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Abstract
We study the cryptographic complexity of two-party differentially-private protocols for a large
natural class of boolean functionalities. Information theoretically, McGregor et al. [FOCS 2010]
and Goyal et al. [Crypto 2013] demonstrated several functionalities for which the maximal possible
accuracy in the distributed setting is significantly lower than that in the client-server setting.
Goyal et al. [Crypto 2013] further showed that “highly accurate” protocols in the distributed
setting for any non-trivial functionality in fact imply the existence of one-way functions. However,
it has remained an open problem to characterize the exact cryptographic complexity of this
class. In particular, we know that semi-honest oblivious transfer helps obtain optimally accurate
distributed differential privacy. But we do not know whether the reverse is true.

We study the following question: Does the existence of optimally accurate distributed differ-
entially private protocols for any class of functionalities imply the existence of oblivious transfer
(or equivalently secure multi-party computation)? We resolve this question in the affirmative for
the class of boolean functionalities that contain an XOR embedded on adjacent inputs. We give
a reduction from oblivious transfer to:

Any distributed optimally accurate ε-differentially private protocol with ε > 0 computing a
functionality with a boolean XOR embedded on adjacent inputs.
Any distributed non-optimally accurate ε-differentially private protocol with ε > 0, for a
constant range of non-optimal accuracies and constant range of values of ε, computing a
functionality with a boolean XOR embedded on adjacent inputs.

Enroute to proving these results, we demonstrate a connection between optimally-accurate two-
party differentially-private protocols for functions with a boolean XOR embedded on adjacent
inputs, and noisy channels, which were shown by Crépeau and Kilian [FOCS 1988] to be sufficient
for oblivious transfer.
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1 Introduction

Differential privacy [7, 8, 11, 14] is a very well-studied and popular privacy notion of recent
years1. It provides powerful input privacy guarantees to participants of a statistical query
database. Informally a randomized function computed on a database is said to be differentially
private, if the output distribution of the function evaluated on the database, induced by the
presence of a particular record, is statistically close to the output distribution induced when
the record is absent. Note that this can be trivially achieved by computing an output that is
independent of the entries in the database. Therefore, to be useful, a non-trivial differentially
private algorithm must compute outputs that satisfy some meaningful notion of accuracy.

Consider a confidential dataset owned by a trusted server. The server must release the
output of some statistic evaluated on the dataset, to an untrusted client. Even in this setting,
where privacy is a concern only at the server’s end, there is an evident tradeoff between
privacy and accuracy. In fact, for any given privacy parameter ε, there is a maximum possible
accuracy (which we call the optimal accuracy) such that any algorithm with better than
optimal accuracy will fail to remain differentially private. Such privacy-accuracy tradeoffs
are reasonably well-understood in the client-server setting [7, 12, 15, 23]. There has also
been a huge body of work in designing algorithms that achieve close to optimal accuracies
for various functionalities and data mining tasks in the client-server setting.

The focus of this work is the distributed setting, where a database is jointly hosted by
multiple mutually distrusting servers. This was first studied by Dwork et al. [10]. As an
illustrative example, consider two hospitals which together wish to compute the correlation
between the occurrence of smoking and lung cancer by taking into account their combined
patient records. In this setting, we require the servers to engage in a protocol, at the end of
which the privacy of each record of both the servers must be guaranteed without a significant
loss in accuracy. Note that the privacy requirements must be met for both servers, given their
entire view of the protocol transcript, not just the computed output; possibly necessitating
an additional loss in accuracy (over and above the loss in the client-server setting).

The intuition that the distributed setting would necessitate a greater accuracy loss
than the client-server setting has been proved to be correct in the information theoretic
world for different classes of functions. Beimel, Nissim and Omri [1] showed accuracy limits
for distributed differentially-private protocols for n parties each holding their own inputs.
McGregor, Mironov, Pitassi, Reingold, Talwar and Vadhan [36] showed large accuracy
gaps in the two-party setting for several natural functionalities with n-bit inputs. Goyal,
Mironov, Pandey and Sahai [19] demonstrated a constant gap between the maximal achievable
accuracies in the client-server and distributed settings for any non-trivial boolean functionality.

In the computational setting this gap vanishes, if a semi-honest protocol for oblivious
transfer exists. In this case, both servers can use secure multi-party computation [18] to
simulate the client-server differentially private function evaluation, thereby obtaining the

1 See [9] for a survey of results.
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optimally accurate output evaluated on the union of their databases. Although oblivious
transfer is sufficient to close this gap, it is not clear whether this is a necessary assumption.

