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Abstract
Online matching has received significant attention over the last 15 years due to its close con-
nection to Internet advertising. As the seminal work of Karp, Vazirani, and Vazirani has an
optimal (1 − 1/e) competitive ratio in the standard adversarial online model, much effort has
gone into developing useful online models that incorporate some stochasticity in the arrival pro-
cess. One such popular model is the “known I.I.D. model” where different customer-types arrive
online from a known distribution. We develop algorithms with improved competitive ratios for
some basic variants of this model with integral arrival rates, including: (a) the case of general
weighted edges, where we improve the best-known ratio of 0.667 due to Haeupler, Mirrokni and
Zadimoghaddam [11] to 0.705; and (b) the vertex-weighted case, where we improve the 0.7250
ratio of Jaillet and Lu [12] to 0.7299. We also consider two extensions, one is “known I.I.D.”
with non-integral arrival rate and stochastic rewards; the other is “known I.I.D.” b-matching with
non-integral arrival rate and stochastic rewards. We present a simple non-adaptive algorithm
which works well simultaneously on the two extensions.

One of the key ingredients of our improvement is the following (offline) approach to bipartite-
matching polytopes with additional constraints. We first add several valid constraints in order
to get a good fractional solution f; however, these give us less control over the structure of f. We
next remove all these additional constraints and randomly move from f to a feasible point on
the matching polytope with all coordinates being from the set {0, 1/k, 2/k, . . . , 1} for a chosen
integer k. The structure of this solution is inspired by Jaillet and Lu (Mathematics of Operations
Research, 2013) and is a tractable structure for algorithm design and analysis. The appropriate
random move preserves many of the removed constraints (approximately [exactly] with high
probability [in expectation]). This underlies some of our improvements, and, we hope, could be
of independent interest.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Ad-Allocation, Online Matching, Randomized Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.24

∗ A full version of the paper is available at http://arxiv.org/abs/1606.063956.
† Supported in part by NSF Awards CNS-1010789 and CCF-1422569, and a research award from Adobe,

Inc.

© Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.24
http://arxiv.org/abs/1606.063956
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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1 Introduction

Applications to Internet advertising have driven the study of online matching problems in
recent years [19]. In these problems, we consider a bipartite graph G = (U, V,E) in which
the set U is available offline while the vertices in V arrive online. Whenever some vertex v
arrives, it must be matched immediately to at most one vertex in U . Each offline vertex u
can be matched to at most one v or in the b-matching generalization, at most b vertices in V .
In the context of Internet advertising, U is the set of advertisers, V is a set of impressions,
and the edges E define the impressions that interest a particular advertiser. When v arrives,
we must choose an available advertiser (if any) to match with it. Initially, we consider the
case where v ∈ V can be matched at most once. We later relax this condition to it being
matched up to b times. Since advertising forms the key source of revenue for many large
Internet companies, finding good matching algorithms and obtaining even small performance
gains can have high impact. Additionally, bipartite matching is a fundamental combinatorial
optimization problem. Hence, any improvements is interesting from a theoretical standpoint.

In the stochastic known I.I.D. model of arrival, we are given the bipartite graph in
advance and each arriving vertex v is drawn with replacement from a known distribution
on the vertices in V . This captures the fact that we often have background data about the
impressions and can predict the frequency with which each type of impression will arrive.
Edge-weighted matching [8] is a general model in the context of advertising: every advertiser
gains a given revenue for being matched to a particular type of impression. Here, a type of
impression refers to a class of users (e.g., a demographic group) who are interested in the
same subset of advertisements. A special case of this model is vertex-weighted matching [1],
where weights are associated only with the advertisers. In other words, a given advertiser
has the same revenue generated for matching any of the user types interested in it.

In some modern business models, revenue is not generated upon matching advertisements,
but only when a user clicks on the advertisement: this is the pay-per-click model. From
background data, one can assign the probability of a particular advertisement being clicked
by a type of user. Works including [20],[21] capture this notion by assigning a probability to
each edge.

One unifying theme in most of our approaches is to use an LP benchmark with additional
valid constraints that hold for the respective stochastic-arrival models, combined with some
form of dependent rounding.

1.1 Related work
For readers not familiar with these problems, they are encouraged to first read parts of
section 2 for formal definitions before getting into the related work. The study of online
matching began with the seminal work of Karp, Vazirani, Vazirani [14], where they gave an
optimal online algorithm for a version of the unweighted bipartite matching problem in which
vertices arrive in adversarial order. Following that, a series of works have studied various
related models. The book by Mehta [19] gives a detailed overview. The vertex-weighted
version of this problem was introduced by Aggarwal, Goel and Karande [1], where they give
an optimal

(
1− 1

e

)
ratio for the adversarial arrival model. The edge-weighted setting has

been studied in the adversarial model by Feldman, Korula, Mirrokni and Muthukrishnan [8],
where they consider an additional relaxation of “free-disposal".

