
Streaming Pattern Matching with d Wildcards∗

Shay Golan1, Tsvi Kopelowitz2 and Ely Porat3

1 Bar Ilan University, Ramat Gan, Israel
golansh1@cs.biu.ac.il

2 University of Michigan, Ann Arbor, Michigan, USA
kopelot@gmail.com

3 Bar Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
In the pattern matching with d wildcards problem we are given a text T of length n and a
pattern P of length m that contains d wildcard characters, each denoted by a special symbol ′?′.
A wildcard character matches any other character. The goal is to establish for each m-length
substring of T whether it matches P . In the streaming model variant of the pattern matching
with d wildcards problem the text T arrives one character at a time and the goal is to report,
before the next character arrives, if the last m characters match P while using only o(m) words
of space.

In this paper we introduce two new algorithms for the d wildcard pattern matching problem
in the streaming model. The first is a randomized Monte Carlo algorithm that is parameterized
by a constant 0 ≤ δ ≤ 1. This algorithm uses Õ(d1−δ) amortized time per character and Õ(d1+δ)
words of space. The second algorithm, which is used as a black box in the first algorithm, is a
randomized Monte Carlo algorithm which uses O(d + logm) worst-case time per character and
O(d logm) words of space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases wildcards,don’t-cares,streaming pattern matching,fingerprints

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.44

1 Introduction

We investigate one of the basic problems in pattern matching, the pattern matching with d
wildcards problem (PMDW), in the streaming model. Let Σ be an alphabet and let ′?′ /∈ Σ
be a special character called the wildcard which matches any character in Σ. The PMDW
problem is defined as follows. Given a text string T = t0t1 . . . tn−1 over Σ and a pattern
string P = p0p1 . . . pm−1 over alphabet Σ ∪ {?} such that P contains exactly d wildcard
characters, report all of the occurrences of P in T . This definition of a match is one of the
most well studied problems in pattern matching [21, 35, 26, 28, 18, 9].

The streaming model. The advances in technology over the last decade and the massive
amount of data passing through the internet has intrigued and challenged computer scientists,
as the old models of computation used before this era are now less relevant or too slow. To
this end, new computational models have been suggested to allow computer scientists to
tackle these technological advances. One prime example of such a model is the streaming

∗ Supported in part by NSF grants CCF-1217338, CNS-1318294, and CCF-1514383.

© Shay Golan, Tsvi Kopelowitz, and Ely Porat;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 44; pp. 44:1–44:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Streaming Pattern Matching with d Wildcards

model [1, 25, 34, 29]. Pattern matching problems in the streaming model are allowed to
preprocess P into a data structure that uses space that is sublinear in m (notice that space
usage during the preprocessing phase itself is not restricted). Then, the text T is given online,
one character at a time, and the goal is to report any matching substrings right after the
last relevant text character has arrived, but before the next text character arrives. Another
closely related model is the online model, which is the same as the streaming model without
the constraint of using sublinear space.

Following the breakthrough result of Porat and Porat [36], there has recently been a rising
interest in solving pattern matching problems in the streaming model [6, 19, 33, 7, 27, 13, 14].
However, this is the first paper to directly consider the important wildcard variant. Notice
that one way for solving PMDW (not necessarily in the streaming model), is to treat ′?′
as a regular character, and then run an algorithm that finds all occurrences of P (that
does not contain any wildcards) in T with up to k = d mismatches. This is known as the
k-mismatch problem [32, 37, 2, 12, 11, 16, 14]. The most recent result by Clifford et al. [14]
for the k-mismatch problem in the streaming model implies a solution for PMDW in the
streaming model that uses O(d2 polylogm) words1 of space and O(

√
d log d+polylogm) time

per character. Notice that Clifford et al. [14] focused on solving a more general problem.

1.1 New results and Related Work
We improve upon the work of Clifford et al. [14], for the special case that applies to PMDW,
by presenting the following algorithms (the Õ notation hides logarithmic factors). Notice
that Theorem 1 improves upon the results of Clifford et al. [14] whenever δ > 1/2.

I Theorem 1. For any constant 0 ≤ δ ≤ 1 there exists a a randomized Monte Carlo algorithm
for the PMDW problem in the streaming model that succeeds with probability 1− 1/poly(n),
uses Õ(d1+δ) words of space and spends Õ(d1−δ) amortized time per arriving text character.

I Theorem 2. There exists a a randomized Monte Carlo algorithm for the PMDW problem
in the streaming model that succeeds with probability 1− 1/poly(n), uses O(d logm) words of
space and spends O(d+ logm) time per arriving text character.

1.2 Algorithmic Overview and Related Work
Our algorithms make use of the notion of a candidate, which is a location in the last m
indices of the current text that is currently considered as a possible occurrence of P . As
more characters arrive, it becomes clear if this candidate is an actual occurrence or not. In
general, an index continues to be a candidate until the algorithm encounters proof that the
candidate is not a valid occurrence (or until it is reported as a match). The algorithm of
Theorem 2 works by obtaining such proofs efficiently. We discuss some of the ideas used in
this algorithm after discussing the overview of Theorem 1.

Overview of algorithm for Theorem 1. The algorithm of Theorem 1 uses the algorithm of
Theorem 2 (with a minor adaptation) combined with a new combinatorial perspective of
periodicity that applies to strings with wildcards. The notion of periodicity in strings (without
wildcards) and its usefulness are well studied [20, 31, 36, 6, 23, 22]. However, extending the
usefulness of periodicity to strings with wildcards runs into difficulties, since the notions

1 We assume the RAM model where each word has size of O(logn) bits.

S. Golan, T. Kopelowitz, and E. Porat 44:3

are either too inclusive or too exclusive (see [4, 3, 5, 8, 38]). Thus, we introduce a new
definition of periodicity, called the wildcard-period length that captures, for a given pattern
with wildcards, the smallest possible average distance between occurrences of the pattern in
any text. See Definition 5. For a string with wildcards S, we denote the wildcard-period
length of S by πS .

Let P ∗ be the longest prefix of P such that πP∗ ≤ dδ. The algorithm of Theorem 1 has
two main components, depending on whether P ∗ = P or not. In the case where P ∗ = P , the
algorithm takes advantage of the wildcard-period length of P being small, which together with
techniques from number theory and new combinatorial properties of strings with wildcards
allows to spend only Õ(1) time per character and uses Õ(d1+δ) words of space. This is
summarized in Theorem 18. Of particular interest is Lemma 17 which combines number
theory with combinatorial string properties in a new way. We expect these ideas to be useful
in other applications.