Indeed, there has been a separate line of work, starting with Haitner, Omri and Za-
rosim [21] demonstrating black-box separations between one-way functions and distributed
differentially private algorithms with optimal accuracies, for two-party functionalities with
long outputs. Khurana, Maji and Sahai [25] showed a black-box separation between public-
key encryption and distributed differentially private algorithms with optimal accuracies for
two-party boolean functionalities. These separations also extend to a range of non-optimal
accuracies that are information theoretically impossible to achieve in the distributed setting.
These results provide evidence that some “strong” cryptographic assumption is likely neces-
sary for optimally accurate (or close to optimally accurate) distributed differentially private
function evaluation. Despite this research, the following question has remained elusive:

“Does there exist any class of functionalities whose distributed differentially private
evaluation with optimal accuracy – necessitates the existence of oblivious transfer?”

We prove that any protocol computing the boolean XOR functionality in a distributed differ-
entially private manner with optimal accuracy and overwhelming probability of agreement
(on the output) between both parties, implies the existence of oblivious transfer. Our result
also directly lends itself to any boolean functionality that contains an embedded XOR on
two adjacent inputs. Roughly, a function f is said to contain an embedded XOR if and only
if the ideal functionality for f can be used to compute the boolean XOR functionality in the
semi-honest setting. We give a formal definition of what it means for a function to contain
an embedded XOR in the technical sections of the paper.

Interestingly, in the setting of secure computation, the ideal XOR functionality is known
to be trivial. This is because the output of this functionality combined with the input of
any individual party completely reveals the input of the other party. Thus, parties can
simply send each other their inputs – and this corresponds to a secure evaluation of the
XOR functionality. However, an optimally accurate distributed differentially private (noisy)
protocol for XOR is not trivial, in fact we show that it implies oblivious transfer. Our proof
makes use of the fact that an ideal (non-noisy) XOR is fully informative about the input of
the other party.

Finally, it is interesting to observe the “philosophical” differences between differential
privacy and secure computation:

In (computationally) differentially-private protocols, “privacy comes first.” We would like
to first ensure privacy of each individual input and then with this constraint, would like
to compute an output which is as accurate as possible.
In secure computation, “accuracy comes first.” We would like to release an accurate
output to the function we are computing – and with this constraint, would like to ensure
privacy of the inputs to the extent possible. Here, we require the transcript to leak no
information about the inputs beyond what can be deduced from the output itself.

Nevertheless, as already mentioned, general secure computation immediately helps achieve
the same (optimal) level of accuracy in distributed differentially-private protocols as the best
achievable accuracy in the client-server setting. By relying completely on oblivious transfer
for secure computation [26], our results show that the reverse is true as well (at least for the
differentially private evaluation of any two-party functionality with an embedded XOR).

1.1 Our Contribution
Before elaborating upon our results, we briefly summarize what is known so far about
accuracy gaps in the distributed differentially private computation of boolean functionalities.
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Alice and Bob with inputs x and y, respectively, wish to compute f(x, y) in a differentially
private manner in the distributed setting. An ε-differentially private protocol for some
functionality f ensures that the probability of Alice’s views conditioned on y and y′ are
λ := eε multiplicatively-close to each other, where y and y′ represented as bit-strings differ
only in one coordinate (i.e. they are adjacent inputs). A protocol between them is α-accurate
if for any x and y, the output of the protocol agrees with f(x, y), with probability at least α.

For boolean functionalities, the optimal accuracy (in the client-server model) is α∗ε := λ
λ+1 ,

where λ = eε. Goyal et al. [19] showed that in the information theoretic setting, f = AND can
only be computed ε-differentially privately up to accuracy α(AND)

ε := λ(λ2+λ+2)
(λ+1)3 . Similarly,

for f = XOR the maximal achievable accuracy in the information theoretic setting is
α

(XOR)
ε := λ2+1

(λ+1)2 . Note that α(XOR)
ε < α

(AND)
ε < α∗ε , for any finite ε > 0.

We say that a function f contains an embedded XOR if there exist inputs x0, x1, y0, y1
and outputs z0, z1 such that f(xa, yb) = zXOR(a,b) for all a, b ∈ {0, 1}. Similarly, we can define
an embedded AND (equivalently, an embedded OR). By observing that any boolean function
f which is sensitive to both parties’ inputs either contains an embedded XOR or AND on
adjacent inputs [3], the maximal achievable accuracy becomes

α(f)
ε :=

{
α

(XOR)
ε , if f contains an embedded XOR on adjacent inputs
α

(AND)
ε , otherwise.