Beyond the adversarial model, these problems are studied under the name stochastic
matching, where the online vertices either arrive in random order or are drawn I.I.D. from a
known distribution. The works [5, 15, 16, 17] among others, study the random arrival order
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model; papers including [4, 9, 11, 12, 18, 6] study the I.I.D. arrival order model. Another
variant of this problem is when the edges have stochastic rewards. Models with stochastic
rewards have been previously studied by [20], [21] among others, but not in the known I.I.D.
model.

Related Work in the Vertex-Weighted and Unweighted Settings: The vertex-weighted
and unweighted settings have many results starting with Feldman, Mehta, Mirrokni and
Muthukrishnan [9] who were the first to beat 1− 1/e with a competitive ratio of 0.67 for the
unweighted problem. This was improved by Manshadi, Gharan, and Saberi [18] to 0.705 with
an adaptive algorithm. In addition, they showed that even in the unweighted variant with
integral arrival rates, no algorithm can achieve a ratio better than 1− e−2 ≈ 0.86. Finally,
Jaillet and Lu [12] presented an adaptive algorithm which used a clever LP to achieve 0.725
and 1− 2e−2 ≈ 0.729 for the vertex-weighted and unweighted problems, respectively.

Related Work in the Edge-Weighted Setting: For this model, Haeupler, Mirrokni, Zadi-
moghaddam [11] were the first to beat 1 − 1/e by achieving a competitive ratio of 0.667.
They use a discounted LP with tighter constraints than the basic matching LP (a similar LP
can be seen in 2.1) and they employ the power of two choices by constructing two matchings
offline to guide their online algorithm.

Related Work in Online b-matching: In the model of b-matching, we assume each vertex
u has a uniform capacity of b, where b is a parameter which is generally a large integral value.
The model of unweighted b-matching can be viewed as a special case of Adwords or Display
Ads. There is extensive literature for Adwords or Display Ads under various settings (see the
book by Mehta [19]). In particular, [13] shows that their algorithm BALANCE is optimal
for online b-matching under the adversarial model, which achieves a ratio of 1− 1

(1+1/b)b .
In this paper, we consider edge-weighted b-matching with stochastic rewards under the

known I.I.D. model with arbitrary arrival rates. To the best of our knowledge, we are the
first to consider this very general model. Devanur et al [7] gave an algorithm which achieves
a ratio of 1− 1/

√
2πk for the Adwords problem in the Unknown I.I.D. arrival model with

knowledge of the optimal budget utilization and when the bid to budget ratios are at most 1/k.
Notice that even the problem of general edge-weighted b-matching with deterministic rewards
cannot be captured in the Adwords model. Alaei et al [2] consider the Prophet-Inequality
Matching problem, in which v arrives from a distinct (known) distribution Dt, in each round
t. They gave a 1 − 1/

√
k + 3 competitive algorithm, where k is the minimum capacity of

u. They assume deterministic rewards however, and it is non-trivial to extend their result
to the stochastic reward setting. In this paper, we present a very simple algorithm which
achieves a ratio of 1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0. It is worthwhile to see that
our algorithm (5) can be trivially extended to the case where each vertex u has a distinct
capacity bu. The value of b in the final ratio would be replaced by minu∈U bu.

2 Preliminaries

In the Unweighted Online Known I.I.D. Stochastic Bipartite Matching problem, we are given
a bipartite graph G = (U, V,E). The set U is available offline while the vertices v arrive
online and are drawn with replacement from an I.I.D. distribution on V . For each v ∈ V , we
are given an arrival rate rv, which is the expected number of times v will arrive. With the
exception of Sections 5 and 6, this paper will focus on the integral-arrival-rates setting where

ESA 2016
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all rv ∈ Z+. As described in [11], WLOG we can assume in this setting that ∀v ∈ V, rv = 1.
Let n =

∑
v∈V rv be the expected number of vertices arriving during the online phase.

In the vertex-weighted variant, every vertex u ∈ U has a weight wu and we seek
a maximum weight matching. In the edge-weighted variant, every edge e ∈ E has a
weight we and we seek a maximum weight matching. In the stochastic rewards variant 1,
additionally, each edge has a probability pe and we seek to maximize the expected weight of
the matching. In the b-matching model, every vertex in U can be matched upto b times.
Throughout, we will use “WS” to refer to the worst case for various algorithms. Asymptotic
assumption and notation: We will always assume n is large and analyze algorithms as n goes
to infinity: e.g., if x ≤ 1− (1− 2/n)n, we will just write this as “x ≤ 1− 1/e2” instead of the
more-accurate “x ≤ 1− 1/e2 + o(1)”. These suppressed o(1) terms will subtract at most o(1)
from our competitive ratios. Another fact to note is that the competitive ratio is defined
slightly different than usual, for this set of problems (Similar to notation used in [19]). In
particular, it is defined as E[ALG]

E[OPT ] . Algorithms can be adaptive or non-adaptive. When v
arrives, an adaptive algorithm can check which neighbors are still available to be matched,
but a non-adaptive algorithm cannot.