If P ∗ 6= P , then we use the algorithm of Theorem 18 to locate occurrences of P ∗, and
by maximality of P ∗, occurrences of any prefix of P that is longer than P ∗ must appear
far apart (on average). These occurrences are given as input to a minor adaptation of the
algorithm of Theorem 2 in the form of candidates. Utilizing the large average distance
between candidates and combining with a lazy approach, we obtain an Õ(d1−δ) amortized
time cost per character.

Overview of algorithm for Theorem 2. For the streaming pattern matching problem
without wildcards, the algorithms of Porat and Porat [36] and Breslauer and Galil [6] have
three major components2. The first component is a partitioning of the pattern into pattern
intervals of exponentially increasing lengths. The algorithm uses text intervals corresponding
to the pattern intervals, which are the reversed pattern intervals and appear at the end
of the text. When a new text character arrives, the text intervals are shifted by one
location. The second component maintains all of the candidates in a given text interval.
This implementation leverages periodicity properties of strings in order to guarantee that
the candidates in a given text interval form an arithmetic progression, and thus can be
maintained with constant space. The third component is a fingerprint mechanism for testing
if a candidate is still valid. A candidate is tested each time it leaves a text interval.

The main challenge in applying the above framework for patterns with wildcards comes
from the lack of a good notion of periodicity which can guarantee that the candidates in
a text interval form an arithmetic progression. Notice that the notion of wildcard-period
length, for example, has to do with the average of distances between occurrences, and so
it does not apply to arithmetic progressions. To tackle this challenge, we design a new
method for partitioning the pattern into intervals, which combined with new fundamental
combinatorial properties leads to an efficient way for maintaining the candidates in small
space. In particular, we prove that with our new partitioning there are at most O(d logm)
candidates that are not part of the arithmetic progression of some text interval. Remarkably,
the proof bounding the number of such candidates uses a more global perspective of the
pattern, as opposed to the techniques used in non-wildcard results.

More related work. We mention that while our work is in the streaming model, in the
closely related online model (see [17, 15]), Clifford et al. [10] presented an algorithm, known

2 The algorithms of Porat and Porat [36] and Breslauer and Galil [6] are not presented in this way.
However, we find that this new way of presenting our algorithm (and theirs) does a better job of
explaining what is going on.

ESA 2016

44:4 Streaming Pattern Matching with d Wildcards

as the black box algorithm, that when applied to PMDW uses O(m) words of space and
O(log2m) time per arriving text character.

Full version. Due to space consideration some of the proofs and details have been omitted,
for a full version of this paper see [24].

2 Preliminaries

2.1 Periods

We assume without loss of generality that the alphabet is Σ = {1, 2, . . . , n}. For a string
S = s0s1 . . . s`−1 over Σ and integer 0 ≤ k ≤ ` , the substring s0s1 . . . sk−1 is called a prefix
of S and s`−k . . . s`−1 is called a suffix of S.

A prefix of S of length i ≥ 1 is a period of S if and only if sj = sj+i for every 0 ≤ j ≤ `−i−1.
The shortest period of S is called the principal period of S, and its length is denoted by ρS .
If ρS ≤ |S|2 we say that S is periodic.

Due to space reasons, we omit proofs here, proofs appear in the full version of the paper.

I Lemma 3. Let v be a string of length ` and let u be a string of length at most 2`. If u
contains at least three occurrences of v then:
1. v is a periodic string.
2. the distance between any two occurrences of v in u is a multiple of ρv.

I Lemma 4. Let u be a periodic string over Σ with principal period length ρu. If v is a
substring of u of length > 2ρu then ρu = ρv.

Periods and wildcards. For strings with no wildcards there is an inverse relation between
the maximum number of occurrences of u in a text of a given length and ρu. Here we define
the wildcard-period length of a string over Σ∪{?} which captures a similar type of relationship
for strings with wildcards. The usefulness of this definition for our needs is discussed in more
detail in Section 6. Let occ(S′, S) be the number of occurrences of a string S in a string S′.

I Definition 5. For a string S over Σ ∪ {?}, its wildcard-period length is

πS =
⌈

|S|
maxS′∈Σ2|S|−1 occ(S′, S)

⌉
.

Notice that for periodic string S without wildcards πS = ρS .

2.2 Fingerprints

For the following let u, v ∈
⋃n
i=0 Σi be two strings of size at most n. Porat and Porat [36] and

Breslauer and Galil [6] proved the existence of a sliding fingerprint function φ :
⋃n
i=0 Σi → [nc],

for some constant c > 0, which is a function where:
1. If |u| = |v| and u 6= v then φ(u) 6= φ(v) with high probability (at least 1− 1

nc−1).
2. The sliding property: Let w=uv be the concatenation of u and v. If |w| ≤ n then given

the length and the fingerprints of any two strings from u,v and w, one can compute the
fingerprint of the third string in constant time.

S. Golan, T. Kopelowitz, and E. Porat 44:5

3 A Generic Algorithm

We introduce a generic algorithm (pseudo-code is given in Figure 1) for solving online pattern
matching problems. With proper implementations of its components, this generic algorithm
solves the PMDW problem. The generic algorithm makes use of the notion of a candidate.
Initially every text index c is considered as a candidate for a pattern occurrence from the
moment tc arrives. An index continues to be a candidate until the algorithm encounters
proof that the candidate is not a valid occurrence (or until it is reported as a match). A
candidate is alive until such proof is given.

The generic algorithm is composed of three conceptual parts that affect the complexities
of the algorithm; a running example of the execution of the generic algorithm appears in
Figures 2 and 3:

Pattern and text intervals. The first part is an ordered partitioning I = (I0, . . . , Ik)
of the interval [0,m − 1]. Each interval I ∈ I is called a pattern interval. When a
character tα arrives then a candidate c is alive if and only if there is a pattern interval
I = [i, j] ∈ I such that tc · · · tc+i−1 matches p0 · · · pi−1 and α− c+ 1 ∈ [i, j]. Notice that
for any pattern interval I = [i, j], any candidate c that is alive in I must be in exactly
one text interval c ∈ [α− j + 1, α− i+ 1]. When a new text character arrives, all the
text intervals move one position ahead, and some candidates move between intervals.
Candidate queues. The second conceptual part of the generic algorithm is an implemen-
tation of a candidate-queue data structure. This data structure supports the following
operations on candidates that are in the same text interval [α− j + 1, α− i+ 1], where α
is the index of the last character to arrive from T .

