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Abstract
An important task in trajectory analysis is defining a meaningful representative for a cluster of
similar trajectories. Formally defining and computing such a representative r is a challenging
problem. We propose and discuss two new definitions, both of which use only the geometry of
the input trajectories. The definitions are based on the homotopy area as a measure of similarity
between two curves, which is a minimum area swept by all possible deformations of one curve
into the other. In the first definition we wish to minimize the maximum homotopy area between
r and any input trajectory, whereas in the second definition we wish to minimize the sum of the
homotopy areas between r and the input trajectories. For both definitions computing an optimal
representative is NP-hard. However, for the case of minimizing the sum of the homotopy areas,
an optimal representative can be found efficiently in a natural class of restricted inputs, namely,
when the arrangement of trajectories forms a directed acyclic graph.
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1 Introduction

Motivated by GIS applications, the question of extracting a meaningful representative
trajectory from a collection of similar trajectories has recently received considerable attention
in the computational geometry community [3, 11, 12, 16, 19, 1, 10, 2]. In many trajectory
analysis applications, only the locations (and not the corresponding time stamps) in the
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Figure 1 Left: Curves representing hiking trajectories between two points, and a possible
representative. A pointwise average trajectory would go through the lake. Right: The trajectory
graph G. In this example, G is acyclic.

trajectories are relevant. Consider, for example, the case in the input trajectories originate
from hikers that walked a similar trail, but possibly on different days. In such a setting the
trajectories are just curves in the plane, and hence we wish to find a representative curve
that captures important features shared by most of the input curves. It has been argued
before that it is desirable that the representative uses only pieces of the input trajectories, so
that it avoids obstacles in the underlying space [4]. See for example Fig. 1 (left). Hence, we
will restrict our attention to representatives that consist of pieces of the input trajectories,
and that ignore any temporal information available.

Buchin et al. investigate whether a reasonable notion of a median exists in such a setting
that depends only on the intersections in a set of trajectories [4]. Their simple median is
essentially not using the geometry. They also present a second definition, that incorporates
a notion of the topology of the underlying space, by placing obstacles in large open regions
and restricting the class of trajectories to the same homotopy type, that is, they require the
representative trajectory to “wind around” the obstacles in the same way as the majority
of the input trajectories. For example, in Fig. 1 (left), a user could for example mark the
lake as an obstacle. Buchin et al. conclude that while computation of the median is possible
to some extent, some notion of geometry and topology seems necessary to handle practical
situations.

In this paper, we include some geometric and topological information in the selection
of a representative trajectory (curve), namely, the area of the faces in the arrangement
of trajectories. As a measure of similarity between two curves, we use the homotopy area
from Chambers and Wang [7], which is the minimum area swept by a deformation of one
non-self-intersecting curve into the other. More formally, if H : [0, 1] × [0, 1] → R2 is a
continuous deformation of curve µ into τ , the homotopy area of H is

A(H) =
∫
s∈[0,1]

∫
t∈[0,1]

∣∣∣∣ dH
ds ×

dH
dt

∣∣∣∣ dsdt.

The infimum HA(µ, τ) of A over all continuous deformations between µ and τ is the homotopy
area. The notion of homotopy area seems particularly attractive in our setting as it implicitly
penalizes a representative trajectory for deviating from the bulk of the trajectories without
making it necessary to artificially place obstacles in the ambient space, which was the solution
used in prior work [4]. Homotopy area is defined only on curves which are non-self-intersecting,
so we must also place this constraint on each of our input trajectories.

Problem Statement. We are given a set of trajectories T = {τ1,.., τn}, which are piecewise
curves, each piece of low algebraic degree, in the plane. We wish to compute a single
trajectory µ∗ that best represents all trajectories in T . As we will use homotopy area to
measure the quality of µ∗ we require that each individual trajectory τi is simple, that is, it has
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no self-intersections (otherwise homotopy area is not well defined). Consider the arrangement
of the trajectories T in R2, and orient each edge so that its direction corresponds to that of
the trajectory defining it. We refer to this arrangement as the trajectory graph G. See Fig. 1.

Initially, we will assume that all trajectories start and end at the same points, say s and
t respectively, and that s and t lie in the outer face of the arrangement of the trajectories.
We will (partially) lift these restrictions in Sections 4.2 and 4.3.

For the output trajectory µ∗ we require that it is a simple path in the trajectory graph;
this means that it can consist only of segments of the input trajectories, that it is simple,
and that it uses each segment in the same direction as used in the input trajectory.

Among all possible output trajectories (simple paths in G), we wish to construct one
that represents T best. We measure this by the distance between the (candidate) median
µ and the trajectories in T . Let HA(µ, τi) be the minimum homotopy area between µ

and a trajectory τi ∈ T . We consider two variants: minimizing the maximum distance
HAmax(µ, T ) = maxτi∈T HA(µ, τi) between µ and the trajectories in T , and the sum of the
distances HAsum(µ, T ) =

∑
τi∈T HA(µ, τi) between µ and the trajectories in T . If T is clear

from the context we will write HAmax(µ) = HAmax(µ, T ) and HAsum(µ) = HAsum(µ, T ).

