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Abstract
Cycle inequalities play an important role in the polyhedral study of the periodic timetabling
problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities,
and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle
inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the
periodic timetabling problem.
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1 Introduction

Periodic timetable construction is a fascinating problem because it is intuitively understood
and mathematically formulated, but very hard to solve. In fact, even though real world
instances give rise to relatively small optimization models, branch-and-bound based methods
can easily stall with large duality gaps. The likely reasons for this resistivity are the occurrence
of genuine integer variables, symmetries, and modulo constraints.

The classical approach to periodic timetabling is to use a formulation in terms of the
periodic event scheduling problem (PESP) by Serafini and Ukovich [14]. This model has
been the basis for the development of a variety of exact and heuristic solution methods for
the optimization and the feasibility version. Integer programming approaches were proposed,
e.g., by Nachtigall [9], Lindner [7], and Liebchen [3]. A topological search method based on
cohomology feasibility was used by Schrijver [12] to optimize a Dutch railway timetable. A
modulo network simplex heuristic was invented by Nachtigall and Opitz [8]. Liebchen and
Peeters [5] studied the relation to integral cycle bases to find tighter lower bounds. A SAT
approach for the feasibility problem was developed by Kümmling et al. [2]. A comprehensive
and up-to-date survey of the literature on mathematical timetable optimization and its
applications is summarized in Sels et al. [13].

The best method to compute lower bounds for the optimization problem is to study the
polyhedral structure of the periodic timetabling problem (PTP) associated with the PESP.
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21:2 Separation of Cycle Inequalities for the PTP

Several classes of valid inequalities have been identified, namely, chain, cycle, change-cycle,
flow, and multi-circuit inequalities, see [3, 7, 9, 10, 11]. Some of them are known to be
facet defining or in some Chvátal closure for the PESP polytope or relaxations of it under
certain conditions [6]. It is also known that the change-cycle inequalities can be separated in
pseudo-polynomial time [9]. The cycle inequalities have been used computationally by means
of heuristic separation. They improve the lower bound significantly and are considered to be
“the computationally most interesting cuts” [3, p. 210].

We study in this paper the separation problem for the cycle and the change-cycle
inequalities for the periodic timetabling problem. We give the first pseudo-polynomial time
separation algorithm for cycle inequalities. Its complexity is O(Tn2m), where T is the period
time, n the number of nodes, and m the number of arcs. The change-cycle inequalities have
been studied by Nachtigall [9], who gave a rough sketch of a pseudo-polynomial algorithm and
claimed a complexity of O(T (mn+ n2)). We cannot follow this argument, but give a precise
description of the algorithm and prove a complexity of O(T 2n2m). Computational results
on real world instances from a Dutch railway system and two German cities corroborate the
efficiency of these cuts.

The paper is structured as follows. Section 2 gives a mathematical statement of the
problem. Section 3 introduces the periodic slack polyhedron and states the cycle and the
change-cycle inequalities. Sections 4 and 5 contain the separation algorithms for the change-
cycle inequalities and the cycle inequalities. They are based on similar ideas, but cycle
separation requires the setup of an additional auxiliary graph. Section 6 concludes with
computational results.

2 Periodic Timetabling Problem and PESP

Most models in the literature about periodic timetabling are based on the periodic event
scheduling problem (PESP) developed by [14]. In this problem, we are given a directed graph
N = (V,A), the event-activity network. The nodes V are called events and represent arrivals
and departures of lines at their stations. The arcs A ⊆ V × V are called activities and model
lines driving between stations, waiting at stations, and possible transfers for passengers
between lines at stations. Further, each activity a ∈ A is associated with a lower and an
upper time bound `a, ua ∈ Q≥0, respectively, on its duration. Let n = |V | be the number of
events and m = |A| be the number of activities.

A periodic timetable π : V → [0, T ) determines the timings of all events, which are
assumed to repeat periodically w.r.t. a period time T ∈ N. Given x ∈ Q, we define the
modulo operator by [x]T := min{x+ zT : x+ zT ≥ 0, z ∈ Z}. We call a timetable feasible if
the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A (1)

are satisfied. We assume w.l.o.g. that `a < T and ua−`a < T for all a ∈ A. Many operational
requirements can be modeled with the constraints (1), see [4]. For a feasible timetable π, the
periodic tension of activity a ∈ A is defined by xa := `a + [πw −πv − `a]T and corresponds to
its duration. The periodic slack of activity a ∈ A is defined by ya := [πw − πv − `a]T . Given
activity weights w ∈ QA, the goal of the periodic timetabling problem is to find a feasible
timetable that minimizes the weighted sum of the periodic slacks, i.e., min

∑
a∈A wa ya.