I Definition 6. Let α be the index of the last text character that has arrived. Then a
candidate-queue on an interval I = [i, j] supports the following operations.
1. Enqueue(c): Given candidate c = α− i+ 1 add c to the candidate-queue.
2. Dequeue(): Remove and return a candidate c = α− j, if it exists.

Since there is a bijection between pattern intervals and text intervals we say that a
candidate-queue that is associated with a given text interval is also associated with the
corresponding pattern interval.
Assassinating candidates. The third conceptual part is a mechanism for testing if a
candidate is alive after it leaves one text interval, in order to determine if the candidate
should enter the candidate queue of the next text interval, or be reported as a match if
there is no more text intervals.

The implementation of each of these components controls the complexities of the algorithm.
Minimizing the number of intervals reduces the number of candidates leaving an interval at
any given time. Efficient implementations of the queue operations and testing if a candidate
is alive control both the space usage and the amount of time spent on each candidate that
leaves an interval. Notice that the implementations of these components may depend on
each other, which is also the case in our solution.

If there are no wildcards in P , one can use a sliding fingerprint based approach (related
to the Karp and Rabin [30] algorithm) for testing if a candidate is alive. In order to use
these fingerprints, we maintain the text fingerprint which is the fingerprint of the text from
its beginning up to the last arriving character. This maintenance uses only constant time
per character and constant space.

ESA 2016

44:6 Streaming Pattern Matching with d Wildcards

Process-Character(tα)
1 Q0.Enqueue(α)
2 for h = 0 to k

3 c = Qh.Dequeue()
4 if c exists and c is still alive
5 if h = k

6 report c as a match
7 else Qh+1.Enqueue(c)

Figure 1 Generic Algorithm.

a b a b a b a a a b

𝑝" 𝑝# 𝑝$ 𝑝% 𝑝& 𝑝' 𝑝(𝑝) 𝑝* 𝑝+

[0										, 			3][4										, 			7][8			, 			9]

Figure 2 Example of a pattern and its arbitrary chosen pattern intervals. The pattern length is
10 and the pattern intervals are [0, 3], [4, 7] and [8, 9].

3.1 Fingerprints with Wildcards
Using fingerprints together with wildcards seems to be a difficult task, since for any string
with x wildcards there are |Σ|x different strings over Σ that match the string. Each one
of these different strings may have a different fingerprint and therefore there are O(|Σ|x)
fingerprints to store, which is not feasible. In order to still use fingerprints for solving PMDW
we use a special partitioning of [0,m− 1].

Partitioning algorithm. We use a representation of P as P = P0?P1? . . .?Pd where each
subpattern Pi contains only characters from Σ (and may also be the empty string). Let
W = (w1, w2, . . . , wd) be the indices such that pwi =′?′ and for all 1 ≤ i < d we have
wi < wi+1. The interval [0,m− 1] is partitioned into pattern intervals as follows:

J = ([0, w1 − 1], [w1, w1], [w1 + 1, w2 − 1], . . . , [wd, wd], [wd + 1,m− 1]).

Since some of the pattern intervals in this partitioning could be empty, we discard such
intervals. The pattern intervals of the form [wi, wi] are called wildcard intervals and the other
pattern intervals are called regular intervals. Notice that for a text index c, the substring
tc . . . tc+m−1 matches P if and only if for each regular interval [i, j], tc+i . . . tc+j = pi . . . pj .
During the initialization of the algorithm we precompute and store the fingerprints for all of
the subpatterns corresponding to regular intervals.

Testing liveness. Given the partition J , the algorithm for testing if a candidate c is alive is
as follows. Each time a candidate c is added to a candidate-queue for interval [i, j] ∈ J via the
Enqueue(c) operation, the algorithm stores the current text fingerprint φ(t0 . . . tc+i−1) with
the candidate c. When the character tc+j arrives the text fingerprint is φ(t0 . . . tc+j). At this
time, the algorithm uses the Dequeue() operation to extract c together with φ(t0t1 . . . tc+i−1)

S. Golan, T. Kopelowitz, and E. Porat 44:7

b a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"(𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$

[43	, 	44][45							, 								48] [49							, 								52]

ab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"(𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'%

[44	, 	45][46							, 								49] [50							, 								53]

aab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"(𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'% 𝑡'&

[45	, 	46][47							, 								50] [51							, 								54]

baab a b a c a b a… a b ab

𝑡"# 𝑡"$ 𝑡"% 𝑡"& 𝑡"" 𝑡"' 𝑡"(𝑡") 𝑡"* 𝑡"+ 𝑡'# 𝑡'$ 𝑡'% 𝑡'& 𝑡'"

[46	, 	47][48							, 								51] [52							, 								55]

Figure 3 Example of the generic algorithm execution with the pattern of Figure 2. In each row a
new text character arrives. The bold borders are on the text intervals, each blue cell is a position of
a candidate and the green cell corresponds a match.
When t52 arrives the candidate c1 = 45 is tested, since it exists a text interval and found to be alive
because abababaa is a prefix of the pattern. At this time we can see that the candidate c2 = 47
cannot be a valid occurrence of the pattern, however the algorithm will not remove it until it reaches
the end of the text interval.
When t54 arrives, the candidates c1 = 45 and c2 = 47 are tested since they reach the end of their
text intervals. c2 is removed because the text ababaaab is not a prefix of the pattern. The candidate
c1 is still alive, and since it reaches the end of the last text interval, it reported as a match.

from the candidate-queue of interval [i, j]. If [i, j] is a regular interval, then the algorithm
tests if c is alive. This is done by applying the sliding property of the fingerprint function to
compute φ(tc+i . . . tc+j) from the current text fingerprint φ(t0t1 . . . tc+j) and the fingerprint
φ(t0t1 . . . tc+i−1), and then testing if φ(tc+i . . . tc+j) is the same as φ(pi . . . pj). If [i, j] is a
wildcard interval then c stays alive without any test.

A naïve implementation of the candidate queues provides an algorithm that costs O(d)
time per character, but uses Θ(m) words of space. To overcome this space usage we employ
a more complicated partitioning, which together with a modification of the requirements
from the candidate-queues allows us to design a data structure that uses much less space.
However, this space efficiency comes at the expense of a slight increase in time per character.