Results. We show that the first variant considered, minimizing the maximum distance, is
NP-hard, even if we have only two trajectories, both of which are x-monotone (Section 2).
In general, minimizing the sum of the distances, HAsum, is also NP-hard, as we show in
Section 3. However, the second hardness reduction is more involved and critically relies on
cycles in the trajectory graph. If the trajectory graph is a directed acyclic graph (DAG),
then we can compute a representative minimizing HAsum efficiently, as we show in Section 4.
Quite surprisingly, our results show that when the graph is a DAG and all trajectories
share a start and end point on the outer face, the simple median from Buchin et al. [4] that
does not incorporate areas in any way, remains the optimal choice for minimizing HAsum.
Hence, even though the best running time to compute homotopy area between two curves is
O(n+ I2 logn) time, where n is the complexity of the input curves and I is the number of
intersections between the two curves [7], we are able to calculate a median trajectory under
homotopy area much more quickly using the simple median algorithm [4]. We also show
that our approach generalizes to the case when the start and end points of the trajectories
are in different, arbitrary faces of the DAG, although the simple median is no longer the
curve minimizing HAsum. Instead, a simple median must be computed between lifts of the
trajectories in a particular covering space of the plane. Omitted proofs are in the full version.

2 Minimizing the Maximum Distance HAmax is NP-hard

In this section we consider computing a representative that minimizes the maximum distance
to all other trajectories. Unfortunately, this problem is NP-hard, even for the case of a
constant number of x-monotone input curves.

I Theorem 1. Given a set of trajectories T , computing a median µ that minimizes HAmax
is NP-hard, even if T contains only two trajectories, both of which are x-monotone.

Proof. We reduce from the Partition problem, which, given a set A = {a1,.., an} of positive
integers, asks for a partition of A into sets A1 and A2 such that

∑
ai∈A1

ai =
∑
ai∈A2

ai =∑
ai∈A ai/2. Given the set A, we construct two x-monotone trajectories τ1 and τ2 such that

the faces between successive intersections have area equal to some ai ∈ A. See Fig. 2.
Any candidate trajectory µ corresponds to a partition of A into A1 and A2: ai ∈

A1 if and only if µ uses the piece of τ1 that bounds the face corresponding to ai. It
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Figure 2 An illustration of the NP-hardness reduction from Partition. The purple curve represents
the partition B = {a2, a3, a6, a7} and G = {a1, a4, a5}.
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Figure 3 Left: The braid construction—a basic building block for hardness proof gadgets. Optimal
representative trajectory does not switch at intersections. HAsum = 4s1 + 2ε. Right: Four building
blocks joint together. Optimal representative trajectory follows the red or the blue trajectory all the
way from s to t and does not switch at intersections. HAsum = 5s2 +O(s1).

follows that the homotopy area between µ and τj is exactly
∑
ai∈Aj ai. Thus HAmax(µ) =

max
{∑

ai∈A1
ai,
∑
ai∈A2

ai
}
. Let µ∗ be a trajectory minimizing HAmax. We have that

HAmax(µ∗) =
∑
ai∈A ai/2 if and only if A can be partitioned such that

∑
ai∈A1

ai =∑
ai∈A2

ai. Therefore minimizing HAmax is (weakly) NP-hard. J

3 Minimizing the Sum of Distances HAsum is NP-hard

In this section we show that minimizing the total sum of the distances from the representative
trajectory to all the trajectories in T is NP-hard in general.

Before we describe the gadgets for variables and clauses, consider the two trajectories τ1
and τ2 in Fig. 3 (left). Let ε � s1 � s2 be the areas swept by the deformation of τ1 into
τ2 between the intersection points, and let µ∗ be a representative trajectory that minimizes
HAsum. We will call this construction a braid of τ1 and τ2. We will show that in a braid
µ∗ = τ1 or µ∗ = τ2, i.e., µ∗ does not switch to another trajectory at any intersection point.

I Lemma 2. If the areas of the faces of the arrangement of T = {τ1, τ2}, for a braid
construction of two trajectories τ1 and τ2 (depicted in Fig. 3 (left)), satisfy ε � s1 � s2,
then the optimal representative trajectory µ∗ = τ1 or µ∗ = τ2.

The braid construction is a crossing gadget, it allows two trajectories to cross while
enforcing that µ∗ does not switch to another trajectory at intersections. We will use it as a
basic building element in the hardness proof gadgets.

Now consider an arrangement of three trajectories in Fig. 3 (right). There are four
braids of pairs of trajectories used in this arrangement. The red trajectory, τ1, and the
blue trajectory, τ2, are rotationally symmetrical. Let µ∗ be a representative trajectory that
minimizes HAsum.

I Lemma 3. For the arrangement of three trajectories T = {τ1, τ2, τ3} depicted in Fig. 3
(right) the optimal representative trajectory µ∗ = τ1 or µ∗ = τ2.

I Theorem 4. Minimizing HAsum is NP-hard.
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Figure 4 Left: An example of a variable gadget consisting of two building blocks. Variable
gadgets are traversed by trajectories from right to left. Right: The clause gadget is traversed from
left to right.

Proof. We prove that it is NP-hard to minimize HAsum by a reduction from planar 3-
SAT [17]: given an instance of a planar 3-SAT formula Φ with n variables and m clauses,
and a rectilinear embedding1 of its graph [15], we construct a set of three trajectories T such
that minimizing HAsum for T is equivalent to answering the question if Φ is satisfiable.

Variable gadget. The variable gadget (refer to Fig. 4 (left)) consists of a series of building
blocks from Fig. 3 (right) with red and blue trajectories having two thin extensions (such
that the area covered by them is O(ε)) that will serve as connectors to clauses. Up until
entering the variable gadget all three trajectories follow the same path (shown in green in
the figure), and they diverge after entering into the gadget. Selecting the red or the blue
trajectory for the optimal representative trajectory µ∗ to follow at this moment corresponds
to setting the variable to true or false. As the variable gadget consists of building blocks
that prevent µ∗ from switching the color, the next color change can only occur once µ∗ exits
the variable gadget. One block of the variable gadget contributes 5s2 +O(s1) area to the
total homotopy area between µ∗ and the three trajectories.

