net of Vi for
each i ∈ [0, k − 1], it follows that d(u, u0) ≤ αck

∑k−1
i=0

1
ci < αck c

c−1 . Similar bound holds for
d(v, v0). Thus:

d(u, v) ≤ d(u, u0) + d(v, v0) + d(u0, v0) ≤ αck(2c
c− 1 + 1) = αck(2

c− 1 + 3) ≤ αck+t.

Hence u, v is an edge in Rαck+t(V0).
Next, observe that the vertex map π̂k+t restricted on the set of vertices Vk is exactly

the same as the vertex map πk,t := πk+t−1 ◦ · · · ◦ πk (this vertex map induces the simplicial
map hk,t in the diagram). Namely, for a vertex u ∈ Vk ⊆ V0, hk,t(u) = ĥk+t(u). Thus
hk,t = ĥk+t ◦ jk. Hence the bottom triangle commutes both at the complex and the homology
level.

We now consider the top triangle. Specifically, we prove that the map jk ◦ ĥk is contiguous
to the inclusion map ik. Since two contiguous maps induce the same homomorphisms at the
homology level, the top triangle commutes at the homology level.

T.K. Dey, D. Shi, and Y. Wang 35:11

c
1 2 3 4

cu
m

u
la

ti
ve

 c
o

m
p

le
x

si
ze

#106

0

0.5

1

1.5

2

2.5
batch-collapse Rips
SimBa

(a) cumulative size

c
1 2 3 4

ti
m

e
co

st
 (

s)

0

10

20

30

40

50
batch-collapse Rips
SimBa

(b) time cost

Figure 3 Complex size and time cost comparison between Batch-collapsed Rips and SimBa.
SimBa beats Batch-collapsed Rips for both size and time when c ≤ 2. For c > 2, the barcodes of
both batch-based approaches become too coarse to be useful in practice.

Indeed, given a simplex σ ∈ Rαck(V0), we need to show that vertices from ik(σ)∪jk◦ĥk(σ)
span a simplex in Rαck+t(V0). Since both are Rips complexes and ik and jk are inclusion
maps, we only need to prove that for any two vertices u and v from σ∪ ĥk(σ), d(u, v) ≤ αck+t

(namely, (u,v) is an edge in Rαck+t(V0)). If u and v are both from σ or both from ĥk(σ),
then d(u, v) ≤ αck+t trivially. Otherwise, assume without loss of generality that v ∈ σ and
u ∈ ĥk(σ), where u = π̂k(u′) for some u′ ∈ σ. Since Vi+1 is an is an αci+1-net of Vi for each
i ∈ [0, k − 1], it follows that d(u, u′) ≤ αck

∑k−1
i=0

1
ci < αck c

c−1 . One then has

d(u, v) ≤ d(u, u′) + d(u′, v) ≤ αck c

c− 1 + αck = αck
2c− 1
c− 1 < αck(2

c− 1 + 3) ≤ αck+t.

Thus ik is contiguous to jk ◦ ĥk and the lemma follows. J

The above result implies that the persistence modules induced by sequences (5) and (4)
are weakly log ct-interleaved at the log-scale. Since t ≥ logc(2

c−1 + 3), we have ct ≥ 2
c−1 + 3.

By Theorem 4.3 of [12], we conclude with the following:

I Theorem 2. The persistence diagram of the sequence (5) provides a 3 log(2
c−1 + 3)-

approximation of the persistence diagram of the sequence (4) at the log-scale for c > 1.

5 Experiments

In this section, we report some experimental results of SimBa on large high dimensional
data sets from other fields such as image processing, machine learning, and computational
biology. For most of the data sets, previous approaches are not efficient enough to finish
processing. They either ran out of memory (‘∞’ in size) or ran more than one day (‘∞’ in
time). Table 1 at the end of this section provides the cumulative size and time cost for all
four approaches mentioned in this paper. All approaches are implemented in C++. Note
that we only compute persistences up to dimension 2 (which means we build simplicial
complexes up to dimension 3). For Sparse Rips with GUDHI and Sparse Rips with Simpers,
we choose parameter ε = 0.8 which gives the best performance while not sacrificing much
of the approximation quality. For Batch-collapsed Rips with Simpers, we choose c = 1.5

ESA 2016

35:12 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

(a) Klein Bottle in R4 (b) Primary Circle in R25 (c) Primary Circle in R49

Figure 4 Original persistence barcodes computed by SimBa on data sets with ground truth.

which appears to reach a good trade-off between efficiency and quality. For SimBa, we choose
c = 1.1 which in practice appears to have best quality – note that the choice of c does not
seem to change the empirical efficiency much as Figure 3 illustrates. All experiments were
run on a 64-bit Windows machine with a 3.50GHz Intel processor and 16GB RAM.