2.1 LP Benchmark
We will use the following LP to upper bound the optimal offline solution and guide our
algorithm. We will first show an LP for the unweighted variant, then describe changes for
the vertex-weighted and edge-weighted settings. As usual, we have a variable fe for each
edge. Let ∂(w) be the set of edges adjacent to a vertex w ∈ U ∪ V and let fw =

∑
e∈∂(w) fe.

maximize
∑
e∈E

fe (2.1)

subject to
∑
e∈∂(u)

fe ≤ 1 ∀u ∈ U (2.2)

∑
e∈∂(v)

fe ≤ 1 ∀v ∈ V (2.3)

0 ≤ fe ≤ 1− 1/e ∀e ∈ E (2.4)
fe + fe′ ≤ 1− 1/e2 ∀e, e′ ∈ ∂(u),∀u ∈ U (2.5)

Variants: The objective function is: maximize
∑
u∈U

∑
e∈∂(u) fewu in the vertex-weighted

variant and maximize
∑
e∈E fewe in the edge-weighted variant.

Constraint 2.2 is the matching constraint for vertices in U . Constraint 2.3 is valid because
each vertex in V has an arrival rate of 1. Constraint 2.4 is used in [18] and [11]. It captures
the fact that the expected number of matches for any edge is at most 1 − 1/e. This is
valid for large n because the probability that a given vertex doesn’t arrive after n rounds
is 1/e. Constraint 2.5 is similar to the previous one, but for pairs of edges. For any two
neighbors of a given u ∈ U , the probability that neither of them arrive is 1/e2. Therefore,
the sum of variables for any two distinct edges in ∂(u) cannot exceed 1− 1/e2. Notice that
constraints 2.4 and 2.5 reduces the gap between the optimal LP solution and the performance

1 The edge realization process is independent from one another. At each step, the algorithm "probes" the
edge. With probability pe the edge exists and with remaining probability it doesn’t. Once realization of
an edge is determined, it doesn’t change for the rest of the algorithm
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u1

u2

v1

v2

(C1)

Figure 1 This cycle is the source of the negative result described by Jaillet and Lu [12]. Thick
edges have fe = 2/3 while thin edges have fe = 1/3.

of the optimal online algorithm. In fact, without constraint 2.4, we cannot in general achieve
a competitive ratio better than 1− 1/e.

2.2 Overview of vertex-weighted algorithm and contributions
A key challenge encountered by [12] was that their special LP could lead to length four
cycles of type C1 shown in Figure 1. In fact, they used this cycle to show that no algorithm
could perform better than 1− 2/e2 ≈ 0.7293 using their LP. They mentioned that tighter
LP constraints such as 2.4 and 2.5 in the LP from Section 2 could avoid this bottleneck, but
they did not propose a technique to use them. Note that the {0, 1/3, 2/3} solution produced
by their LP was an essential component of their Random List algorithm.

We show a randomized rounding algorithm to construct a similar, simplified {0, 1/3, 2/3}
vector from the solution of a stricter benchmark LP. This allows for the inclusion of additional
constraints, most importantly constraint 2.5. Using this rounding algorithm combined with
tighter constraints, we will upper bound the probability of a vertex appearing in the cycle C1
from Figure 1 at 2−3/e ≈ 0.89. (See Lemma 6) Additionally, we show how to deterministically
break all other length four cycles which are not of type C1 without creating any new cycles
of type C1. Finally, we describe an algorithm which utilizes these techniques to improve
previous results in both the vertex-weighted and unweighted settings.

For this algorithm, we first solve the LP in Section 2 on the input graph. In Section 4,
we show how to use the technique in sub-section 2.6 to obtain a sparse fractional vector. We
then present a randomized online algorithm (similar to the one in [12]) which uses the sparse
fractional vector as a guide to achieve a competitive ratio of 0.7299. Previously, there was
gap between the best unweighted algorithm with a ratio of 1 − 2e−2 due to [12] and the
negative result of 1− e−2 due to [18]. We take a step towards closing that gap by showing
that an algorithm can achieve 0.7299 > 1−2e−2 for both the unweighted and vertex-weighted
variants with integral arrival rates.

2.3 Overview of edge-weighted algorithm and contributions
A challenge that arises in applying the power of two choices to this setting is when the same
edge (u, v) is included in both matchings M1 and M2. In this case, the copy of (u, v) in M2
can offer no benefit and a second arrival of v is wasted. To use an example from related work,
Haeupler et al. [11] choose two matchings in the following way. M1 is attained by solving an
LP with constraints 2.2, 2.3 and 2.4 and rounding to an integral solution. M2 is constructed
by finding a maximum weight matching and removing any edges which have already been
included in M1. A key element of their proof is showing that the probability of an edge being
removed from M2 is at most 1− 1/e ≈ 0.63.