Clause gadget. The clause gadget (shown in Fig. 4 (right)) consists of three blocks that
will be connected to the corresponding variable gadgets: the leftmost and the rightmost
blocks are the same as in Fig. 3 (right) (up to change of colors), and the middle block is a
similar construction but consists of only three braids from Fig. 3 (left). The green trajectories
in-between the blocks represent all three trajectories (red, blue, and yellow) following the
same path that connect the current clause to the other clauses in hierarchical order (for
more details refer to the next paragraph). The first block allows µ∗ to follow the blue or
the orange trajectory. In the second block all three trajectories will contribute the same
amount to the area measure, thus any of the three trajectories can be chosen by µ∗. The
third block allows µ∗ to follow the red or the orange trajectory. Moreover, µ∗ cannot choose

1 Recall that in a rectilinear embedding of a graph of a 3-SAT formula, the variable-vertices are placed on
a horizontal line, and the clause-vertices are placed above and below the horizontal line and connected
to the corresponding variable-vertices with axis-aligned L-shape connectors.

ESA 2016
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the blue trajectory in the first block and the red trajectory in the second block at the same
time, as this would cause a self-intersection. Similarly, µ∗ cannot choose the blue trajectory
in the second block and the red trajectory in the third block at the same time. Thus, µ∗
has to choose the orange trajectory in at least one of the three blocks. Choosing the orange
trajectory corresponds to satisfying the clause with the value of the corresponding variable.
A clause gadget contributes 5s2 +O(s1) + 4s2 +O(s1) + 5s2 +O(s1) = 14s2 +O(s1) area to
the total homotopy area between µ∗ and the three trajectories.

Fig. 5 (left) shows an example of a clause (¬x∨y∨z) connected to the three corresponding
variables. It is depicting the case when the clause is satisfied by setting the value of y to true.

Putting all the building blocks together. Given the rectilinear embedding of the graph of
the planar 3-SAT formula, we construct the gadgets for the variables and the clauses. The
embedding provides a hierarchy of the clauses that leads to a natural order in which the
clauses can be traversed (refer to Fig. 5 (right)). The outermost clause gets traversed the
first; the clauses that lie between the first two legs of the outermost clause get traversed
after the first block and before the second block of that clause; analogously, the clauses that
lie between the second and the third legs of the outermost clause get traversed after the
second block and before the third block of that clause; sibling clauses that lie in the same
level get traversed one after another. Thus, the three trajectories will start at the top left of
the embedding, traversing all the clauses that lie above the horizontal line containing the
variables, then they traverse all the variables in order of appearance on the horizontal line,
and then they traverse the clauses that lie below the variable line. If formula Φ is satisfiable,
the total homotopy area of µ∗ is

HAsum(µ∗, T ) = (
n∑
1

5ki + 14m)s2 + (
n∑
1

5ki + 14m)O(s1) ≤ 29ms2 + 29mO(s1) ,

where ki is the number of blocks in the variable xi’s gadget, and since some of the blocks can
be connected to multiple clauses,

∑n
1 ki ≤ 3m. Let s2 = 1, and s1 = o( 1

m ). If µ∗ switches a
trajectory at any intersection point inside of any gadget, the total area added as a penalty
to HAsum shall be � 29m. This can be easily achieved by increasing the space between
the gadgets. Therefore, deciding if there exists a µ∗ such that the total homotopy area
HAsum(µ∗, T ) is not greater than 29m+ o(1), is equivalent to deciding if Φ is satisfiable. The
size of the construction is polynomial in size of the 3-SAT instance, therefore, it is NP-hard
to find a representative trajectory that minimizes HAsum. J

4 Minimizing the Sum of Distances HAsum when G is a DAG

We now describe how to compute a representative trajectory that minimizes HAsum for a set
of trajectories T whose trajectory graph is acyclic. For simplicity of presentation, we assume
that n is odd. All our proofs can be extended to the case when n is even. As a warmup,
we consider the case in which the trajectories in T are x-monotone. Next, we expand to
the case when s and t lie on the boundary of the outer face of G but the trajectories are no
longer required to be x-monotone. Finally, we consider the most general case, when s and t
lie in the interior faces of G.
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Figure 5 Left: An example of clause (¬x ∨ y ∨ z) connected to the three corresponding variables.
Here, x = true, y = true and z = false. Right: An order of traversal of the clause and variable
gadgets is induced by the embedding of the planar graph of Φ.

s t

Figure 6 The simple median for a set of x-monotone trajectories.

4.1 Minimizing HAsum for x-Monotone Trajectories
In this section we will show that for x-monotone trajectories, the simple median, as defined by
Buchin et al. [4], minimizes the sum of the homotopy areas HAsum. At the starting point s,
the simple median starts at the dn/2eth curve (ranking the trajectories by their y-coordinate
just after s). It switches to the other trajectory at every intersection point it encounters,
thus staying on the dn/2eth trajectory. So, for x-monotone trajectories the simple median
corresponds to the dn/2e-level in G. See Fig. 6.