(1)

Given a semi-honest secure protocol for oblivious transfer, the optimal accuracy αε is
achievable for any boolean f . With respect to the necessity of cryptographic assumptions,
Goyal et al. [19] showed that achieving any accuracy between αε and α(f)

ε for any function f in
the distributed setting implies the existence of one-way functions. We strengthen their result
to show that any two-party differentially private protocol that computes the XOR functionality
in a differentially private manner with accuracy close to αε implies the existence of semi-
honest secure oblivious transfer. Our result also extends to a weaker variant of differential
privacy, namely computational differential privacy [37]. All our results hold for two-party
functionalities where both parties obtain the same output with overwhelming probability.
Our results can be summarized as follows (with k denoting the security parameter):

I Informal Theorem 1. Semi-honest oblivious transfer reduces to any two-party ε DP protocol
for XOR with accuracy ρ(> 1/2) such that ρ ≥ αε = eε

1+eε (the optimal accuracy).

I Informal Theorem 2. Semi-honest OT reduces to any two-party εk computationally DP
protocol for XOR with accuracy ρk ≥ αεk = eεk

1+eεk (the optimal accuracy).

I Informal Theorem 3. A (ρk, λkmk − 1, λ
mk
− 1) weak noisy channel [6, 43] reduces to any

two-party εk computationally DP protocol for XOR with (possibly non-optimal) accuracy
ρk(> 1/2) where λk = eεk and mk = ρk/(1− ρk).

We prove the first two theorems via a reduction from (standard) noisy channels, which
are known to imply semi-honest OT [5]. The first theorem is just a restriction of the second
to the information-theoretic setting. The first two can also be viewed as special cases of the
third. Furthermore, for a range of non-optimal accuracies we also show a reduction to weak
noisy channels [6, 43]. Invoking known reductions of OT to weak binary symmetric channels,
we obtain that for a small range of values of εk and possibly non-optimal accuracies ρk such
that α(f)

εk ≥ ρk >> α∗εk , there exist constants c1,
{
c2 <

ec1

1+ec1

}
such that for all εk > c1 and

ρk > c2, any two-party εk-private ρk-accurate computational DP protocol for XOR (or more
generally any functionality with an embedded XOR on adjacent inputs) implies OT.
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1.2 Related Work

The tradeoff between privacy and accuracy is quite central in designing differentially private
algorithms. As mentioned before, in the client-server setting (where a single trusted server
owns the entire database), the work of Dinur and Nissim [7] first showed limitations for a
wide class of private algorithms. These limitations were further explored in [12, 15, 23].

The work of Dwork et al. [8, 11] proposed generic techniques for differentially private
function evaluation, based on adding noise as a function of the sensitivity of database queries.
The optimality of such techniques was studied in various settings in [13, 22, 41]. Variants of
these techniques were shown to be optimal for certain classes of queries by [17, 20], and were
shown to be non-optimal for other classes by Brenner and Nissim [2].

As mentioned before, there has also been a significant amount of work characterizing the
accuracy of two-party differentially-private protocols. McGregor et al. [36] first showed that
information theoretically, a large accuracy loss is inherent to the distributed differentially
private computation of functionalities such as the inner product and hamming distance over
n-bit inputs. This was followed by the work of Goyal et al. [19] who showed large gaps in the
client-server and two-party accuracies for the differentially-private computation of boolean
functionalities. Finally, the works of Haitner et al. [21] and Khurana et al. [25] showed that
it is impossible to use one-way functions or even key-agreement in a black-box way to bridge
any of these accuracy gaps. Our work subsumes these results for the case of XOR.

There has also been a bulk of work on the complexity of two-party finite functionalities
in the information theoretic setting [26, 3, 32, 27, 28, 29, 31, 33]. Chor and Kushilevitz [4]
established that all Boolean functions either reduce to SFE or can be trivially simulated.
In the computationally bounded setting, Maji et al. [34] give a complete characterization
of deterministic two-party finite functionalities while a series of works [35, 30, 24] give an
information-theoretic characterization of (randomized, fixed-role) two-party functionalities.

Note that all constant communication protocols for Boolean functionalities can be viewed
as two-party ideal finite functionalities, and therefore characterized according to [35, 30, 24].
Yet, our characterization extends to any polynomial-round protocols for differentially private
computation with optimal accuracy, of certain classes of Boolean functionalities. This requires
extra techniques to account for the entire transcript of protocol execution, which may leak
information over and above the output of the ideal functionality.