4 The Partitioning

The key idea of the new partitioning is to use the partitioning of Section 3.1 as a preliminary
partitioning, and then perform a secondary partitioning of the regular pattern intervals,
thereby creating even more regular intervals. As mentioned, the intervals are partitioned
in a special way which allows us to implement candidate-queues in a compact manner (see
Section 5).

The following definition is useful in the next lemma.

I Definition 7. For an ordered set of intervals I = (I0, I1, . . . Ik) and for any integer
0 ≤ i ≤ k, let µI(i) = maxij=0 |Ij | be the length of the longest interval in the sequence
I0, . . . Ii. When I is clear from context we simply write µ(i) = µI(i)

ESA 2016

44:8 Streaming Pattern Matching with d Wildcards

Figure 4 The general case: on each Jh ∈ J we first create two intervals of length δh and then we
iteratively create pattern intervals where the length of each pattern interval is double the length of
the previous pattern interval.

The following lemma shows a partitioning which is used to improve the preliminary
partitioning algorithm. The properties of the partitioning that are described in the statement
of the lemma are essential for our new algorithm. In the proof we introduce a specific
partitioning which has all of these properties.

I Lemma 8. Given a pattern P of length m with d wildcards There exists a partitioning of the
interval [0,m−1] into subintervals I = (I0, I1 . . . , Ik) which has the following properties:
1. If I = [i, j] is a pattern interval then pi . . . pj either corresponds to exactly one wildcard

from P (and so j = i) or it is a substring that does not contain any wildcards.
2. k = O(d+ logm).
3. For each regular pattern interval I = [i, j] with |I| > 1, the length i prefix of P contains a

consecutive sequence of |I| non-wildcard characters.
4. |{µI(0), µI(1) . . . µI(k)}| = O(logm).

Proof. We introduce a secondary partitioning of the preliminary partitioning described in
Section 3.1, and prove that it has all the required properties; see Figures 4, 5 and 6. Let
Jh be the preliminary pattern interval corresponding to Ph. The secondary partitioning
is executed on the pattern intervals J = (J0, J1, . . . , Jd), where the partitioning of Jh is
dependent on the partitioning of J0, . . . , Jh−1. Thus, the secondary partitioning of Jh takes
place only after the second partitioning of Jh−1.

When partitioning pattern interval Jh = [i, j], let gh be the number of pattern intervals
in the secondary partitioning in [0, i− 1], and let δh = µI(gh− 1) be the length of the longest
pattern interval in the secondary partitioning of [0, i− 1]. For the first pattern interval let
δ0 = 1. If j ≤ i+ δh − 1 then the only pattern interval is all of Jh. If j ≤ i+ 2δh − 1 then we
create the pattern intervals [i, i+ δh− 1] and [i+ δh, j]. Otherwise, we first create the pattern
intervals [i, i+ δh − 1] and [i+ δh, i+ 2δh − 1], and for as long as there is enough room in the
remaining preliminary pattern interval Jh (between the position right after the end of the last
secondary pattern interval that was just created and j) we iteratively create pattern intervals
where the length of each pattern interval is double the length of the previous pattern interval.
Once there is no more room left in Jh , let ` be the length of the last pattern interval we
created. If the remaining part of the preliminary pattern interval is of length at most `, then
we create one pattern interval for all the remaining preliminary pattern interval. Otherwise
we create two pattern intervals, the first pattern interval of length ` and the second pattern
interval using the remaining part of Jh.

The secondary partitioning implies all of the desired properties, the proof appears in the
full version of this paper. J

S. Golan, T. Kopelowitz, and E. Porat 44:9

Figure 5 Once there is no more room left in Jh, if the remaining interval is of length at most `
(the top case), then we create one pattern interval for all the remaining interval. Otherwise (the
bottom case) we create two pattern intervals, the first pattern interval of length ` and the second
pattern interval using the remaining part of Jh.

Figure 6 Example of patterns and their intervals in the secondary partitioning. Each bold
rectangle corresponds to an interval in the partition.

5 The Candidate-fingerprint-queue

The algorithm of Theorem 2 is obtained via an implementation of the candidate-queues that
uses O(d logm) space, at the expense of having O(d+ logm) intervals in the partitioning.
Such space usage implies that we do not store all candidates explicitly. This is obtained by
utilizing properties of periodicity in strings. Since candidates are not stored explicitly, we
cannot store any explicit information per candidate, and in particular we cannot explicitly
store fingerprints to quickly test if a candidate is still alive. On the other hand, we are still
interested in using fingerprints in order to perform these tests.

To tackle this, we strengthen our requirements from the candidate-queue data structure
to return not just the candidate but also the fingerprint information that is needed to
perform the test of whether the candidate is still alive. Thus, we extend the definition of a
candidate-queue to a candidate-fingerprint-queue as follows.

I Definition 9. Let α be the index of the last text character that has arrived. Then a
candidate-fingerprint-queue on an interval I = [i, j] supports the following operations.
1. Enqueue(c, φ(t0 . . . tc−1), φ(t0 . . . tα)): given c = α− i+ 1 add c to the candidate-queue,

together with φ(t0 . . . tc−1) and φ(t0 . . . tα).
2. Dequeue(): Remove and return a candidate c = α − j, if it exists, together with

φ(t0 . . . tc−1) and φ(t0 . . . tc+i−1).

In order to reduce clutter of presentation, in the rest of this section we refer to the
candidate-fingerprint-queue simply as the queue.

ESA 2016

44:10 Streaming Pattern Matching with d Wildcards

5.1 Implementation
The implementation of the queue assumes that we use a partitioning that has the properties
stated in Lemma 8. Let I = [i, j] be a pattern interval in the partitioning and let c be
a candidate which is maintained in the queue QI associated with I. For candidate c, the
entrance prefix is the substring tc . . . tc+i−1, the entrance interval is [c, c + i − 1], and the
entrance fingerprint is φ(tc . . . tc+i−1). Since c was alive at the time it was inserted into
QI , the entrance prefix of c matches p0 . . . pi−1 (which may contain wildcards). Recall that
a candidate c is inserted into QI together with φ(t0 . . . tc−1), which we call the candidate
fingerprint of c.

Satellite information. The implementation associates each candidate c with satellite in-
formation (SI), which includes the candidate fingerprint and the entrance fingerprint of
the candidate. The SI of a candidate combined with the the sliding property of finger-
prints are crucial for the implementation of the queue. When c is added to QI , for some
I = [i, j], we compute the entrance fingerprint of c from the candidate fingerprint and from
φ(t0 . . . tc+i−1) which is the text fingerprint at this time. When c is removed from QI , we
compute φ(t0 . . . tc+i−1) in constant time from the SI of c.