To show that the simple median µ∗ minimizes HAsum we now write HAsum(µ) as an
integral

∫
f(x) dx. The value f(x) represents the sum of the lengths of a set of intervals

along a vertical line with abscissa x. All intervals share a common endpoint µ(x). The total
length of these intervals is minimal when µ has the same number of trajectories above and
below it, that is, when it coincides with the simple median.

I Lemma 5. The simple median µ∗ minimizes F (µ) =
∫
x

∑
τi∈T

|µ(x)− τi(x)|dx.

Proof. Let y1,.., yn denote the (y-coordinates of the) intersection points of the trajectories
with a vertical line ` with abscissa x. Any valid representative trajectory uses one of the points
yi, i.e., µ(x) ∈ {y1,.., yn}. Note, that the median point ydn/2e minimizes f(y) =

∑n
i=1 |y−yi|.

The simple median µ∗ is on the dn/2eth trajectory at any coordinate x. Therefore, µ∗
minimizes

∫
x
f(y) dx =

∫
x

∑n
i=1 |µ(x)− τi(x)|. J

I Remark. When n is even, there are two points yn
2

and yn
2 +1 that minimize f(y) =∑n

i=1 |y − yi|. Therefore, any trajectory switching between the levels n
2 and (n2 + 1) will

minimize F (µ) =
∫
x

∑
τi∈T |µ(x)− τi(x)|dx.

Given a point p let ω(p, δ) denote the winding number of p with respect to an oriented
closed curve δ. We say that δ is atomic if ω(p, δ) is either all non-negative, or all non-positive,

ESA 2016
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Figure 7 There is a subsequence p1,.., p` of intersection vertices (purple) that partition µ and τ
(in red and blue, respectively) into subcurves δ1,.., δk, such that all faces in δi = loop(µi, τi) (green)
have either winding number one or minus one.

for all points p ∈ R2. Furthermore, let W (δ) =
∫
p∈R2 ω(p, δ) dp denote the total winding

number of curve δ.
Let µ and τ be two curves from s to t, let δ = loop(µ, τ) denote the closed curve obtained

by concatenating µ and the reverse of τ , and let s = p1,.., p` = t denote the intersection
points between µ and τ , ordered along µ. Chambers and Wang [7] show that there is a (not
necessarily contiguous) subsequence of the intersection points {pi} that decompose δ into
a set of atomic closed curves ∆(µ, τ) = δ1,.., δk, such that the minimum homotopy area
HA(µ, τ) =

∑k
i=1 |W (δi)|. See Fig. 7 for an illustration.

I Observation 6. If µ and τ are x-monotone curves, the atomic curves in ∆(µ, τ) are
pairwise disjoint (except for the subsequence of the intersection points {pi}).

I Theorem 7. Let T be a set of x-monotone trajectories. The simple median µ∗ minimizes
HAsum.

Proof. We will show that HAsum(µ) = F (µ). The theorem then follows from Lemma 5.
Using the result of Chambers and Wang [7] we can then rewrite HAsum(µ) as

HAsum(µ) =
∑
τi∈T

HA(µ, τi) =
∑
τi∈T

∑
δ∈∆(µ,τi)

|W (δ)| =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∣∣∣∣∫
p∈R2

ω(p, δ) dp
∣∣∣∣ =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫
x∈R

∫
y∈R
|ω((x, y), δ)|dy dx =

=
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∫
y∈R
|ω((x, y), δ)|dy dx .

A vertical line `x with x-coordinate x intersects (the faces of) G in a set of intervals
I(x) = I1,.., In. So, for any curve δ that uses only edges of G, all points (values) in an
interval Ii have the same winding number ω(Ii, δ). So,

HAsum(µ) =
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∑
I∈I(x)

∫
y∈I
|ω((x, y), δ)|dy dx =

=
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

∑
I∈I(x)

|ω(I, δ)| · |I|dx .

Since the trajectories are x-monotone, so is µ. The curves δ ∈ ∆(µ, τi) are built by
concatenating a piece of µ and a reversed piece of τi. Hence, any vertical line `x intersects
δ in exactly two points: µ(x) and τi(x). Therefore, any point p on `x that lies in between
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these points has winding number one or minus one with respect to δ. Any point outside the
interval defined by µ(x) and τi(x) has winding number zero. Thus, we get

HAsum(µ) =
∫
x∈R

∑
τi∈T

∑
δ∈∆(µ,τi)

|µ(x)− τi(x)|dx .

Since µ and all τi are x-monotone, Observation 6 gives us that all curves in ∆(µ, τi) are
pairwise disjoint. This gives us

HAsum(µ) =
∫
x∈R

∑
τi∈T

|µ(x)− τi(x)|dx = F (µ) . J

4.2 Extending to Acyclic G with s and t on the Outer Face
The proof from the previous section consists of two steps: (i) show that the simple median
minimizes the function F , which represents the sum of interval lengths along a sweep-line;
and (ii) show that minimizing the sum of interval lengths along this sweep-line is equivalent
to minimizing HAsum. The two key ideas to extend the algorithm to the case in which the
trajectory graph is a DAG that has s and t on the outer face (but is otherwise unconstrained),
are that (a) we can generalize (i) to minimizing curve-intervals lengths along a sweep-curve,
and, (b) a suitable sweep-curve exists for which minimizing the sum of curve-intervals lengths
is again the same as minimizing HAsum.