The approach in this paper is to construct two or three matchings together in a correlated
manner to reduce the probability that some edge is included in all matchings. We will show a

ESA 2016
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general technique to construct an ordered set of k matchings where k is an easily adjustable
parameter. For k = 2, we show that the probability of an edge appearing in both M1 and
M2 is at most 1− 2/e ≈ 0.26.

For the algorithms presented, we first solve an LP on the input graph. We then round
the LP solution vector to a sparse integral vector and use this vector to construct a randomly
ordered set of matchings which will guide our algorithm during the online phase. We begin
Section 3 with a simple warm-up algorithm which uses a set of two matchings as a guide
to achieve a 0.688 competitive ratio, improving the best known result for this problem.
We follow it up with a slight variation that improves the ratio to 0.7 and a more complex
0.705-competitive algorithm which relies on a convex combination of a 3-matching algorithm
and a separate pseudo-matching algorithm.

2.4 Overview of non-integral arrival rates with stochastic rewards
contributions

This algorithm is presented in Section 5. We believe the known I.I.D. model with stochastic
rewards is an interesting new direction motivated by the work of [20] and [21] in the adversarial
model. We introduce a new, more general LP specifically for this setting and show that a
simple algorithm using the LP solution directly can achieve a competitive ratio of 1− 1/e.
In [21], it is shown that no randomized algorithm can achieve a ratio better than 0.62
< 1− 1/e in the adversarial model. Hence, achieving a 1− 1/e for the i.i.d. model shows
that this lower bound does not extend to this model.

In Section 6, we extend this simple algorithm2 to the b-matching generalization of this
problem where each offline vertex u can match with up to b arriving vertices. We show that
our algorithm achieves a competitive ratio of at least 1− b−1/2+ε −O(e−b2ε/3) for any given
ε > 0. Note that this result makes progress on Open Question 14 in the online matching and
ad allocation survey [19] which asks about stochastic rewards in non-adversarial models.

2.5 Summary of our contributions

I Theorem 1. For vertex-weighted online stochastic matching with integral arrival rates,
online algorithm VW achieves a competitive ratio of at least 0.7299.

I Theorem 2. For edge-weighted online stochastic matching with integral arrival rates, there
exists an algorithm which achieves a competitive ratio of at least 0.7 and algorithm EW[q]
with q = 0.149251 achieves a competitive ratio of at least 0.70546.

I Theorem 3. For edge-weighted online stochastic matching with arbitrary arrival rates and
stochastic rewards, online algorithm SM (4) achieves a competitive ratio of 1− 1/e.

I Theorem 4. For edge-weighted online stochastic b-matching with arbitrary arrival rates
and stochastic rewards, online algorithm SMb (5) achieves a competitive ratio of at least
1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0.

2 Recently, we have come to know that the result in Section 6 can be obtained as a special case of [3].
Our approach gives an alternative, and a simpler algorithm for this special case.
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Table 1 Summary of Contributions.

Problem Previous Work This Paper

Edge-Weighted (Section 3) 0.667 [11] 0.705

Vertex-Weighted (Section 4) 0.725 [12] 0.7299

Unweighted 0.7293 [12] 0.7299

Non-integral Stochastic Rewards (Section 5) N/A 1 − e−1

b-matching, Stochastic Rewards (Section 6) N/A 1 − b−1/2+ε − O(e−b2ε/3)

2.6 LP rounding technique
For the algorithms presented, we will first solve the benchmark LP in sub-section 2.1 for the
input instance to get a fractional solution vector f. We then round f to an integral solution
F using a two step process we call DR[f, k]. The first step is to multiply f by k. The second
step is to apply the dependent rounding techniques of Gandhi, Khuller, Parthasarathy and
Srinivasan [10] to this new vector. In this paper, we will always choose k to be 2 or 3. This
will help us handle the fact that a vertex in V may appear more than once, but probably
not more than two or three times.

While dependent rounding is typically applied to values between 0 and 1, the useful
properties extend naturally to our case in which kfe may be greater than 1 for some edge e.
To understand this process, it is easiest to imagine splitting each kfe into two edges with
the integer value f ′e = bkfec and fractional value f ′′e = kfe − bkfec. The former will remain
unchanged by the dependent rounding since it is already an integer while the latter will be
rounded to 1 with probability f ′′e and 0 otherwise. Our final value Fe would be the sum of
those two rounded values. The two properties of dependent rounding we will use are:
1. Marginal distribution: For every edge e, let pe = kfe−bkfec. Then, Pr[Fe = dkfee] = pe

and Pr[Fe = bkfec] = 1− pe.
2. Degree-preservation: For any vertex w ∈ U ∪ V , let its fractional degree kfw be∑

e∈∂(w) kfe and integral degree be the random variable Fw =
∑
e∈∂(w) Fe. Then Fw ∈

{bkfwc, dkfwe}.