Entrance prefixes and arithmetic progressions. A key component of the queue data struc-
ture is Lemma 10. This lemma defines for each interval I = [i, j] ∈ I at most one unique
entrance prefix uI that is the only string that can be the entrance prefix of more than two
candidates in QI at the same time. That is, the existence of an entrance prefix uI and
determination uI if it exists depends only on the prefix pattern p0 . . . pi−1, regardless of
the characters in the text. If I has such a string uI we say that I is an arithmetic interval,
since, as we prove in Lemma 11 the candidates in QI that have entrance prefix uI form an
arithmetic progression.

I Lemma 10. For a pattern interval I = [i, j] with queue QI , there exists at most one string
uI such that if there are more than two candidates in QI with the same entrance prefix then
this entrance prefix must be uI .

Proof Sketch. By Lemma 8 there is a string of length |I| containing only non-wildcard
characters that is a substring of p0 . . . pi−1. Let v be this string. Notice that v must appear
in the entrance prefix of every candidate in QI . If there are three candidates in QI then
they must all appear in the text within a range of size j − i+ 1, which is close enough to
guarantee that v must be periodic.

Now, consider three candidates c4 < c5 < c6 in QI that have the same entrance prefix u.
Since c4, c5, and c6 are all occurrences of u then c6 − c5 and c5 − c4 are period lengths of u.
Thus, ρu ≤ min{c5− c4, c6− c5} ≤ c6−c4

2 ≤ j−i
2 < |I|

2 = |v|
2 . Therefore, by Lemma 4 ρu = ρv.

Combined with the fact that u contains v at a particular location (since u is an entrance
prefix), and v is longer than ρu (since ρu = ρv), the string u must be uniquely defined. J

I Lemma 11. Let I = [i, j] be an arithmetic interval. If there are h ≥ 3 candidates
c1 < c2 < · · · < ch in QI that have uI as their entrance prefix, then the sequence c1, c2, . . . , ch
forms an arithmetic progression whose difference is ρuI .

Implementation details. For an interval I, we use a linked list LQI to store all of the
candidates in QI together with their SI, except for when I is an arithmetic interval in which
case candidates whose entrance fingerprint is φ(uI) are not stored in LQI . Adding and

S. Golan, T. Kopelowitz, and E. Porat 44:11

removing a candidate that belongs in LQI together with its SI is straightforward. If I is an
arithmetic interval, the candidates in QI whose entrance fingerprint is φ(uI) are stored using
a separate data structure that leverages Lemma 11. Thus, during a Dequeue() operation,
the queue verifies if the candidate to be returned is in LQI or in the separate data structure
for the candidates with entrance fingerprint φ(uI).

I Lemma 12. There exists an implementation of candidate-fingerprint-queues so that for
any arithmetic interval I, the queue QI maintains all the candidates with entrance fingerprint
φ(uI) and their SI using O(1) words of space.

Space usage. The space usage of all of the queues has two components. The first component
is the lists LQI for all the intervals I. The second component is the data structure for storing
the candidates that create the arithmetic progression of an arithmetic interval, for each such
arithmetic interval. By Lemma 10 there is at most one such progression per arithmetic
interval, and so all of these arithmetic progressions use O(d+ logm) space. In the following
lemma we prove that the total space usage of all of the lists is O(d logm).

I Lemma 13.
∑
I∈I |LQI | = O(d logm).

Proof. By Lemma 8, we know that |{µ(0), . . . , µ(k)}| = O(logm). For each
` ∈ {µ(0), . . . , µ(k)} let I` be the sequence of all pattern intervals in I that are between
the leftmost interval of length `, inclusive, and the first of either the leftmost interval of
length larger than `, exclusive, or the last interval in I, inclusive. Notice that |I| ≤ `

for each I ∈ I`. Let D` be the set of queues for pattern intervals in I`. We show that∑
I∈I` |LQI | = O(|I`|+ d). This implies that:∑

I∈I
|LQI | =

∑
`∈{µ(0),...,µ(k)}

∑
I∈I`

|LQI | =
∑

`∈{µ(0),...,µ(k)}

O(|I`|+ d) = O(d logm).

We focus on queues for which |LQI | ≥ 3, since otherwise the bound is immediate. Notice
that this includes all queues for wildcard intervals. Set ` ∈ {µ(0), . . . , µ(k)} and let α be the
index of the last text character that has arrived.

We now establish that there exists a periodic string v of length ` that contains no
wildcards, such that for any candidate c in any of the queues of D` the entrance prefix
of c contains v. Let [i, j] be the leftmost interval in I`. Notice that j = i + ` − 1 by the
definition of I`. By Lemma 8, there is a string of length ` containing only non-wildcard
characters that is a substring p0 . . . pi−1. Let r be the starting location of this string, and let
v = pr . . . pr+`−1 be this string.

For each queue QI′ ∈ D` where I ′ = [i′, j′] and for each candidate c′ ∈ QI′ , the
entrance prefix of c′ matches the prefix of P of length i′. Since i′ ≥ i this means that
tc′+r . . . tc′+r+`−1 = v. The text substring tα−j′+r+1 . . . tα−i′+r+` contains at least three
occurrences of v and its length is |I ′| + ` ≤ 2`. Therefore, by Lemma 3, v is a periodic
string and the distance between any two candidates in the same queue is a multiple of ρv.
Notice that for any QI′ ∈ D` that contains at least three candidates c1 < c2 < c3, we bound
ρv ≤ min{c3 − c2, c2 − c1} ≤ c3−c1

2 ≤ j′−i′
2 .

Let ĉ be the rightmost (largest index) candidate maintained in the queues of D`. In
particular tĉ+r . . . tĉ+r+`−1 = v. We extend this occurrence of v to the left and to the right
in T for as long as the length of the period does not increase. Let the resulting substring be
tx+1 . . . ty−1. Unless, x = −1, the index x is called the left violation of v. Similarly, unless
y = α+1, the index y is called the right violation of v. Notice that x < ĉ+r ≤ ĉ+r+`−1 < y.

For the following, let the entrance interval of a candidate c be [c, ec].

ESA 2016

44:12 Streaming Pattern Matching with d Wildcards

I Claim 14. If Q[i′,j′] ∈ D` contains at least three candidates, then for each candidate c in
LQ[i′,j′] either x ∈ [c, ec] or y ∈ [c, ec].