We say that a curve is conforming to trajectories T if and only if it is simple and intersects
all trajectories of T exactly once. Let γ : R × R → R2 be a continuous map such that
for any u ∈ [0, 1], γ(u) =

⋃
z∈R γ(u, z) is an (open) conforming curve that separates s and

t, such that for any u, γ(u,−∞)y = −∞ and γ(u,+∞)y = +∞, and for any u 6∈ [0, 1],
γ(u) =

⋃
z∈R γ(u, z) is an open curve that does not intersect T . We say that γ is a

(conforming) sweep-curve. Assume, without loss of generality, that s lies to the left of γ(u)
and t to the right of γ(u) for all u ∈ (0, 1).

Let c(γ, u, i) denote the ith intersection point of γ(u) with a trajectory in T , and let µγ
be the curve that for any value u corresponds to the dn/2eth intersection point on γ(u), i.e.
µγ(u) = c(γ, u, dn/2e). Note that µγ is simply connected.

I Lemma 8. Let ϕ0 and ϕ1 be conforming curves. Furthermore, assume that the only point
from

⋃
T to the left of ϕ1 is s. There is a conforming sweep-curve γ that deforms γ(0) = ϕ0

into γ(1) = ϕ1.

Proof. Let k(ϕ) denote the number of vertices of the trajectory graph G that lie to the left
the conforming curve ϕ. We have k(ϕ1) = 1, and k(ϕ0) = m + 1, for some m ∈ N. We
now prove by induction on m that we can continuously deform ϕ0 into ϕ1 while remaining
conforming. The lemma then follows.

The base case m = 0 is trivial, because two conforming curves without vertices of G
between them must intersect exactly the same edges in exactly the same order. Hence, such
curves are actually combinatorially equivalent.

For the induction step, let V = v0, v1,.., vz denote the vertices of G in topological order,
let L be the set of vertices left of ϕ0, and let v` be the last vertex (with respect to order V )
in L. Since ϕ0 is conforming, it separates s from t. It follows that v` 6= t = vz, and thus
` < z. Since v = v` is the last vertex in V that lies left of ϕ0, and ` < z, both its outgoing
edges cross ϕ0. Furthermore, the area enclosed by these edges and ϕ0 is empty of other
vertices: the trajectories that visit such a vertex would have to cross ϕ0 twice, or they would
have to intersect the outgoing edges of v (see Fig. 8). Since such an intersection point would
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v`

ϕ0

τj

τi

Figure 8 The region enclosed by the outgoing edges
of v` = v and ϕ0 (yellow) must be empty.

δi

δj

v

u

w

Figure 9 If δi and δj intersect in v

then u,w, and v form a cycle.

have been a vertex in G both these cases cannot occur. Let τi and τj be the trajectories
on the outgoing edges of v. Since ϕ0 is conforming, it intersects τi and τj at most once,
namely on the outgoing edges of v. Therefore, ϕ0 does not intersect the incoming edges
of v. It follows that we can continuously deform ϕ0 into a conforming curve ϕ′0 that (a)
intersects the trajectories in the same order as ϕ0, with the exception of τi and τj ; they are
swapped, and (b) has the set of vertices L \ {v} to its left, by sweeping over vertex v, and
while remaining conforming at any time. Since the number of vertices to the left of ϕ′0 is
only m− 1, the induction hypothesis gives us that there is a continuous deformation from
ϕ′0 into ϕ1. This completes the proof. J

I Lemma 9. Let ϕ0 and ϕ1 be conforming curves. There is a conforming sweep-curve γ
that deforms γ(0) = ϕ0 into γ(1) = ϕ1.

I Lemma 10. Let γ1 and γ2 be two conforming sweep-curves, with γ1(0) = γ2(0) and
γ1(1) = γ2(1), and let µ1 = µγ1(u) and µ2 = µγ2(u) be their corresponding median curves
for u ∈ [0, 1]. We have that µ1 = µ2.

Proof. Let u1,.., uk and v1, .., v` be the vertices of µ1 and µ2, respectively. Since, γ1(0) =
γ2(0), the order in which γ1(0) and γ2(0) intersect the trajectories is the same. It follows
that µ1(0) = c(γ0, 0, dn/2e) = c(γ1, 0, dn/2e) = µ2(0), and thus u1 = v1.

Assume by contradiction that i is the index at which µ1 and µ2 diverge for the first time.
So, µ1 and µ2 both arrive at v = ui = vi on the same incoming edge, and leave on different
outgoing edges of v. Clearly, µj , j ∈ [1, 2], changes only if γj sweeps over a vertex of G.
However, since γj is conforming, the number of curves intersected by γj before v does not
change when it sweeps over a vertex w 6= v. This means that µ1 and µ2 also use the same
outgoing edge of v = vi = ui. This contradicts the fact that i is the first index on which µ1
and µ2 diverge. J

Recall that µγ is the curve that for any value u corresponds to the dn/2eth intersection
point on γ(u). Lemma 10 then implies:

I Corollary 11. There is a unique curve µ∗ connecting s to t, such that for any conforming
sweep-curve γ, we have that µγ ⊆ µ∗.

A conforming sweep-curve γ is complete if and only if the only point from
⋃
T left of

γ(0) is s, and the only point from
⋃
T right of γ(1) is t. We then have:

I Lemma 12. Let γ be a conforming sweep-curve that is complete, as defined above. The
simple median µ∗ minimizes Fγ(µ) =

∫
u∈[0,1]

∑
τi∈T

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz du,
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where J(u, z) is the Jacobian determinant of γ, and zµ(u) and zτi(u) are the z-coordinates of
points µ(u) and τi(u) respectively.