An oriented cycle C in N is a sequence C = (v0, a1, v1, . . . , ak, vk), where k ≥ 1,
v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, v0 = vk, and ai ∈ {(vi−1, vi), (vi, vi−1)}. Activities with
ai = (vi−1, vi) ∈ C are called forward directed and activities with ai = (vi, vi−1) ∈ C
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backward directed. An oriented cycle containing only forward directed activities is called a
circuit. An oriented cycle is elementary if no event appears more than once in the sequence.
For an oriented cycle C in N , we define its incident vector γC ∈ {−1, 0, 1}A as

γCa
=


1 if a ∈ C and a is forward directed,
−1 if a ∈ C and a is backward directed,
0 if a /∈ C.

For convenience, we will refer interchangeably to C and γC . Let B = {C1, . . . , Cν}, ν =
m− n+ 1, be a cycle basis of N and denote by Γ ∈ ZB×A the corresponding cycle matrix,
i.e., the rows of Γ correspond to the characteristic vectors γCi

∈ {−1, 0, 1}A, i ∈ {1, . . . , ν}.
Introducing periodic slack variables y ∈ RA and periodic offset variables z ∈ ZA, we can
state the periodic timetabling problem as the following mixed-integer program [9, 3]:

(PTP) min
∑
a∈A

waya

s.t. Γ y − T Γ z = −Γ` (2)
0 ≤ y ≤ u− ` (3)

z ∈ ZA (4)

3 Periodic Slack Polyhedron

The literature considers different versions of the PTP polyhedron, e.g., the projection on the
space of the periodic slack variables or the periodic offset variables, see [9, 3, 6]. Nachtigall [9]
also considers the polyhedron that is obtained when the upper bounds in constraints (3) are
omitted. In the following, we study the polyhedron PIP (PTP) associated with the feasible
solutions of (PTP), i.e., a polyhedron defined in the slack and offset space. We recall the
cycle and change-cycle inequalities in a unified notation.

I Definition 1. The periodic slack and offset space is defined by

S =
{

(y, z) ∈ RA × ZA|Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

The periodic slack polyhedron is defined by

PIP (PTP) = conv(S)

and the corresponding LP relaxation by

PLP (PTP) =
{

(y, z) ∈ RA × RA|Γ y − T Γ z = −Γ`, 0 ≤ y ≤ u− `
}
.

The following lemma shows that the cycle equations (2) do not only hold for integer
periodic offset variables and the cycles of the cycle basis but for any feasible solution of the
LP relaxation of (PTP) and any cycle in the event-activity network.

I Lemma 2. Let (y, z) ∈ PLP (PTP) and let γ ∈ ZA be an oriented cycle in N . Then we
have

γty = −γt`+ T γtz.

Proof. Since B is a cycle basis, there exists a vector λ ∈ Rν such that γ = Γt λ. Hence, we
get

γty = λt Γ y = λt (−Γ `+ T Γ z) = −(Γt λ)t`+ T (Γt λ)t z = −γt`+ T γt z. J

ESA 2016
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Lemma 2 implies that for any feasible solution of (PTP) the following modulo cycle
equations hold.

I Corollary 3. Let (y, z) ∈ S and let γ ∈ ZA be an oriented cycle in N . Then we have

γty ≡T −γt`.

Proof. The corollary follows directly from γtz ∈ Z and Lemma 2. J

For convenience, we introduce further notation. For an oriented cycle γ ∈ Zm in N we define
the positive part γ+ ∈ Zm and the negative part γ− ∈ Zm, respectively, by

γ+,a =
{

1 if γa = 1
0 else

and γ−,a =
{

1 if γa = −1
0 else

for all a ∈ A i.e., γ = γ+ − γ−.
The following class of valid inequalities was introduced by Nachtigall [9] and are defined

for every oriented cycle in the event-activity network.

I Theorem 4. Let γ ∈ ZA be an oriented cycle in N and define α = [−γt`]T . Then the
change-cycle inequality

(T − α) γt+y + αγt−y ≥ α (T − α) (5)

is valid for PIP (PTP).