Data with ground truth

We first test with two data sets whose ground truth persistences are known. They help
demonstrate that SimBa works properly and efficiently in practice. All persistence barcodes
shown in Figure 4 are original and not cleaned up.

We first consider a uniform sample of 22500 points from a Klein bottle in R4, and use
SimBa to compute its barcode which is shown in Figure 4a. There are two main bars for H1
and one for H2 as expected.

Next, we consider the primary circle of natural image data in [1], which has 15000 points.
Each point is a 5×5 or 7×7 image patch, thus considered as a point in R25 or R49. From
Figures 4b and 4c, we can see the primary circle bar for H1 for data both in R25 and R49.
All short bars for H2 persist for only one batch step and thus can be regarded as noise.

Data without ground truth

Next, we provide some experiments on the data sets whose ground truth persistences are not
known. We used SimBa to compute their persistences and found some relatively long bars
which are likely to be features and may worth further investigation by domain experts. The
persistence barcodes shown in Figure 5 and 6d are denoised for H1. The rest of Figure 6 are
original.

We first take the Gesture Phase Segmentation data set [30] from UCI machine learning
repository [28]. This data set was used in [29]. It comprises of features extracted from 7
videos with people gesticulating. Each video is represented by a raw file that contains the
positions of hands, wrists, head, and spine of the user in each frame. We took the raw file
from video A1 of 1747 frames. Since there are six sensors each with x, y, z coordinates, we
have in total 1747 points in R18. There are five gesture phases in the videos: rest, preparation,
stroke, hold, and retraction. Indeed, there are five long bars for H0 in 5a (although they
overlap and do not stand out in the picture), which seems to match the five clusters of
different phases. We see some long bars for H1, which could be created due to periodic
patterns in these gesture movements.

Another data set is the Survivin protein data from [27]. There are totally 252996 protein
conformations and each conformation is considered as a point in R150. We used PCA to

T.K. Dey, D. Shi, and Y. Wang 35:13

(a) Gesture Phase data in R18 (b) Survivin data in R3 (c) Survivin data in R150

Figure 5 Denoised persistence barcodes computed by SimBa on data sets without ground truth.

(a) S.R.+GUDHI (b) B.R.+Simpers (c) SimBa (d) SimBa (denoised)

Figure 6 Persistence barcodes computed by different approaches on Gesture Phase Segmentation
data in R18.

Table 1 cumulative size and time cost.

S.R.+GUDHI S.R.+Simpers B.R.+Simpers SimBa
Data n D d size time(s) size time(s) size time(s) size time(s)
Mother 23075 3 2 43.5 · 106 350 43.5 · 106 463.7 2.3 · 106 42.3 104701 8.8
KlBt 22500 4 2 20.9 · 106 205.3 20.9 · 106 303.5 440049 8 78064 6.6
PrCi25 15000 25 ? ∞ − ∞ − − ∞ 4.8 · 106 216
PrCi49 15000 49 ? ∞ − ∞ − − ∞ 10.2 · 106 585
GePh 1747 18 ? 45.6 · 106 282.5 45.6 · 106 432.8 1.4 · 106 29 7145 0.83
Sur3 252996 3 ? ∞ − ∞ − 15.7 · 106 1056.4 915110 1079.6
Sur150 252996 150 ? ∞ − ∞ − − ∞ 3.1 · 106 5089.7

reduce the data dimension to 3. We ran SimBa on both data sets and show the barcodes in
Figure 5c and 5b. We can see that there are some long bars for H1.

Performance results

We provide the performance results for all data sets mentioned in Table 1, which includes
cumulative size and time cost of each approach. The time is obtained by adding the
time to construct the complexes and the time to compute persistence. S.R.+GUDHI,
S.R.+Simpers, B.R.+Simpers and SimBa stand for Sparse Rips plus GUDHI, Sparse
Rips plus Simpers, Batch-collapsed Rips plus Simpers, and SimBa respectively. Mother,
KlBt, PrCi25, PrCi49, GePh, Sur3 and Sur150 stand for MotherChild model, Klein
Bottle, Primary Circle in R25, Primary Circle in R25, Gesture Phase Segmentation data,
Survivin protein data in R3 and in R150 respectively. Each data set has size n, ambient
dimension D, and intrinsic dimension d. The symbol ∞ means that the program either
ran out of memory or did not finish after a day. From the table, we can see that SimBa

ESA 2016

35:14 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

out-performed the other three approaches significantly. Notice that for those larger cases
of SimBa, the nearest neighbor search operations (ANN) usually take most of time and
become the bottleneck. This is why Sur150 costs much more time than PrCi49 while its
cumulative size is smaller. It would be an interesting future work to make nearest neighbor
search more efficient so that SimBa performs better even for such cases.