3 Edge-weighted matching with integral arrival rates

3.1 A simple 0.688-competitive algorithm
As a warm-up, we will describe a simple algorithm which achieves a competitive ratio of 0.688
and introduces key ideas in our approach. We begin by solving the LP in sub-section 2.1 to
get a fractional solution vector f and applying DR[f, 2] as described in Subsection 2.6 to get
an integral vector F. We construct a bipartite graph GF with Fe copies of each edge e. Note
that GF will have max degree 2 since for all w ∈ U ∪ V , Fw ≤ d2fwe ≤ 2 and therefore we
can decompose it into two matchings using Hall’s Theorem. Finally, we randomly permute
the two matchings into an ordered pair of matchings, [M1,M2]. These matchings serve as a
guide for the online phase of the algorithm, similar to [11].

ESA 2016



24:8 New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching

The entire warm-up algorithm for the edge-weighted model, denoted by EW0, is summar-
ized in Algorithm 1.

Algorithm 1: [EW0]
1 Construct and solve the benchmark LP in sub-section 2.1 for the input instance.
2 Let f be an optimal fraction solution vector. Call DR[f, 2] to get an integral vector F.
3 Create the graph GF with Fe copies of each edge e ∈ E and decompose it into two

matchings.
4 Randomly permute the matchings to get a random ordered pair of matchings, say

[M1,M2].
5 When a vertex v arrives for the first time, try to assign v to some u1 if (u1, v) ∈M1;

when v arrives for the second time, try to assign v to some u2 if (u2, v) ∈M2.
6 When a vertex v arrives for the third time or more, do nothing in that step.

3.1.1 Analysis of algorithm EW0

We will show that EW0 (Algorithm 1) achieves a competitive ratio of 0.688. Let [M1,M2]
be our randomly ordered pair of matchings. Note that there might exist some edge e which
appears in both matchings if fe > 1/2. Therefore, we consider three types of edges. We say
an edge e is of type ψ1, denoted by e ∈ ψ1, iff e appears only in M1. Similarly e ∈ ψ2, iff e
appears only in M2 and e ∈ ψb, iff e appears in both M1 and M2.

Let P1, P2, Pb be the probabilities of getting matched for e ∈ ψ1, e ∈ ψ2, and e ∈ ψb
respectively. According to the result in Haeupler et al. [11], the respective values are shown
as follows.

I Lemma 5. (Proof details in Section 3 of [11]) Given M1 and M2, in the worst case
(1) P1 = 0.5808; (2) P2 = 0.14849 and (3) Pb = 0.632.

Proof. (Analysis for EW0) Consider following two cases.
Case 1: 0 ≤ fe ≤ 1/2: By the marginal distribution property of dependent rounding, there

can be at most one copy of e in GF and the probability of including e in GF is 2fe.
Since an edge in GF can appear in either M1 or M2 with equal probability 1/2, we have
Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = fe. Thus, the ratio is (feP1 + feP2)/fe = P1 + P2 = 0.729.

Case 2: 1/2 ≤ fe ≤ 1 − 1/e: Similarly, by marginal distribution, Pr[e ∈ ψb] = Pr[Fe =
d2fee] = 2fe−b2fec = 2fe− 1. It follows that Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = (1/2)(1− (2fe−
1)) = 1− fe. Thus, the ratio is ((1− fe)(P1 + P2) + (2fe − 1)Pb)/fe ≥ 0.688, where the
WS is for an edge e with fe = 1− 1/e. J

3.2 A 0.7-competitive algorithm
In this section, we describe an improvement upon the previous warm-up algorithm to get a
competitive ratio of 0.7. We start by making an observation about the performance of the
warm-up algorithm. After solving the LP, let edges with fe > 1/2 be called large and edges
with fe ≤ 1/2 be called small. Let L and S, be the sets of large and small edges, respectively.
Notice that in the previous analysis, small edges achieved a much higher competitive ratio of
0.729 versus 0.688 for large edges. This is primarily due to the fact that we may get two
copies of a large edge in GF. In this case, the copy in M1 has a better chance of being
matched, since there is no edge which can block it, but the copy that is in M2 has no chance
of being matched.
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To correct this imbalance, we make an additional modification to the fe values before
applying DR[f, k]. The rest of the algorithm is exactly the same. Let η be a parameter to
be optimized later. For all large edges ` ∈ L such that f` > 1/2, we set f` = f` + η. For
all small edges s ∈ S which are adjacent to some large edge, let ` ∈ L be the largest edge
adjacent to s such that f` > 1/2. Note that it is possible for e to have two large neighbors,
but we only care about the largest one. We set fs = fs

(
1−(f`+η)

1−f`

)
.

In other words, we increase the values of large edges while ensuring that for all w ∈ U ∪V ,
fw ≤ 1 by reducing the values of neighboring small edges proportional to their original values.
Note that it is not possible for two large edges to be adjacent since they must both have
fe > 1/2. For all other small edges which are not adjacent to any large edges, we leave their
values unchanged. We then apply DR[f, 2] to this new vector, multiplying by 2 and applying
dependent rounding as before.