Proof Sketch. There exists a text index β = ĉ + r, such that β appears in the entrance
interval of any candidate in the queues of D`, and x < β < y. Therefore, for each candidate
c ∈ LQ[i′,j′] , if x /∈ [c, ec] and y /∈ [c, ec] it must be the case that [c, ec] ⊆ [x+ 1, y− 1]. Recall
that the principal period length of tx+1 . . . ty−1 is ρv. Since u = tc . . . tec is a substring of
tx+1 . . . ty−1, it must be that ρu ≤ ρv. Hence, one can prove that [i′, j′] is an arithmetic
interval with u[i′,j′] = u, contradicting the fact that c is stored in LQ[i′,j′] . J

Let LxQI (LyQI) be the sets of candidates that are stored in LQI such that their entrance
interval contains x (y). LxQI and LyQI are not necessarily disjoint. Notice that by Claim 14,
LxQI ∪ L

y
QI

contains all the candidates stored in LQI .

I Claim 15.
∑
I∈I` |L

x
QI
| = O(|I`|+ d) and

∑
I∈I` |L

y
QI
| = O(|I`|+ d).

Proof. Let I ∈ I` and let ≈ denote the match relation between symbols in Σ ∪ {?}.
Notice that the contribution to

∑
I∈I` |L

x
QI
| from all sets LxQI that have less than two

candidates is at most O(|I`|). Thus, for the following we assume that LxQI contains at least
two candidates. Let cI,x = maxLxQI be the most recent candidate in LxQI . Let c < cI,x be a
candidate in LxQI . Since c ∈ L

x
QI

we have that px−c ≈ tc+x−c = tx (recall that both x and c are
indices in the text). Similarly, since cI,x ∈ LxQI we have that px−c ≈ tcI,x+x−c = tx+(cI,x−c).
Recall that the distance between any two candidates in QI is a multiple of ρv. In particular
the distance (cI,x − c) is a multiple of ρv and (cI,x − c) ≤ |I| ≤ |v|. Thus, tx 6= tx+(cI,x−c)
since x violates the period of length ρv. Recall that tx ≈ px−c ≈ tx+(cI,x−c), and so px−c
must be a wildcard. Therefore, each c ∈ LxQI , except for possibly cI,x, is in a position c such
that px−c is a wildcard. Since x is the same for all of the candidates in all of the LxQI′ for all
I ′ ∈ I`, then the contribution to

∑
I∈I` |L

x
QI
| of the candidates that are not the most recent

in their set LxQI is at most O(d). The contribution of the most recent candidates is at most
O(|I`|). Thus,

∑
I′∈I` |L

x
QI′
| = O(|I`|+ d). The proof that

∑
I′∈I` |L

y
QI′
| = O(|I`|+ d) is

symmetric. J

Finally,
∑
I∈I` |LQI | ≤

∑
I∈I` |L

x
QI
| +
∑
I∈I` |L

y
QI
| = O(|I`| + d). Thus, we have com-

pleted the proof of Lemma 13. J

6 The Tradeoff Algorithm

The algorithm of Theorem 2 for PMDW uses Õ(d) time per character and Õ(d) words of
space. In this section we introduce a randomized algorithm which expands this result for
a parameter 0 ≤ δ ≤ 1 to an algorithm that uses Õ(d1−δ) time per character and Õ(d1+δ)
words of space.

An overview of a slightly modified version (for the sake of intuition) of the tradeoff
algorithm is described as follows. Let P ∗ be the longest prefix of P such that πP∗ ≤ dδ.
The tradeoff algorithm first finds all the occurrences of P ∗ using a specialized algorithm
for patterns with wildcard-period length at most dδ. If P ∗ = P then this completes the
tradeoff algorithm. Otherwise, let I∗ = [i∗, j∗] be the interval in the secondary partitioning
of Theorem 2 such that i ≤ |P ∗| ≤ j. Each occurrence of P ∗ in the text is inserted as a
candidate in the algorithm of Theorem 2 directly into QI∗ Thus, the entrance prefixes of
candidates in the queues match prefixes of P that are longer than P ∗ and, by maximality
of P ∗, these prefixes of P have large wildcard-period length. This means that the average

S. Golan, T. Kopelowitz, and E. Porat 44:13

distance between each two consecutive candidates is at least dδ, and so combined with a lazy
approach we are able to obtain an Õ(d1−δ) amortized time cost per character.

In the rest of this section we describe an overview of the specialized algorithm for dealing
with patterns whose wildcard-period length is at most dδ. The rest of the details for the
tradeoff algorithm appear in the full version of this paper.

6.1 Patterns with Small Wildcard-period Length
Let P be a pattern of length m with πP < dδ. Let q be an integer, which for simplicity is
assumed to divide m. Consider the conceptual matrix Mq = {mq

x,y} of size
⌈
m
q

⌉
× q where

mq
x,y = p(x−1)·q+y−1. For any integer 0 ≤ r < q the rth column corresponds to an offset

pattern Pq,r = prpr+qpr+2q . . . pm−q+r. Notice that some offset patterns might be equal. Let
Γq = {Pq,r|0 ≤ r < q,′ ?′ /∈ Pq,r} be the set of all the offset patterns that do not contain any
wildcards. Each unique offset pattern is associated with a unique id. The set of unique ids
is denoted by IDq. We say that index i in P is covered by q if the column containing pi is
given a unique id. The columns of Mq define a column pattern Pq of length q, where the
i’th character is the unique id of the i’th column, or ’?’ if no such id exists (the column has
wildcards).

We partition T into q offset texts, where for every 0 ≤ r < q we define Tq,r =
trtr+qtr+2q Using the dictionary matching streaming (DMS) algorithm of Clifford
et al. [13] we find occurrences of offset patterns from Γq in each of the offset texts. Notice
that we do not only find occurrences of Pq,r in Tq,r (since we cannot guarantee that the offset
of T synchronizes with an occurrence of P). When the character tα arrives, the algorithm
passes tα to the DMS algorithm for Tq,αmod q. We also create a streaming column text Tq
whose characters correspond to the ids of offset patterns as follows. If one of the offset
patterns is found in Tq,αmod q, then its unique id is the αth character in Tq. Otherwise, we
use a dummy character for the αth character in Tq.