1.3 Technical Overview

We consider the simple setting of distributed differentially private evaluation of boolean
functions. Alice and Bob, with inputs x and y respectively, execute a protocol to compute a
Boolean function f(x, y). The protocol must preserve privacy (according to the differential
privacy guarantee) of the input of each party. From [19], we know that any non-trivial
Boolean function must embed an AND or an XOR minor on adjacent inputs. In this work,
we focus on the XOR functionality; and our proof directly extends to any functionality with
an embedded XOR on adjacent inputs. We also consider protocols with perfect agreement,
that is, where Alice and Bob always get the same output at the end of the protocol (which
is equivalent to saying that the output is part of the transcript). However, our proof also
extends to protocols where parties agree on the output with overwhelming probability.2

2 Note that if we relax the requirement of output agreement, then there is a simple information theoretically
secure protocol achieving optimal accuracy.
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Our main idea will be to use any protocol that implements the XOR functionality to
construct an ideal noisy channel. An ideal noisy channel with flip probability p < 1/2 is a
functionality that takes input a bit X from the sender, samples an independent bernoulli
random variable (the ‘error’) E, where E ∼ Ber(p), computes X̃ = (X ⊕ E) and outputs it
to the receiver.

Consider an optimally accurate differentially private evaluation of the boolean XOR
functionality, where both parties agree on the output with overwhelming probability (and can
then publish the output). In this case, the output of the differentially private functionality
can be interpreted as a “noisy” version of the correct output. In the optimally accurate
setting, the probability that the output is correct is exactly αε = eε

1+eε . In other words, let Z
denote the output of the protocol, then for all inputs X,Y ; the output Z = (X ⊕ Y )⊕ E,
where E is a bernoulli random variable E ∼ Ber( 1

1+eε ).
Our protocol to realize a noisy channel is simple: the sender (Alice) and receiver (Bob)

sample independent random (private) input bits X $←{0, 1} and Y $←{0, 1}. They invoke
the differentially private protocol for XOR with inputs (X,Y ) and obtain output Z, where
Z = (X ⊕ Y ) ⊕ E, and E is the error as defined above. The sender outputs X and the
receiver outputs Z ⊕ Y (= X ⊕E). It is easy to see that this protocol correctly implements a
noisy channel with noise E ∼ Ber( 1

1+eε ). However observe that the underlying differentially
private protocol for XOR may not be an ideal secure computation protocol for the noisy
XOR functionality. In particular, the protocol transcript may leak extra information over the
official output. Thus, it remains to prove that the above protocol implements a secure noisy
channel – while only relying on the security guarantee of the differential privacy condition.

In the computational setting, the ideal noisy channel functionality can be realized by a
protocol with the following security property [5]: roughly, no efficient distinguisher on the
sender’s end, or on the receiver’s end respectively, should be able to distinguish the cases
when the error E was 0 from when E was 1. More formally, let DR denote a distinguisher that
obtains the entire view of the receiver, and DS denote a distinguisher that obtains the entire
view of the sender at the end of the protocol. Then, for any non-uniform PPT distinguisher
DR, the following security guarantee is required to hold: Pr[DR = 1|E = 0]−Pr[DR = 1|E =
1] = negl(k) over the randomness of the protocol. Symmetrically, at the sender’s end, for any
non-uniform PPT distinguisher DS , Pr[DS = 1|E = 0]− Pr[DS = 1|E = 1] = negl(k) over
the randomness of the protocol. Here negl(·) denotes some function that is asymptotically
smaller than the inverse of any polynomial function, and k denotes the security parameter.

Now, the challenge is to prove that the protocol outlined above satisfies these security
properties – that is, no efficient distinguisher on the sender side, or on the receiver side can
distinguish the case when E = 0 from when E = 1. Here, we use the following properties of
the optimally accurate differentially private XOR functionality.

Because of optimal accuracy, the protocol output is correct with probability exactly eε

1+eε .
The (ideal, non-noisy) XOR functionality is fully informative: its output along with any
of the parties’ inputs, can be used to correctly compute the input of the other party.

Since the protocol is optimally accurate, the protocol output is correct – that is, Z = X⊕Y
with probability exactly αε = eε

1+eε . Moreover, by the fully-informative property of XOR, the
correct output, together with the input of any party can be used to correctly compute the
other party’s input. In other words, for all X,Y , the noisy output Z of the differentially
private protocol, together with the input Y , helps compute a guess for the other party’s
input that is correct with probability at least αε (Z ⊕ Y equals X with probability αε).