3.2.1 Analysis
We can now prove Theorem 2.

Proof. As in the warm-up analysis, we’ll consider large and small edges separately
0 ≤ fs ≤ 1

2 : Here we have two cases
Case 1: s is not adjacent to any large edges. In this case, the analysis is the same as
the warm-up algorithm and we still get a 0.729 competitive ratio for these edges.
Case 2: s is adjacent to some large edge `. For this case, let f` be the value of the
largest neighboring edge in the original LP solution. Then s achieves a ratio of

fs

(
1− (f` + η)

1− f`

)
(0.1484 + 0.5803)/fs =

(
1− (f` + η)

1− f`

)
(0.1484 + 0.5803)

Note that for f` ∈ [0, 1) this is a decreasing function with respect to f`. So the worst
case is f` = 1− 1/e and we have a ratio of(

1− (1− 1/e+ η)
1− (1− 1/e)

)
(0.1484 + 0.5803) =

(
1/e− η

1/e

)
(0.1484 + 0.5803)

1
2 < f` ≤ 1− 1

e : Here, the ratio is ((1− (f` + η))(P1 + P2) + (2(f` + η)− 1)Pb)/f`, where
the WS is for an edge e with f` = 1− 1/e since this is a decreasing function with respect
to f`.

Choosing the optimal value of η = 0.0142, yields an overall competitive ratio of 0.7 for this
new algorithm. J

3.3 A 0.705-competitive algorithm
The details of algorithm and the proof of Theorem 2 can be found in the full version of this
paper.

4 Vertex-weighted stochastic I.I.D. matching with integral arrival
rates

In this section, we will consider vertex-weighted online stochastic matching on a bipartite
graph G under known I.I.D. model with integral arrival rates. We will present an algorithm
in which each u has a competitive ratio of at least 0.72998. Recall that after invoking DR[f, 3],
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Figure 2 Illustration for second modification to H. The value assigned to each edge represents
the value after the second modification. Here, x1 = 0.2744 and x2 = 0.15877.

we can obtain a (random) integral vector F with Fe ∈ {0, 1, 2}. Define H = F/3 and let GH
be the graph induced by H and each edge takes the value He ∈ {0, 1/3, 2/3}.

In this section, we focus on the sparse graph GH. The main steps of the algorithm are:

1. Solve the vertex-weighted benchmark LP in sub-section 2.1. Let f be an optimal solution
vector.

2. Invoke DR[f, 3] to obtain an integral vector F and a fractional vector H with H = F/3.
3. Apply a series of modifications to H and transform it to another solution H′. See

sub-section 4.1.
4. Run the randomized list algorithm (RLA) [12] induced by H′ on the graph GH. See the

details in full version of this paper.

The WS for vertex-weighted case in [12] is shown in Figure 3, which arrives at node u with
a competitive ratio of 0.725. From their analysis, we find node u1 has a competitive ratio of
at least 0.736. Hence, we boost the performance of u at the cost of u1. In other words, we
increase the value of H(u,v1) and decrease the value H(u1,v1). Case (10) and (11) in Figure 2
illustrates this. After this modification, the new WS for vertex-weighted is now the C1 cycle
shown in Figure 1. In fact, this is the WS for the unweighted case in [12]. However, Lemma
6 and the cycle breaking algorithm, implies that C1 cycle can be avoided with probability at
least 3/e− 1. This helps us improve the ratio even for the unweighted case in [12].

I Lemma 6. For any given u ∈ U , u appears in a C1 cycle after DR[f, 3] with probability at
most 2− 3/e.
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u
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u1
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(C2)

u1

u2

v1

v2

u1

u2

v1

v2

(C3)

u1

u2

v1

v2

Figure 3 Left: The WS for Jaillet and Lu [12] for their vertex-weighted case. Right: The three
possible types of cycles of length 4 after applying DR[f, 3]. Thin edges have He = 1/3 and thick
edges have He = 2/3.

Proof. Consider the graph GH obtained after DR[f, 3]. Notice that for some vertex u to
appear in a C1 cycle, it must have a neighboring edge with He = 2/3. Now we try to bound
the probability of this event. It is easy to see that for some e ∈ ∂(u) with fe ≤ 1/3, Fe ≤ 1
after DR[f, 3], and hence He = Fe/3 ≤ 1/3. Thus only those edges e ∈ ∂(u) with fe > 1/3
will possibly be rounded to He = 2/3. Note that, there can be at most two such edges in
∂(u), since

∑
e∈∂(u) fe ≤ 1. Hence, we have the following two cases.