A second class of inequalities are also induced by the oriented cycles in the event-activity
network and were first described by Odijk [10]. These inequalities are denoted as cycle
inequalities. They are usually defined in terms of the periodic offset variables. We will show
next that they can also be defined in terms of the slack variables.

I Theorem 5. Let γ ∈ ZA be an oriented cycle in N . Then the z-cycle inequality

γt z ≥
⌈

1
T

(
γt+`− γt−u

)⌉
(6)

is valid for PIP (PTP).

Proof. Let (y, z) ∈ S. We have with Lemma 2

T γt z = γty + γt` = γt+y − γt−y + γt` ≥ −γt− (u− `) + γt` = γt+`− γt−u.

Since γt z ∈ Z, the inequality (6) follows. J

I Lemma 6. Let α ∈ R, then

[−α]T + α = T

⌈
1
T
α

⌉
. (7)

Proof. Let z ∈ Z and α ∈ R then −α− T z = [−α]T and −1 < − 1
T [−α]T ≤ 0. We get

[−α]T + α = −T z = T
(
− z +

⌈
− 1
T

[−α]T
⌉

︸ ︷︷ ︸
=0

)

= T

⌈
−z − 1

T
[−α]T

⌉
= T

⌈
1
T

(−T z − [−α]T )
⌉

= T

⌈
1
T
α

⌉
. J
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With Lemma 6 we can show that the z-cycle inequalities can be expressed equivalently
in terms of the slack variables.

I Theorem 7. Let γ ∈ ZA be an oriented cycle in N . Let (y, z) ∈ PLP (PTP), then the
z-cycle inequality (6) holds if and only if the the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u) (8)

holds.

Proof. Let (y, z) ∈ PLP (PTP) and assume that z satisfies the z-cycle inequality (6) for γ.
Using first Lemma 6 and then Lemma 2 we have

γt z ≥
⌈

1
T

(
γt+`− γt−u

)⌉
= 1
T

([
−γt+`+ γt−u

]
T

+ γt+`− γt−u
)

⇔ γty + γt` ≥
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u

⇔ γty ≥
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u− γt`

=
[
−γt+`+ γt−u

]
T

+ γt+`− γt−u− γt+`+ γt−`

=
[
−γt+`+ γt−u

]
T
− γt−u+ γt−`

=
[
−γt+`+ γt−u

]
T

+ γt−(`− u). J

I Corollary 8. Let γ ∈ ZA be an oriented cycle in N . Then the y-cycle inequality

γty ≥
[
−γt+`+ γt−u

]
T

+ γt−(`− u)

is valid for PIP (PTP).

4 Separation of Change-Cycle Inequalities

In this section we describe a pseudo-polynomial dynamic programming procedure to separate
violated change-cycle inequalities (5). The idea of this algorithm was originally proposed by
Nachtigall [9]. He claimed a running time of O(T (mn+ n2), but did not give a proof. We
prove a complexity of O(T 2n2m).

Given a point (y∗, z∗) ∈ PLP (PTP), the separation problem is to find an oriented cycle γ
in N such that the change-cycle inequality (5) induced by γ is violated, i.e., for α0 = [−γt`]T
it holds

(T − α0)γt+y∗ + α0 γ
t
−y
∗ < α0 (T − α0),

or to conclude that no such cycle exists. The idea is to solve for each fixed α0 ∈ {0, . . . , T −1}
the problem

f∗(α0) = min{(T − α0)γt+y∗ + α0 γ
t
−y
∗|γ oriented cycle in N ,

[
−γt`

]
T

= α0}, (9)

which is to find the minimum cost cycle w.r.t.

ca =


(T − α0)y∗a if γa = 1
α0y

∗
a if γa = −1

0 else

ESA 2016
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of all oriented cycles with [−γt`]T = α0. Note that a violated change-cycle inequality exists
if and only if for some α0 ∈ {0, . . . , T − 1} it holds f∗(α0) < α0 (T − α0).