References
1 H. Adams and G. Carlsson. On the nonlinear statistics of range image patches. SIAM J.

Img. Sci., 2(1):110–117, 2009. doi:10.1137/070711669.
2 U. Bauer, M. Kerber, and J. Reininghaus. Topological Methods in Data Analysis and Visual-

ization III: Theory, Algorithms, and Applications, chapter Clear and Compress: Computing
Persistent Homology in Chunks, pages 103–117. Springer International Publishing, Cham,
2014. doi:10.1007/978-3-319-04099-8_7.

3 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Mathematical Software – ICMS 2014:
4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings, chapter
PHAT – Persistent Homology Algorithms Toolbox, pages 137–143. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014. Project URL: https://bitbucket.org/phat-code/phat.

4 J.-D. Boissonnat, T. K. Dey, and C. Maria. Algorithms – ESA 2013: 21st Annual
European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, chapter
The Compressed Annotation Matrix: An Efficient Data Structure for Computing Per-
sistent Cohomology, pages 695–706. Springer, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-40450-4_59.

5 J.-D. Boissonnat and C. Maria. Algorithms – ESA 2012: 20th Annual European Symposium,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings, chapter The Simplex Tree: An
Efficient Data Structure for General Simplicial Complexes, pages 731–742. Springer, 2012.

6 M. Buchet, F. Chazal, S. Y. Oudot, and D. R. Sheehy. Efficient and robust persistent
homology for measures. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 168–180, 2015. doi:10.1137/1.9781611973730.13.

7 D. Burghelea and T. K. Dey. Topological persistence for circle-valued maps. Discrete
Comput. Geom., 50:69–98, 2013.

8 G. Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–308, 2009.
9 G. Carlsson and V. de Silva. Zigzag persistence. Foundations of computational mathematics,

10(4):367–405, 2010.
10 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &

Computational Geometry, 42(1):71–93, 2009. doi:10.1007/s00454-009-9176-0.
11 N. J. Cavanna, M. Jahanseir, and D. R. Sheehy. A geometric perspective on sparse filtra-

tions. In Canadian Conf. Comput. Geom. (CCCG), 2015. URL: http://dblp.uni-trier.
de/db/conf/cccg/cccg2015.html#CavannaJS15.

12 F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot. Proximity of per-
sistence modules and their diagrams. In Proceedings of the Twenty-fifth Annual Symposium
on Computational Geometry, SCG’09, pages 237–246, New York, NY, USA, 2009. ACM.
doi:10.1145/1542362.1542407.

13 F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, and S. Y. Oudot. Gromov-Hausdorff
stable signatures for shapes using persistence. In Proc. of SGP, 2009.

14 F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence
modules. CoRR, abs/1207.3674, 2012.

15 F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Persistence-based clustering in
Riemannian manifolds. In Proc. 27th Annu. ACM Sympos. Comput. Geom., pages 97–106,
2011.

http://dx.doi.org/10.1137/070711669
http://dx.doi.org/10.1007/978-3-319-04099-8_7
https://bitbucket.org/phat-code/phat
http://dx.doi.org/10.1007/978-3-642-40450-4_59
http://dx.doi.org/10.1007/978-3-642-40450-4_59
http://dx.doi.org/10.1137/1.9781611973730.13
http://dx.doi.org/10.1007/s00454-009-9176-0
http://dblp.uni-trier.de/db/conf/cccg/cccg2015.html#CavannaJS15
http://dblp.uni-trier.de/db/conf/cccg/cccg2015.html#CavannaJS15
http://dx.doi.org/10.1145/1542362.1542407

T.K. Dey, D. Shi, and Y. Wang 35:15

16 C. Chen and M. Kerber. An output-sensitive algorithm for persistent homology. Comput.
Geom. Theory Appl., 46(4):435–447, May 2013. doi:10.1016/j.comgeo.2012.02.010.

17 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Dis-
crete & Computational Geometry, 37(1):103–120, 2007.

18 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using Poincaré
and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.