Case 1: ∂(u) contains only one edge e with fe > 1/3. Let q1 = Pr[He = 1/3] and q2 =
Pr[He = 2/3] after DR[f, 3]. By DR[f, 3], we know that E[He] = E[Fe]/3 = q2(2/3) +
q1(1/3) = fe.
Notice that q1 + q2 = 1 and hence q2 = 3fe − 1. Since this is an increasing function of fe
and fe ≤ 1− 1/e from LP constraint 2.4, we have q2 ≤ 3(1− 1/e)− 1 = 2− 3/e.

Case 2: ∂(u) contains two edges e1 and e2 with fe1 > 1/3 and fe2 > 1/3. Let q2 be the
probability that after DR[f, 3], either He1 = 2/3 or He2 = 2/3. Note that, these two
events are mutually exclusive since Hu ≤ 1. Using the analysis from case 1, it follows
that q2 = (3fe1 − 1) + (3fe2 − 1) = 3(fe1 + fe2)− 2.
From LP constraint 2.5, we know that fe1 +fe2 ≤ 1−1/e2, and hence q2 ≤ 3(1−1/e2)−2 <
2− 3/e. J

4.1 Two kinds of Modifications to H
The first modification is to break the cycles deterministically.

There are three possible cycles of length 4 in the graph GH, denoted C1, C2, and C3. In
[12], they give an efficient way to break C2 and C3, as shown in Figure 3. Cycle C1 cannot
be modified further and hence, is the bottleneck for their unweighted case. Notice that,
while breaking the cycles of C2 and C3, new cycles of C1 can be created in the graph. Since
our randomized construction of solution H gives us control on the probability of cycles C1
occurring, we would like to break C2 and C3 in a controlled way, so as to not create any new
C1 cycles. This procedure is summarized in Algorithm 2. The proof of Lemma 7 can be
found in the full version of this paper.

I Lemma 7. After applying Algorithm 2 to GH, we have (1) the value Hw is preserved for
each w ∈ U ∪ V ; (2) no cycle of type C2 or C3 exists; (3) no new cycle of type C1 is added.
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Algorithm 2: [Cycle breaking algorithm] Offline Phase
1 While there is some cycle of type C2 or C3, Do:
2 Break all cycles of type C2.
3 Break one cycle of type C3 and return to the first step.

The second modification is to decrease the rates of lists associated with those nodes u
with Hu = 1/3 or Hu = 2/3 and increase the rates of lists associated with nodes u with
Hu = 1. All details can be found in the full version. Let H′ be the solution vector obtained
by applying two kinds of modifications to H. The algorithm for the vertex-weighted case,
denoted by VW, is summarized below. The detailed analysis can be found in the full version
of this paper.

Algorithm 3: VW [Vertex Weighted]
1 Construct and solve the LP in sub-section 2.1 for the input instance.
2 Invoke DR[f, 3] to output F and H. Apply the two kinds of modifications to morph H

to H′.
3 Run RLA[H′] on the graph GH.

5 Non-integral arrival rates with stochastic rewards

The setting here is strictly generalized over the previous sections in the following ways.
Firstly, it allows an arbitrary arrival rate (say rv) which can be fractional for each stochastic
vertex v. Notice that,

∑
v rv = n where n is the total number of rounds.

Secondly, each e = (v, u) ∈ E is associated with a value pe, which indicates the probability
that edge e = (u, v) is present when we assign v to u. We assume this process is independent
of the stochastic arrival of each v. We will show that the simple non-adaptive algorithm
introduced in [11] can be extended to this general case. This achieves a competitive ratio of
(1− 1

e ). Note that Manshadi et al. [18] show that no non-adaptive algorithm can possibly
achieve a ratio better than (1− 1/e) for the non-integral arrival rates, even for the case of all
pe = 1. Thus, our algorithm is an optimal non-adaptive algorithm for this model.

max
∑
e∈E

wefepe : (5.1)

s.t.
∑
e∈∂(u)

fepe ≤ 1,∀u ∈ U (5.2)

∑
e∈∂(v)

fe ≤ rv,∀v ∈ V (5.3)

We use a similar LP as [12] for the case of non-integral arrival rates. For each e ∈ E, let
fe be the probability that e gets matched in the offline optimal algorithm.

Our algorithm is summarized in Algorithm 4. Notice that the last constraint ensures that
step 2 in the algorithm is valid. Let us now prove theorem 3.

Proof. Let B(u, t) be the event that u is safe at beginning of round t and A(u, t) to be
the event that vertex u is matched during the round t conditioned on B(u, t). From
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Algorithm 4: SM
1 Construct and solve LP (5.1). WLOG assume {fe|e ∈ E} is an optimal solution.
2 When a vertex v arrives, assign v to each of its neighbor u with a probability f(u,v)

rv
.