The minimization problem (9), again, can be solved with a dynamic program that iterates
over the cycle lengths w.r.t. the number of activities. We denote by a chain a path that can
contain forward directed activities as well as backward directed activities. Let Ckij be the set
of all chains in N from event i ∈ V to event j ∈ V that contain exactly k activities, given by
their characteristic vectors. For α ∈ {0, . . . , T − 1}, let

fkij(α0, α) := min

(T − α0)
∑
a∈A:
pa>0

y∗a + α0
∑
a∈A:
pa<0

y∗a

∣∣∣p ∈ Ckij , α =
[
−pt`

]
T


be the minimum length w.r.t. ca of all chains in Ckij with α = [−pt`]T . Since a chain of length
k ≥ 2 consists of a chain of length k − 1 and an additional activity, the following recursive
equation holds

fk+1
ij (α0, α) := min

 min
a=(u,j)

[α′−`a]
T

=α

fkiu(α0, α
′) + (T − α0)y∗a, min

a=(j,u)
[α′+`a]

T
=α

fkiu(α0, α
′) + α0y

∗
a

 ,

(10)

for all k ≥ 0 with

f0
ij(α0, α) =

{
0 if i = j, α = 0
∞ else.

Since every elementary cycle has at most n activities and ca ≥ 0 for all a ∈ A, the minimum
length w.r.t. c of all oriented cycles γ with α0 = [−γt`]T is given by

f∗(α0) = min
i∈V

n
min
k=1

fkii(α0, α0).

For fixed k ∈ {0, . . . , n− 1}, the recursive equation (10) can be solved with Algorithm 1.

I Theorem 9. For given α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n − 1}, and fkij for all i, j ∈ V ,
Algorithm 1 computes fk+1

ij (α0, α) for all i, j ∈ V and α ∈ {0, . . . , T − 1} in O(Tmn).

Proof. For a given k ∈ {0, . . . , n− 1} and α0 ∈ {0, . . . , T − 1}, Algorithm 1 obviously solves
equation (10) for all i, j ∈ V and for all α ∈ {0, . . . , T − 1}. The computation involves
O(Tmn) elementary operations. J

The described separation algorithm is given in pseudocode in Algorithm 2.

I Theorem 10. Algorithm 2 solves the separation problem for the change-cycle inequalities (5)
in O(T 2n2m).

Proof. The Algorithm 2 solves for each α0 ∈ {0, . . . , T−1} the minimization problem (9) and
correctly reports if there exists an α0 ∈ {0, . . . , T −1} such that f∗(α0) < α0 (T −α0). Hence,
with the previous argumentation, the correctness of the algorithm follows. The algorithm
needs to call Algorithm 1, see line 6 of Algorithm 2, in total kT -times. By Theorem 9, this
results in a running time in O(T 2n2m). J
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Algorithm 1: Computing fk+1
ij (α0, α) for all α ∈ {0, . . . , T − 1}

Input : (y∗, z∗) ∈ PLP (PTP), α0 ∈ {0, . . . , T − 1}, k ∈ {0, . . . , n− 1},
fkij ,∀i, j ∈ V

Output : fk+1
ij ,∀i, j ∈ V

1 for a = (u, v) ∈ A do
2 for α′ := 0, . . . , T − 1 do
3 for i ∈ V do
4 α := [α′ − `a]T
5 if fk+1

iv (α0, α) > fkiu(α0, α
′) + (T − α0)y∗a then

6 fk+1
iv (α0, α) := fkiu(α0, α

′) + (T − α0)y∗a
7 end
8 α := [α′ + `a]T
9 if fk+1

iu (α0, α) > fkiv(α0, α
′) + α0y

∗
a then

10 fk+1
iu (α0, α) := fkiv(α0, α

′) + α0y
∗
a

11 end
12 end
13 end
14 end
15 return fk+1

ij ,∀i, j ∈ V

Algorithm 2: Separation of Change-Cycle Inequalities
Input :LP-point (y∗, z∗) ∈ PLP (PTP)
Output :Cycle γ ∈ N such that the change-cycle inequality (5) is violated, or

NULL if no such cycle exists.

1 f∗ :=∞
2 ρ∗ := 0
3 for α0 := 0, . . . , T − 1 do

4 fkik(α0, α) :=
{

0 if k = 0, i = j, α = 0
∞ else

5 for k := 1, . . . , n do
6 compute fkij(α0, α) for all α ∈ {0, . . . , T − 1}, for all i, j ∈ V
7 end
8 f∗(α0) := mini∈V minnk=1 f

k
ii(α0, α0)

9 if f∗(α0)− α0(T − α0) < ρ∗ then
10 f∗ := f∗(α0)
11 ρ∗ := f∗(α0)− α0(T − α0)
12 end
13 end
14 if ρ∗ < 0 then
15 return γ(f∗)
16 else
17 return NULL
18 end

ESA 2016
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[`, u]

[`, u]

[−u,−`]

Figure 1 Left: the network N , Right: the auxiliary network Ñ . The solid arcs correspond to the
cycle γ and the circuit γ̃ from Theorem 11, respectively.