19 D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by updating
persistence in linear time. In Proceedings of the twenty-second annual symposium on Com-
putational geometry, pages 119–126. ACM, 2006.

20 V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent cohomology and circular
coordinates. Discrete Comput. Geom., 45(4):737–759, 2011.

21 T. K. Dey, F. Fan, and Y. Wang. Computing topological persistence for simplicial maps.
In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14,
pages 345–354. ACM, 2014. doi:10.1145/2582112.2582165.

22 T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, and Y. Wang. Persistent heat signature for
pose-oblivious matching of incomplete models. Comput. Graph. Forum. (special issue from
Sympos. Geom. Process.), 29(5):1545–1554, 2010.

23 Dmitriy Morozov. Dionysus Software. http://mrzv.org/software/dionysus/, 2012.
24 H. Edelsbrunner and J. Harer. Computational Topology – an Introduction. American

Mathematical Society, 2010.
25 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifica-

tion. Discrete Comput. Geom., 28:511–533, 2002.
26 P. Frosini. A distance for similarity classes of submanifolds of a euclidean space. Bulletin

of the Australian Mathematical Society, 42(3):407–416, 1990.
27 W. Harvey, I.-H. Park, O. Rübel, V. Pascucci, P.-T. Bremer, C. Li, and Y. Wang. A collab-

orative visual analytics suite for protein folding research. Journal of Molecular Graphics
and Modelling, 53:59–71, 2014. doi:10.1016/j.jmgm.2014.06.003.

28 M. Lichman. UCI machine learning repository, 2013. Project URL: http://archive.ics.
uci.edu/ml.

29 R. C. B. Madeo, S. M. Peres, and C. A. de M. Lima. Gesture phase segmentation using
support vector machines. Expert Systems with Applications, 56:100–115, 2016. doi:10.
1016/j.eswa.2016.02.021.

30 R. C. B. Madeo, P. K. Wagner, and S. M. Peres. Gesture Phase Segmentation Data
Set, 2014. Project URL: http://archive.ics.uci.edu/ml/datasets/Gesture+Phase+
Segmentation.

31 D. M. Mount and S. Arya. ANN: A Library for Approximate Nearest Neighbor Searching,
2010. Project URL: https://www.cs.umd.edu/~mount/ANN/.

32 James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1993.
33 J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for topological

machine learning. In Proc. IEEE Conf. Comp. Vision & Pat. Rec. (CVPR), pages 4741–
4748, 2015.

34 V. Robins. Towards computing homology from finite approximations. Topology Proceedings,
24(1):503–532, 1999.

35 D. R. Sheehy. Linear-size approximations to the vietoris-rips filtration. In Proceedings of the
Twenty-eighth Annual Symposium on Computational Geometry, SoCG’12, pages 239–248.
ACM, 2012. doi:10.1145/2261250.2261286.

36 Simpers Software, 2015. Project URL: http://web.cse.ohio-state.edu/~tamaldey/
SimPers/Simpers.html.

37 G. Singh, F. Mémoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. L Ringach. Topological
analysis of population activity in visual cortex. Journal of vision, 8(8):11, 2008.

ESA 2016

http://dx.doi.org/10.1016/j.comgeo.2012.02.010
http://dx.doi.org/10.1145/2582112.2582165
http://mrzv.org/software/dionysus/
http://dx.doi.org/10.1016/j.jmgm.2014.06.003
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.eswa.2016.02.021
http://dx.doi.org/10.1016/j.eswa.2016.02.021
http://archive.ics.uci.edu/ml/datasets/Gesture+Phase+Segmentation
http://archive.ics.uci.edu/ml/datasets/Gesture+Phase+Segmentation
https://www.cs.umd.edu/~mount/ANN/
http://dx.doi.org/10.1145/2261250.2261286
http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html

35:16 SimBa: Approximating Rips-Filtration Persistence via Simplicial Batch-Collapse

38 The GUDHI Project. GUDHI user and reference manual, 2015. Project URL: http://
gudhi.gforge.inria.fr/doc/latest/.

39 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom.,
33(2):249–274, 2005.

http://gudhi.gforge.inria.fr/doc/latest/
http://gudhi.gforge.inria.fr/doc/latest/

	Introduction
	Rips filtration and its approximation
	Sparse Rips filtration (inclusions)
	Sparse Rips with collapse
	Batch-collapsed Rips

	SimBa
	Implementation Details
	SimBa on MotherChild model

	Approximation guarantee of SimBa
	Experiments