the algorithm, we know Pr[A(u, t)] ≤
∑
v∼u

rv
n
fu,v
rv
pe ≤ 1

n , which follows by Pr[B(u, t)] =

Pr
[∧t−1

i=1(¬A(u, i))
]
≥
(
1− 1

n

)t−1.
Consider an edge e = (u, v) in the graph. Notice that the probability that e gets matched

in SM should be

Pr[e is matched] =
n∑
t=1

Pr[v arrives at t and B(u, t) ] · fepe
rv

≥
n∑
t=1

(
1− 1

n

)t−1
rv
n

fepe
rv
≥
(

1− 1
e

)
fepe . J

6 Extension to b-matching with stochastic rewards

In this section, we further generalize the model in Section 5 to the case where each u in the
offline set U has a uniform integral capacity b (i.e., each vertex u can be matched at most
b times). Otherwise, we retain the same setting as Section 5; we allow non-integral arrival
rates and stochastic rewards. We will generalize the simple algorithm used in the previous
setting (i.e., Section 5) to this new setting. Consider the following updated LP:

max
∑
e∈E

wefepe : (6.1)

s.t.
∑
e∈∂(u)

fepe ≤ b,∀u ∈ U (6.2)

∑
e∈∂(v)

fe ≤ rv,∀v ∈ V (6.3)

We modify Algorithm 4 for the b-matching problem as shown in Algorithm 5. Let us now
prove Theorem 4.

Algorithm 5: SMb

1 Construct and solve LP (6.1). WLOG assume {fe|e ∈ E} is an optimal solution.
2 When a vertex v arrives, assign v to each of its neighbor u with a probability f(u,v)

rv
.

Proof. The proof is similar to that of Theorem 3. Let At be the number of times u has been
matched at the beginning of round t.

Let B(u, t) be the event that u is safe at the beginning of round t, which is defined as
At ≤ b− 1. For any given edge e, let Xe be the number of times that e gets matched over
the n rounds. Thus we have

E[Xe] =
n∑
t=1

Pr[B(u, t)]rv
n

fe
rv
pe = fepe

n

n∑
t=1

Pr[At ≤ b− 1] .

ESA 2016



24:14 New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching

Now we upper bound the value of Pr[At ≥ b]. For each 1 ≤ i ≤ t, let Zi be the indicator
random variable for u to be matched during round i. Thus At+1 =

∑t
i=1 Zi. Notice that for

each i, we have

E[Zi] ≤
∑
v∼u

rv
n

f(u,v)

rv
p(u,v) ≤

b

n
.

It follows that for any t ≤ n(1 − τ) with 0 < τ < 1, we have E[At+1] ≤ (1 − τ)b. By
applying Chernoff-Hoeffding bounds, we get Pr[At+1 ≥ b] ≤ e−bτ

2/3. Therefore

E[Xe] = fepe
n

n∑
t=1

Pr[At ≤ b− 1]

≥ fepe
n

n(1−τ)∑
t=1

(1− e−bτ
2/3) = fepe(1− τ)(1− e−bτ

2/3)

For any given ε > 0, choose τ = b−1/2+ε to get a competitive ratio of 1 − b−1/2+ε −
O(e−b2ε/3). J

7 Conclusion and Future Directions

In this paper, we gave improved algorithms for the Edge-Weighted and Vertex-Weighted
models. Previously, there was a gap between the best unweighted algorithm with a ratio of
1− 2e−2 due to [12] and the negative result of 1− e−2 due to [18]. We took a step towards
closing that gap by showing that an algorithm can achieve 0.7299 > 1− 2e−2 for both the
unweighted and vertex-weighted variants with integral arrival rates. In doing so, we made
progess on Open Questions 3 and 4 in the online matching and ad allocation survey [19]. This
was possible because our approach of rounding to a simpler fractional solution allowed us to
employ a stricter LP. For the edge-weighted variant, we showed that one can significantly
improve the power of two choices approach by generating two matchings from the same LP
solution. For the variant with edge weights, non-integral arrival rates, and stochastic rewards,
we presented a (1− 1/e)-competitive algorithm. This showed that the 0.62 < 1− 1/e bound
given in [21] for the adversarial model with stochastic rewards does not extend to the known
I.I.D. model. Furthermore, we considered the online edge-weighted b-matching problem
with stochastic rewards under the known IID setting. We gave a very simple non-adaptive
algorithm which achieves a ratio of 1− b−1/2+ε −O(e−b2ε/3) for any given ε > 0.

A natural next step in the edge-weighted setting is to use an adaptive strategy. For the
vertex-weighted problem, one can easily see that the stricter LP we use still has a gap. In
addition, we only utilize fractional solutions {0, 1/3, 2/3}. However, dependent rounding
gives solutions in {0, 1/k, 2/k, . . . , dk(1−1/e)e/k}; allowing for random lists of length greater
than three. Stricter LPs and longer lists could both yield improved results. In the stochastic
rewards model with non-integral arrival rates, an open question is to either improve upon
the

(
1− 1

e

)
ratio or consider a simpler model with integral arrival rates and improve the

ratio for this restricted model. Lastly, there is a gap between our result for b-matching with
stochastic rewards and the results of [7] and [2] for similar problems with deterministic
rewards. It would be nice to see a result for this problem that is 1−O(k−1/2).
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