5 Separation of Cycle Inequalities

In this section we describe a pseudo-polynomial dynamic programming procedure to separate
violated cycle inequalities (8) using an auxiliary network that was proposed by Nachtigall [9].
The auxiliary network allows to reduce cycle separation to finding certain modulo constrained
circuits. Such a circuit can be found by a modification of the change-cycle separation
Algorithm 2.

We obtain Ñ by copying N and additionally introducing for each activity a = (i, j)
the back activity ā = (j, i). The copies of the original activities keep their bounds, the
bounds of the back activities are set to ˜̀̄

a = −ua and ũā = −`a, see Figure 1. For a point
(y, z) ∈ PLP (PTP) we define ỹ on the activities of Ñ by ỹa = ya and ỹā = ua − `a − ya.

I Theorem 11. Let be (y∗, z∗) ∈ PLP (PTP). Then, N contains a cycle γ that violates the
y-cycle inequality (8), i.e.,

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u),

if and only if Ñ contains a circuit γ̃ (cycle containing only forward directed activities) with

γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T
.

Proof. Let γ be a cycle in N and γ̃ be the circuit in Ñ obtained by replacing all backward
directed activities in γ with their auxiliary back activities, see Figure 1. Then we get

γty∗ <
[
−γt+`+ γt−u

]
T

+ γt−(`− u)
⇔ γt+y

∗ + γt−(u− `− y∗) <
[
−γt+`+ γt−u

]
T

⇔ γt+ỹ
∗ + γt−ỹ

∗ <
[
−γt+`− γt−(−u)

]
T

⇔ γ̃tỹ∗ <
[
−γ̃t ˜̀

]
T

J

By Theorem 11, there exists a violated cycle inequality (8) if and only if

δ∗ := min{γ̃tỹ∗ −
[
−γ̃t ˜̀

]
T
|γ̃ directed circuit in Ñ } < 0.

Hence, we can solve the separation problem by minimizing δ(γ̃) := γ̃tỹ∗ −
[
−γ̃t ˜̀

]
T
over all

directed circuits in the auxiliary network Ñ . We describe in the following the idea of the
algorithm, which is given in pseudocode in Algorithm 3.
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Let Pkij be the set of all (i, j)-paths in Ñ that contain exactly k activities, given by their
characteristic vectors. For α ∈ {0, . . . , T − 1}, let

dkij(α) := min

 ∑
a∈A:pa>0

ỹ∗a

∣∣∣p ∈ Pkij , α =
[
−pt ˜̀

]
T

 (11)

be the minimum length with respect to ỹ∗ of all paths in Pkij with α =
[
−pt ˜̀

]
T
. We can use

the following recursive equation to compute (11)

dk+1
ij (α) := min

a=(u,j)
[α′−`a]

T
=α

dkiu(α′) + ỹ∗a, ∀ k ≥ 0

with

d0
ij(α) =

{
0 if i = j, α = 0
∞ else.

Since every elementary circuit has at most n activities and ỹ∗a ≥ 0 for all a ∈ A, the minimum
length w.r.t. ỹ∗ of all directed circuits γ̃ with α =

[
−γ̃t ˜̀

]
T
is given by

d∗(α) = min
i∈V

n
min
k=1

dkii(α)

and we have

δ∗ = min{d∗(α)− α|α ∈ {0, . . . , T − 1}}.

I Theorem 12. Algorithm 3 detects a violated cycle inequality in O(Tn2m).

Proof. The argumentation in this section proves that the algorithm computes δ∗ and, thus,
correctly detects violated cycle inequalities. The algorithm involves in total O(Tn2m)
elementary operations. J

6 Computational Results

This section gives some indication of the computational usefulness of cycle-separation com-
pared to a heuristic separation.