Proof. The inner integral
∫
z∈[zµ(u),zτi (u)] |J(u, z)| dz represents the length of the curve γ(u)

between the two intersection points with curves µ and τi. Analogous to Lemma 5 we note
that µγ(u) minimizes f(µ) =

∑n
i=1 lenγ(µ(u) − τi(u)), and therefore µγ minimizes Fγ(µ).

The lemma follows from the fact that µ∗ = µγ . J

As in Theorem 7 we now rewrite HAsum(µ) as an integral over u. However, instead of
directly mapping u to a vertical line we map it to a conforming curve. The resulting mapping
is a conforming sweep-curve. Thus, we prove:

I Lemma 13. For any pair of simple paths A and B in G from s to t, the atomic curves in
∆(A,B) are disjoint.

Proof. Assume, by contradiction, that δi ∈ ∆(A,B) and δj ∈ ∆(A,B), with i < j, are
not disjoint. Then there is an intersection vertex v between δi and δj . Let ≺ denote the
topological order of the vertices in G, let u be the ending vertex of δi and let w be the
starting vertex of δj (see Fig. 9). Since i < j we have that u ≺ w, and since v lies on δi we
have that v ≺ u. However, v lies also on δj , so we have w ≺ v, and thus v ≺ u ≺ w ≺ v.
Contradiction. J

I Theorem 14. Let T be a set of trajectories for which G is acyclic, and s and t are on the
outer face of G. The simple median µ∗ minimizes HAsum.

Proof. It is easy to see that there is a conforming curve ϕ0 which, from the points in
⋃
T ,

has just s to its left. Similarly, there exists a conforming curve ϕ1 that has only t to its right.
Therefore, by Lemma 9 there is a complete conforming sweep-curve γ. Lemma 12 then gives
us that the simple median µ∗ minimizes Fγ(m). We now show that HAsum(µ) = Fγ(m).
Using the result of Chambers and Wang [7] we again rewrite HAsum(µ) as

HAsum(µ) =
∑
τi∈T

HA(µ, τi) =
∑
τi∈T

∑
δ∈∆(µ,τi)

|W (δ)| =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫∫
(x,y)∈R2

|ω(p(x, y), δ)| dx dy =

=
∑
τi∈T

∑
δ∈∆(µ,τi)

∫
u∈R

∫
z∈R
|ω(γ(u, z), δ)| |J(u, z)| dz du .

Since for all u ∈ [0, 1], γ(u) intersects every atomic closed curve δ ∈ ∆(µ, τi) in exactly two
points, and due to Lemma 13 the curves in ∆(µ, τi) are pairwise disjoint, we get that∑

δ∈∆(µ,τi)

∫
z∈R
|ω(γ(u, z), δ)| |J(u, z)| dz =

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz ,

where zµ(u) and zτi(u) are z-coordinates of the intersection points of γ(u) with µ and τi
respectively. And since γ(u) does not intersect any trajectory in T for u 6∈ [0, 1],

HAsum(µ) =
∑
τi∈T

∫
u∈R

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz du =

=
∫
u∈[0,1]

du ·
∑
τi∈T

∫
z∈[zµ(u),zτi (u)]

|J(u, z)| dz = Fγ(µ) . J
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Figure 10 Left: A set of three trajectories with s and t lying on the boundary of an interior face.
The optimal representative (light-purple) does not switch at every intersection. Right: The winding
numbers for loop(τ1, τ2). The highlighted face is swept twice by a minimal homotopy.

I Observation 15. Note that the simple median µ∗ minimizes Fγ , and thus HAsum, among
all curves from s to t, even ones that are not necessarily restricted to consist of pieces of the
input trajectories.

I Remark. When n is odd there is a unique curve that minimizes Fγ , and it is simple median
µ∗. When n is even there can be multiple curves, not necessarily restricted to consist of
pieces of the input trajectories, that all minimize Fγ . These curves are all bounded by the n

2 -
and (n2 + 1)-levels of the trajectories.

4.3 Extending to Acyclic G with Unrestricted s and t

In this section we extend our approach to compute an optimal representative trajectory
when s and t can be anywhere in the DAG. However, unlike in the previous two sections, we
can no longer start at the median trajectory from s and switch at every intersection point
we encounter. Fig. 10 (left) shows an example of a set of trajectories in which any curve
that always switches is not optimal, no matter where we start. The main reason why our
argument breaks here is that the winding numbers between the individual pairs of curves are
no longer just in the range [−1, 1]. Hence, an optimal homotopy may have to sweep over a
face more than once.

Instead, we will lift the trajectories into a space X that we will construct from the
covering spaces of R2 \ s and R2 \ t; we refer the reader to a standard topology text for
detailed definitions of covering spaces [14, 18]. The key in this setting is that we will be able
to lift the trajectories into X in such a way that the trajectory graph will form a DAG with
s and t on the outer face and the pairwise homotopy areas between lifted trajectories will be
the same as the homotopy area in the plane. We then compute an optimal representative for
the lifted trajectories, using our simple median algorithm, and show that its corresponding
projection is an optimal representative for the original trajectories.

The space X. Intuitively, we start with a covering space of the space formed from the
plane by cutting out small disks around s and t, where each of the boundaries is collapsed to
a single point, and then obtain space X by adding the points s and t back. This means that
X will cover R2\{s, t} with infinitely many “layers” forming Riemann-like spirals around
points s and t. Consider a simple cycle δ in R2 that goes through some point p and that
encloses s or t. A walk along δ starting at p and ending at p in R2 corresponds to a curve
in X that starts at the copy of p in some layer i and ends at the copy of p in layer i+ 1 or
i− 1. See Fig. 11 for an illustration. We formalize this more carefully (including the metric
on the space X, which will be necessary in order to argue about the homotopy area) using a
particular conforming curve, as follows:
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γ0

δ
s

p

p′

p′′

δX

Figure 11 Lifting cycle δ
from R2 into X.

s t

γ0

γs

γt

Figure 12 Input trajectories lifted into the space X.