Notice that on occurrence of P in T necessarily creates an occurrence of Pq in Tq. Such
occurrences are found via the black box algorithm of Clifford et al. [10]. However, an
occurrence of Pq in Tq does not necessarily mean there was an occurrence of P in T , since
some characters in P are not covered by q. In order to avoid such false positives we run
the process in parallel with several choices of q, while guaranteeing that each non wildcard
character in P is covered by at least one of those choices. Thus, if there is an occurrence of
Pq at location i in Tq for all the choices of q, then it must be that P appears in T at location
i. The choices of q are given by the following lemma.

I Lemma 16. There exists a set Q of O(log d) prime numbers such that any index of a non-
wildcard character in P is covered by at least one prime number q ∈ Q, and ∀q ∈ Q : q = Õ(d).

From a space usage perspective, we need the size of |Γq| to be small, since this directly
affects the space usage of the DMS algorithm which uses Õ(k) space, where k is the number
of patterns in the dictionary. In our case k = |Γq|. In order to bound the size of Γq we use
the following lemma.

I Lemma 17. If q = Õ(d) and πP ≤ dδ then |Γq| = O(dδ).

Proof. Since πP ≤ dδ, there exists a string S = s0 . . . s2m−2 that contains Ω(m
dδ

) occurrences
of P . Using this string we show that |Γq| = O(dδ).

For each id in IDq we pick an index of a representative column in Mq that has this id,
and denote this set by Rq. Let r1 be the minimum index in Rq. For every index 0 ≤ i < m

ESA 2016

44:14 Streaming Pattern Matching with d Wildcards

let Si = si . . . si+m−1. For every 0 ≤ r < q let Si,q,r = si+rsi+r+q . . . si+m−q+r, and so for
any integer 0 ≤ ∆ < q − r we have Si,q,r+∆ = Si+∆,q,r. Notice that if Si matches P then
Pq,r = Si,q,r for each r ∈ Rq.

Let i be an index of an occurrence of P in S. For any distinct r, r′ ∈ Rq, it must
be that Si,q,r = Pq,r 6= Pq,r′ = Si,q,r′ . Thus, for any r ∈ Rq such that r > r1, we have
Pq,r1 = Si,q,r1 6= Si,q,r = Si+r−r1,q,r1 . This implies that i + r − r1 is not occurrence of P .
Therefore, every occurrence of P in S is associated with |Rq| − 1 indices that cannot be an
occurrence of P . We further argue that each index i is associated with an occurrence of P
(as just described) at most once. This is because if Si,q,r1 = Pq,r for some r ∈ Rq then i can
be associated only with an occurrence of P in index i− (r − r1). So the maximum number
of instances of P in S is at most |S||Rq| = 2m−1

|Rq| . However, S contains at least m
dδ

instances of
P , so m

dδ
≤ 2m−1
|Rq| which implies that |Γq| = |Rq| ≤ 2dδ = O(dδ). J

Complexities. For a single q ∈ Q, the algorithm creates q = Õ(d) offset patterns and texts.
For each such offset text the algorithm applies an instance of the DMS algorithm with a
dictionary of O(dδ) strings (by Lemma 17). Since each instance of the DMS algorithm uses
Õ(dδ) words of space [13], the total space usage for all instances of the DMS algorithm is
Õ(d1+δ) words. Moreover, the time per character in each DMS algorithm is Õ(1) time, and
each time a character appears we inject it into only one of the DMS algorithms (for this
specific q). In addition, the algorithm uses an instance of the black box algorithm for Tq,
with a pattern of length q. This uses another O(q) = Õ(d) space and another Õ(1) time per
character [10]. Thus the total space usage due to one element in Q is Õ(d1+δ) words. Since
|Q| = O(log d) the total space usage for all elements in Q is Õ(d1+δ) words, and the total
time per arriving character is Õ(1). Thus we have proven the following.

I Theorem 18. For any 0 ≤ δ ≤ 1 the online d wildcards pattern matching problem can be
solved for patterns P with πP < dδ with a randomized Monte Carlo algorithm, in Õ(1) time
per arriving text character and using Õ(d1+δ) words of space.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

2 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching
with k mismatches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

3 Jean Berstel and Luc Boasson. Partial words and a theorem of fine and wilf. Theor. Comput.
Sci., 218(1):135–141, 1999. doi:10.1016/S0304-3975(98)00255-2.

4 Francine Blanchet-Sadri. Algorithmic Combinatorics on Partial Words. Discrete mathe-
matics and its applications. CRC Press, 2008. URL: http://www.crcpress.com/product/
isbn/9781420060928.

5 Francine Blanchet-Sadri and Robert A. Hegstrom. Partial words and a theorem of fine and
wilf revisited. Theor. Comput. Sci., 270(1-2):401–419, 2002. doi:10.1016/S0304-3975(00)
00407-2.

6 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Transactions
on Algorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

7 Dany Breslauer, Roberto Grossi, and Filippo Mignosi. Simple real-time constant-space
string matching. Theor. Comput. Sci., 483:2–9, 2013. doi:10.1016/j.tcs.2012.11.040.

http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.1016/S0304-3975(98)00255-2
http://www.crcpress.com/product/isbn/9781420060928
http://www.crcpress.com/product/isbn/9781420060928
http://dx.doi.org/10.1016/S0304-3975(00)00407-2
http://dx.doi.org/10.1016/S0304-3975(00)00407-2
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1016/j.tcs.2012.11.040

S. Golan, T. Kopelowitz, and E. Porat 44:15

8 Sabin Cautis, Filippo Mignosi, Jeffrey Shallit, Ming-wei Wang, and Soroosh Yazdani.
Periodicity, morphisms, and matrices. Theor. Comput. Sci., 295:107–121, 2003. doi:
10.1016/S0304-3975(02)00398-5.

9 Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching. Inf. Process.
Lett., 101(2):53–54, 2007. doi:10.1016/j.ipl.2006.08.002.

10 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online
approximate pattern matching. Inf. Comput., 209(4):731–736, 2011. doi:10.1016/j.ic.
2010.12.007.

11 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to
efficient pattern matching. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 778–
784, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496855.

12 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. Pattern matching
with don’t cares and few errors. J. Comput. Syst. Sci., 76(2):115–124, 2010. doi:10.1016/
j.jcss.2009.06.002.

13 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In Nikhil Bansal and Irene Finocchi, editors, Proc. 23rd
Annual European Symposium on Algorithms (ESA’15), volume 9294 of LNCS, pages 361–
372. Springer, 2015. doi:10.1007/978-3-662-48350-3_31.