As far as we know, the cycle inequalities (6) are added in cutting-plane algorithms only
with heuristic separation algorithms, see [9, 3, 6]. In the so-called spanning tree heuristic, a
minimum spanning tree of the event-activity network weighted with the slack values of the
LP-solution is computed and the fundamental cycles of this tree are checked for violated
inequalities.

We have implemented a full separation algorithm according to Algorithm 3 to separate
all violated cycle inequalities (8) with a given maximum length. Such a length restriction is
necessary to handle the memory consumption and the computation time of the separation
algorithm. We tested a length restriction of 10, 15, and 20.

Our test set consists of seven instances, which are given in Table 1. The instance
Wuppertal is based on the real multi-modal public transportation network of the city of
Wuppertal for 2013. The remaining Wuppertal-instances are obtained by selecting a subset
of lines of this instance. The Dutch instance is based on a network that was introduced

ESA 2016



21:10 Separation of Cycle Inequalities for the PTP

Algorithm 3: Separation of Cycle Inequalities
Input :LP-point (y∗, z∗) ∈ PLP (PTP)
Output :Cycle γ ∈ N such that the cycle inequality (8) is violated, or NULL if

no such cycle exists.

1 d∗ :=∞
2 δ∗ = 0

3 dkij(α) :=
{

0 if k = 0, i = j, α = 0
∞ else

4 for k := 1, . . . , n do
5 for a = (u, v) ∈ Ã do
6 for α′ ∈ {0, . . . , T − 1}, i ∈ V with dkiu(α′) <∞ do
7 α :=

[
α′ − ˜̀

a

]
T

8 if dkiv(α) > dk−1
iu (α′) + ỹ∗a then

9 dkiv(α) := dk−1
iu (α′) + ỹ∗a

10 if i = v and dkii(α)− α < δ∗ then
11 d∗ := dkii(α)
12 δ∗ := dkii(α)− α
13 end
14 end
15 end
16 end
17 end
18 if δ∗ < 0 then
19 return γ(d∗)
20 else
21 return NULL
22 end

Table 1 Statistics on the test instances. The columns list the instance name, the number
of stations and lines of the transportation network, the number of events and activities of the
event-activity network, the number of slack variables, periodic offset variables, and constraints in
the original problem, and the number of variables and constraints after preprocessing.

name |S| |L| n m #y #z #cons #vars* #cons*
Wuppertal 14 28 14 168 499 52 39 39 52 39
Wuppertal 44 64 44 395 1 426 122 85 85 106 77
Wuppertal 98 123 98 1 242 8 997 1 299 1 208 1 208 1 294 1 204
Wuppertal core 148 154 1 677 14 446 2 048 1 903 1 903 2 044 1 902
Wuppertal 1 582 311 13 202 79 251 3 188 2 886 2 886 3 150 2 862
Dutch 23 58 419 3 138 115 70 70 111 70
Potsdam 320 164 8 092 99 103 1 413 1 262 1 262 1 400 1 255
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Table 2 Statistics on the computations. The columns list the instance name, the used cut
separation, the solving time, the separation time, the number of separated cycle cuts, the number
of cycle cuts selected by SCIP to be applied to the LP, the dual bound of the root node, the dual
bound after termination, the best known primal bound, and the primal-dual gap in %.

name method solving
time

sepa.
time

cuts applied
cuts

root dual dual primal gap in %

Wuppertal 14

no add. cuts 0.06s - - - 16 231.80 24 074.55 24 074.55 0.00
heuristic 0.04s 0.00s 2 2 16 499.35 24 074.55 24 074.55 0.00
length ≤ 10 0.10s 0.03s 28 9 23 050.60 24 074.55 24 074.55 0.00
length ≤ 15 0.18s 0.12s 84 16 23 088.89 24 074.55 24 074.55 0.00
length ≤ 20 0.28s 0.22s 129 18 20 775.85 24 074.55 24 074.55 0.00

Wuppertal 44
no add. cuts 0.10s - - - 28 778.74 37 755.40 37 755.40 0.00
heuristic 0.11s 0.00s 1 1 28 669.75 37 755.40 37 755.40 0.00
length ≤ 10 0.19s 0.05s 18 5 31 846.58 37 755.40 37 755.40 0.00
length ≤ 15 0.46s 0.29s 40 9 31 953.26 37 755.40 37 755.40 0.00
length ≤ 20 1.05s 0.80s 72 10 31 953.26 37 755.40 37 755.40 0.00