I Lemma 16. Given a set of simple trajectories T that start at s and end in t, whose
arrangement forms a directed acyclic graph G, there exists a conforming curve γ with
endpoints at infinity that separates s and t.

Proof. The graph G defines a partial order on the intersection points of the trajectories in T .
Consider a conforming 0-length cycle δ enclosing s. Let δ grow by sweeping over the vertices
of G according to their partial order. As in Lemma 8 we can do this while maintaining
conformity with respect to T . Once γ crosses some intersection point that lies on the outer
face of G, we can cut it at any point in the outer face and pull the endpoints toward infinity.
The resulting open curve γ is conforming and separates s from t. J

Let γ ⊂ R2 be a conforming curve that separates s from t and has its end-points at
infinity, and let p0 be an arbitrary point on γ. Note that by Lemma 16 such a curve exists.
Define space Xs corresponding to R2\{s} in terms of polar coordinates, taking s to be the
origin: Let r be the “radius” parameter, and let θ be the angular parameter, such that
point (0, ‖sp0‖) ∈ Xs corresponds to point p0 ∈ R2\{s}, and a positive θ corresponds to
a clockwise turn. We then have Xs = {(θ, r) | (θ, r ∈ R\{s}) ∧ r > 0}. Note that in the
definition of Xs we explicitly do not limit the range of θ to [0, 2π) (which would give us
exactly R2, parameterized around s). Instead, our space Xs allows us to “wind around” s an
arbitrary number of times. Analogously, define Xt. Note, that Xs and Xt are the universal
covers of R2\{s} and R2\{t}, respectively.

We partition Xs into layers Li, with i ∈ Z. A point (θ, r) ∈ Xs lies in layer Li, if and
only if bθ/2πc = i. We define layers analogously for Xt.

Recall that γ separates s and t in R2, and hence we can consider a copy of γ in each
of Xs and Xt. We cut each space along the copy of γ, and glue the part of Xs containing
s and the part of Xt containing t together along each’s copy of γ. Furthermore, we again
add the points s and t, and connect them to all the layers of Xs and Xt. Note, that we
add the points s and t only so that all trajectories again start at s and end at t rather than
arbitrarily close to s and t. Let X to be the resulting space.

Lifting trajectories. Next, we describe the image of trajectories T in X. (See Fig. 12.) For
each trajectory τi ∈ T , we construct its corresponding trajectory τ ′i in X by starting at the
image of the intersection point of τi with γ, and moving along τi while continuously mapping
the points to τ ′i . We call this process lifting trajectory τi to space X. Let T ′ = {τ ′i | τi ∈ T }
denote the set of resulting trajectories, and let G′ be the corresponding trajectory graph.
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We note that all trajectories cross the conforming curve γ and hence are fixed on a
common reference, although not at a common lift of a base point as is more commonly
seen in topology. However, we obtain that each trajectory lifts to a unique curve in X. In
addition, since we have local homeomorphisms which lift everywhere (except right at s and
t), we can also lift the definition of a winding number for any point p inside loop(τ ′i , τ ′j) for
any pair of lifted trajectories τ ′i and τ ′j . This leads to the following observation:

I Observation 17. The points s and t lie on the outer face of G′. Thus, for any simple paths
A and B in G′ from s to t, and for any point p ∈ X, we have that |ω(p, loop(A,B))| ≤ 1.

I Lemma 18. For any two curves φ1 and φ2 in R2 that connect s to t. We have HA(φ1, φ2) =
HA(φ′1, φ′2), where φ′1 and φ′2 are the corresponding curves lifted into space X.

Proof. It is easy to see that HA(φ1, φ2) ≤ HA(φ′1, φ′2): the covering map fX is continuous,
so a minimum homotopy between φ′1 and φ′2 defines a homotopy between φ1 and φ2 of
cost HA(φ′1, φ′2). Since HA(φ1, φ2) is a minimum homotopy we have that HA(φ1, φ2) ≤
HA(φ′1, φ′2).

Next, we show that HA(φ1, φ2) ≥ HA(φ′1, φ′2). The lemma then follows. Let δ =
loop(φ1, φ2) and δ′ = loop(φ′1, φ′2). Now assume, by contradiction, that HA(φ1, φ2) >

HA(φ′1, φ′2). It follows that there is a point p ∈ R2, with ω(p, δ) = k that is swept by a
minimum homotopy H between φ′1 and φ′2 more than k times. Furthermore, assume without
loss of generality that p lies left of γ, and thus the copies of p lie in Xs. Since all winding
numbers in X are in the range [−1, 1] (Observation 17) that means there must be more than
k copies of point p swept by H. It follows that there is a point q′ in layer L` or layer L−`,
with ` > k, that lies on δ′, and has a larger r-coordinate than p′ (otherwise we would not
sweep over p′). Furthermore, note that δ′ intersects γ (as the curves φ′1 and φ′2 connect s
to t), and thus contains a point on in layer L0. Now consider traversing δ′, starting from
point q′. It follows that the total turning angle is at least 2`π (since we must visit layer L0).
This means that the total turning angle of curve δ with respect to fX(p) is also at least `2π.
Therefore ω(p, δ) ≥ ` > k. Contradiction. J

I Corollary 19. Let µ be a representative for the set of trajectories T , and let µ′ be its
corresponding representative for T ′. We have that HAsum(µ, T ) = HAsum(µ′, T ′).