14 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 2039–2052, 2016. doi:10.1137/1.9781611974331.ch142.

15 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds
for online pattern matching. Theor. Comput. Sci., 483:68–74, 2013. doi:10.1016/j.tcs.
2012.06.012.

16 Raphaël Clifford and Ely Porat. A filtering algorithm for k-mismatch with don’t cares. In
String Processing and Information Retrieval, 14th International Symposium, SPIRE 2007,
Santiago, Chile, October 29-31, 2007, Proceedings, pages 130–136, 2007. doi:10.1007/
978-3-540-75530-2_12.

17 Raphaël Clifford and Benjamin Sach. Pseudo-realtime pattern matching: Closing the gap.
In Amihood Amir and Laxmi Parida, editors, Combinatorial Pattern Matching, 21st Annual
Symposium, CPM 2010, New York, NY, USA, June 21-23, 2010. Proceedings, volume
6129 of Lecture Notes in Computer Science, pages 101–111. Springer, 2010. doi:10.1007/
978-3-642-13509-5_10.

18 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592–601. ACM, 2002.
doi:10.1145/509907.509992.

19 Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
13th International Workshop, APPROX 2010, and 14th International Workshop, RAN-
DOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 545–559, 2010.
doi:10.1007/978-3-642-15369-3_41.

20 Nathan J Fine and Herbert S Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965.

21 Michael J Fischer and Michael S Paterson. String-matching and other products. Technical
report, DTIC Document, 1974.

22 Zvi Galil and Joel I. Seiferas. Time-space-optimal string matching. J. Comput. Syst. Sci.,
26(3):280–294, 1983. doi:10.1016/0022-0000(83)90002-8.

ESA 2016

http://dx.doi.org/10.1016/S0304-3975(02)00398-5
http://dx.doi.org/10.1016/S0304-3975(02)00398-5
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dx.doi.org/10.1016/j.ic.2010.12.007
http://dx.doi.org/10.1016/j.ic.2010.12.007
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://dx.doi.org/10.1016/j.jcss.2009.06.002
http://dx.doi.org/10.1016/j.jcss.2009.06.002
http://dx.doi.org/10.1007/978-3-662-48350-3_31
http://dx.doi.org/10.1137/1.9781611974331.ch142
http://dx.doi.org/10.1016/j.tcs.2012.06.012
http://dx.doi.org/10.1016/j.tcs.2012.06.012
http://dx.doi.org/10.1007/978-3-540-75530-2_12
http://dx.doi.org/10.1007/978-3-540-75530-2_12
http://dx.doi.org/10.1007/978-3-642-13509-5_10
http://dx.doi.org/10.1007/978-3-642-13509-5_10
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1007/978-3-642-15369-3_41
http://dx.doi.org/10.1016/0022-0000(83)90002-8

44:16 Streaming Pattern Matching with d Wildcards

23 Pawel Gawrychowski. Optimal pattern matching in LZW compressed strings. ACM Trans-
actions on Algorithms, 9(3):25, 2013. doi:10.1145/2483699.2483705.

24 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming pattern matching with d wildcards.
CoRR, abs/1605.16729, 2015. URL: http://arxiv.org/abs/1605.16729.

25 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridar Rajagopalan. External Memory
Algorithms, chapter Computing on data streams, pages 107–118. American Mathematical
Society, Boston, USA, 1999.

26 Piotr Indyk. Faster algorithms for string matching problems: Matching the convolution
bound. In 39th Annual Symposium on Foundations of Computer Science, FOCS’98, Novem-
ber 8-11, 1998, Palo Alto, California, USA, pages 166–173. IEEE Computer Society, 1998.
doi:10.1109/SFCS.1998.743440.

27 Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized matching in the
streaming model. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, February 27 – March 2, 2013, Kiel, Germany, pages 400–411, 2013.
doi:10.4230/LIPIcs.STACS.2013.400.

28 Adam Kalai. Efficient pattern-matching with don’t cares. In David Eppstein, editor, Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Jan-
uary 6-8, 2002, San Francisco, CA, USA., pages 655–656. ACM/SIAM, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545468.

29 Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation
in data streams in optimal space. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 745–754, 2011.
doi:10.1145/1993636.1993735.

30 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.
0249.

31 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

32 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theor.
Comput. Sci., 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

33 Lap-Kei Lee, Moshe Lewenstein, and Qin Zhang. Parikh matching in the streaming model.
In String Processing and Information Retrieval – 19th International Symposium, SPIRE
2012, Cartagena de Indias, Colombia, October 21-25, 2012. Proceedings, pages 336–341,
2012. doi:10.1007/978-3-642-34109-0_35.

34 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005. doi:10.1561/0400000002.

35 S. Muthukrishnan and H. Ramesh. String matching under a general matching relation. In
R. K. Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer
Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, volume
652 of Lecture Notes in Computer Science, pages 356–367. Springer, 1992. doi:10.1007/
3-540-56287-7_118.

36 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Annual IEEE Symp. on Foundations of Computer Science, FOCS 2009, Oct.
25-27, 2009, Atlanta, Georgia, USA, pages 315–323, 2009. doi:10.1109/FOCS.2009.11.

37 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.
In Combinatorial Pattern Matching, 18th Annual Symposium, CPM 2007, London, Canada,
July 9-11, 2007, Proceedings, pages 173–182, 2007. doi:10.1007/978-3-540-73437-6_19.

38 William F. Smyth and Shu Wang. A new approach to the periodicity lemma on strings with
holes. Theor. Comput. Sci., 410(43):4295–4302, 2009. doi:10.1016/j.tcs.2009.07.010.

http://dx.doi.org/10.1145/2483699.2483705
http://arxiv.org/abs/1605.16729
http://dx.doi.org/10.1109/SFCS.1998.743440
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://dl.acm.org/citation.cfm?id=545381.545468
http://dx.doi.org/10.1145/1993636.1993735
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1016/0304-3975(86)90178-7
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1007/3-540-56287-7_118
http://dx.doi.org/10.1007/3-540-56287-7_118
http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1007/978-3-540-73437-6_19
http://dx.doi.org/10.1016/j.tcs.2009.07.010

	Introduction
	New results and Related Work
	Algorithmic Overview and Related Work

	Preliminaries
	Periods
	Fingerprints

	A Generic Algorithm
	Fingerprints with Wildcards

	The Partitioning
	The Candidate-fingerprint-queue
	Implementation

	The Tradeoff Algorithm
	Patterns with Small Wildcard-period Length