Wuppertal 98
no add. cuts 1h - - - 81 940.30 112 023.51 477 161.17 325.95
heuristic 1h 0.02s 20 20 89 284.15 124 697.64 468 467.85 275.68
length ≤ 10 1h 1.16s 747 354 128 857.01 161 485.01 477 161.17 195.48
length ≤ 15 1h 11.52s 2 413 887 149 847.94 173 291.01 477 161.17 175.35
length ≤ 20 1h 41.34s 3 644 1 128 155 819.69 180 986.98 477 161.17 163.64

Wuppertal core
no add. cuts 1h - - - 98 654.95 118 462.71 464 533.25 292.13
heuristic 1h 0.02s 24 22 99 896.39 117 042.04 464 533.25 296.89
length ≤ 10 1h 2.40s 949 448 137 337.00 155 433.06 464 533.25 198.86
length ≤ 15 1h 25.90s 3 211 1 186 167 898.07 187 486.25 464 533.25 147.77
length ≤ 20 1h 82.94s 4 886 1 488 175 122.92 184 265.70 464 533.25 153.09

Wuppertal
no add. cuts 1h - - - 190 989.51 235 669.35 997 285.99 323.17
heuristic 1h 0.08s 65 63 198 269.80 248 616.97 997 285.99 301.13
length ≤ 10 1h 2.10s 1 082 402 232 178.52 273 620.80 997 285.99 264.48
length ≤ 15 1h 21.55s 3 336 810 244 127.40 281 855.42 997 285.99 253.83
length ≤ 20 1h 123.19s 5 307 1 098 255 288.10 290 249.68 997 285.99 243.60

Dutch
no add. cuts 7.06s - - - 2 455.13 6 155.00 6 155.00 0.00
heuristic 7.14s 0.00s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 10 7.99s 0.01s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 15 8.26s 0.04s 0 0 2 455.13 6 155.00 6 155.00 0.00
length ≤ 20 8.24s 0.08s 0 0 2 455.13 6 155.00 6 155.00 0.00

Potsdam
no add. cuts 1h - - - 25 797.07 43 944.09 130 840.00 197.74
heuristic 1h 0.03s 10 10 28 407.66 46 545.79 130 840.00 181.10
length ≤ 10 1h 0.34s 26 10 26 231.44 46 671.69 130 840.00 180.34
length ≤ 15 1h 1.82s 106 33 27 115.22 45 784.24 130 840.00 185.76
length ≤ 20 1h 8.04s 254 86 34 422.07 51 912.86 130 840.00 152.04

by Bussieck in the context of line planning [1]. The Potsdam instance is based on the
real multi-modal public transportation network for 1998. We consider a period time of
20 for all instances. The activity weights are obtained by computing an uncapacitated
multi-commodity flow in the event-activity network for a given passenger demand.

Our code is based on the constraint integer programming framework SCIP version 3.2.0
using Cplex 12.6.3 as an LP-solver. All computations were done on an Intel(R) Xeon(R)
CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8 MB cache, running Linux and
32 GB of memory. We set the time limit to one hour.

We compare the performance of the general MIP separators implemented in SCIP (no
add. cuts), adding either the spanning-tree heuristic (heuristic) or our separation algorithm
with a given length restriction (length ≤ 10, length ≤ 15, and length ≤ 20). The additional
separators are only called at the root node. The results are listed in Table 2.
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Looking at the root dual bound, one can see significant improvements, e.g., of up to
90% for Wuppertal 98, in comparison to the strategy without cycle cuts, and almost 75%
over heuristic cycle cut separation. Hence, the separation algorithm has a greater effect
on the dual bound than the heuristic, even though the separator only considers cycles
of a restricted length. Only Wuppertal 14 has a smaller root dual bound if all cycles of
maximum length 20 are separated compared to a cycle length of 10 or 15. This is not caused
by the cycle inequalities, but by the additional “flow cover” and “strong cg” inequalities
(heuristically) found by the default separator of SCIP. The given length restriction influences
the performance of the separation algorithm: Separating cycle inequalities with higher length
increases the computation time, but also, in general, the dual bound, especially for larger
instances. In particular, the root dual bound for Potsdam can be further improved by 30%
by using a length restriction of 20 compared to a length restriction of 10. Potsdam features
the largest number of events, see Table 1, and benefits from a consideration of longer cycles.
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