Any representative trajectory µ in X corresponds to some representative trajectory µ′ in
R2. However, not every representative trajectory in R2 has a corresponding representative
trajectory in X. The difference between the two cases comes from the fact, that some of
the intersection points between trajectories T that existed in R2 no longer exist once the
trajectories are lifted to X. We call the intersection points of T that remain in X legal, and
the ones that disappear illegal. Following the projection to R2 of the median trajectory µ′∗
corresponds to switching the trajectory at every legal intersection point. Next we will prove,
that this projection of µ′∗ to R2 gives an optimal representative trajectory for trajectories T .

I Theorem 20. Let T be a set of trajectories for which G is acyclic, let µ′∗ be the simple
median on the lifted trajectories in X. The representative curve µ∗ = fX(µ′∗) corresponding
to µ′∗ minimizes HAsum with respect to T .

Proof. Suppose there exists some representative trajectory µ with the total homotopy area
HAsum(µ, T ) < HAsum(µ∗, T ). Let curve µ′ be µ lifted to X. If µ uses only legal intersections
in G, then µ′ is a candidate representative for the set of trajectories T ′. By Corollary 19 we
then have that HAsum(µ, T ) = HAsum(µ′, T ′) < HAsum(µ′∗, T ′) = HAsum(µ∗, T ). Contradic-
tion. If µ uses also illegal intersections, then µ′ does not consist of pieces of the trajectories T ′.
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Theorem 14 and Observation 15 then implies that HAsum(µ′, T ′) ≥ HAsum(µ′∗, T ′). Applying
Corollary 19 on both sides then gives us HAsum(µ, T ) ≥ HAsum(µ∗, T ). Contradiction. J

5 Computing a Representative Trajectory

From Theorem 14 it immediately follows that if s and t lie on the outer face of G, we can
compute a representative µ∗ trajectory that minimizes HAsum using the algorithm of Buchin
et al. [4]. Thus, we can compute µ∗ in O((N + k)α(N) log(N)) time, where N is the total
complexity of the input trajectories, and k is the output complexity. For an arbitrary DAG
G, we have k = O(N2). If the trajectories are x-monotone, the simple median corresponds
to the dn/2e-level in an arrangement of n curves, and thus bounds on the complexity of the
dn/2e-level also bound the complexity of µ∗. In case our trajectories (curves) are all polylines
with at most m vertices each, we have k = O(mn4/3 log1/3−ε n), for some arbitrarily small
constant ε > 0 [9]. Similarly, we can derive the results for more general types of curves.

Unrestricted s and t. When s and t are not restricted to lie on the outer face we first
construct a conforming curve γ that separates s from t and intersects the outer face. This
allows us to find the dn/2eth intersection p of γ with the trajectories T , which is guaranteed
to lie on the representative µ′∗ that minimizes the homotopy area of the lifted trajectories
T ′. We can now construct G′ from G by walking along the trajectories, starting from their
intersection points with γ. Similarly, we can trace µ′∗ trough G′, starting from p. The
representative µ′∗ then also gives us an optimal representative µ∗ (Theorem 20). All that
remains is to describe how to construct γ. We do this using the same procedure as used
in the proof of Lemma 16: we explicitly construct G, sort the vertices in topological order,
and add the vertices in this order to some set L. Once L contains a vertex v on the outer
face of G, we can construct γ, starting on the outgoing edge of v incident to the outer face,
and walking through G, while keeping exactly the set of vertices L to our left. It is easy to
see that computing µ∗ using this algorithm takes O(|G|) = O(N2) time. We summarize our
results in the following theorem.

I Theorem 21. Let T be a set of trajectories that all start in s and end in t, and whose
trajectory graph G is acyclic. If s and t lie on the outer face, a representative trajectory
µ∗ that minimizes HAsum can be computed in O((N + k)α(N) log(N)) time, where N is the
total complexity of the trajectories in T , and k is the complexity of the resulting trajectory.
If s and t can be anywhere in G, µ∗ can be computed in O(|G|) = O(N2) time.

6 Future Work

We have shown that computing a representative that minimizes HAsum is NP-hard when the
trajectory graph G may be an arbitrary graph, and we have presented an efficient algorithm
for when G is a DAG. Hence, our results cover all cases. However, clearly there are situations
in which the trajectories are similar, but for which the trajectory graph is not a DAG. Hence,
we would like a more fine grained classification which kind of graphs allow us to find a
representative efficiently.

We expect that we can extend our approach from Section 4.3 to cases in which the
trajectories are have a similar “shape” but their trajectory graph contains cycles. In
particular, we again lift the trajectories into a space, or corridor, that captures the global
shape of the trajectories, and in which the trajectory graph forms a DAG. We then compute
a concrete curve representing the trajectories in this space. The conceptual existence of a
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t

s

Figure 13 Even when trajectories do not form a DAG, the trajectories may lie in a “corridor”.

corridor is justified by the assumption that the input trajectories are similar. See Fig. 13 for
an illustration.

While we focused on using the homotopy area to measure distance between the trajectories,
there are other alternative measures that balance topology and geometry. Homotopy width
(or homotopic Fréchet distance) [8] and homotopy height [5, 13] are obvious options, as is
homology area [6], although it is unclear if any of these are tractable or useful in practice.
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