Note that if a party could guess the other party’s input with probability any better than
αε, this would directly violate differential privacy. Therefore, the output already allows
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computing the best possible guess (upto differential privacy limits) for the other party’s
input. Informally, this means that any extra information about the error (say, leaked from
the transcript) could be used to obtain a better guess of the other party’s input and directly
violate differential privacy. To prove security of our noisy channel, we must formalize these
arguments. This is done in Section 3 and forms the core of our proof of security.

2 Preliminaries

Notation. Let π := 〈A,B〉 be a two-party protocol. Let viewPπ (xA, xB) be the random
variable which, in a random execution of π with inputs (xA, xB) consists of (xP , RP , trans),
where RP is the randomness used by party P and trans is the sequence of messages ex-
changed between the parties in the sampled execution. Let outP be the function applied
by party P on viewPπ (xA, xB) to obtain the output for P , outP (viewPπ (xA, xB)). We say
that the protocol is symmetric if both parties receive the same output, i.e., for every x, y:
outA(viewAπ (xA, xB)) = outB(viewBπ (xA, xB)). This is called the official output of the pro-
tocol, denoted by outπ(xA, xB). For the rest of this paper, we consider only symmetric
protocols, however we note that our results can be easily extended to protocols in which
both parties agree on the output with overwhelming probability.

In the computational setting, we consider a family of protocols {πk}k∈N, where k is the
security parameter. Then, the view of party P ∈ {A,B} is denoted by viewPπ (k, xA, xB).

2.1 Noisy Channels
Informally, a noisy channel takes as input a bit b and outputs bit b′ = b ⊕ e where error
bit e ∼ Ber(1 − ρ) is sampled independently, and ⊕ is the bitwise exclusive-or operation.
Roughly, the security requirement is that the error e remains “semantically secure” for both
the sender and the receiver. Somewhat counterintuitively, we consider the flip probability of
a ρ-noisy channel to be (1− ρ). This is done deliberately to match DP protocols.

A (ρ, α, β)-weak binary symmetric channel [6, 43] is a noisy channel where the error is
no longer “semantically secure”. In particular, a malicious sender or receiver obtains partial
leakage on the error added by the channel, and (α, β) denote sender and receiver leakage
respectively. We defer the formal definitions to the full version.

Any protocol implementing a noisy channel is sufficient to implement the semi-honest OT
functionality. A reduction between these primitives was first given by Crépeau and Kilian
[5]. Furthermore, [43] showed that any protocol implementing the weak binary symmetric
channel for a certain range of parameters of ρ, α, β), is sufficient to implement OT. Although
these reductions are information-theoretic, they also carry over to the computational setting.
We use the following corollary from [43]:

I Corollary 1. Let ρ, α, β be constants, and let ε̄ = (1−ρ)2

(1−ρ)2+ρ2 . If at least one of the conditions

2α+β+ ε̄ ≤ 0.12, or β+ ε̄ < (1−α)4

44 , or 88α+44ε̄ < (1− β)2, or 196α+98β+ 49
2 < (1− 2ε̄)2

holds, then there exists a protocol that uses a (ρ, α, β)-passive weak BSC and efficiently
implements OT secure in the semi-honest model.

2.2 Differential Privacy
We give the formal definition of a weak notion of computational differential privacy. Assuming
dense sets, this is a strictly weaker definition than other (simulation-based) definitions of
CDP [37]. Therefore, our reductions automatically extend to other definitions.

ICALP 2016
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I Definition 2 (ε-Indistinguishable-Computational Differential Privacy, [37]). We say that an
ensemble {Mk}k∈N of randomized functionsMk : {0, 1}n 7→ Rk with finite range Rk, provides
εk-IND-CDP if there exists a negligible function negl : N 7→ R such that for every non-uniform
PPT algorithm (“distinguisher”) D, every polynomial p(·), every sufficiently large k ∈ N,
every (x, x′) ∈ {0, 1}n × {0, 1}n satisfying |x− x′|h = 1, and every advice string zk of size at
most p(k) it holds that: Pr[Dk(Mk(x)) = 1] ≤ eεk × Pr[Dk(Mk(x′)) = 1] + negl(k), where
we write Dk(y) for D(1k, zk, y) and the probability is over the mechanism Mk and Dk.

I Definition 3 (Differential Privacy over a subset of transcripts). We say that an ensemble
{Mk}k∈N of randomized functions Mk : {0, 1}n 7→ Rk with finite range Rk, provides εk-IND-
CDP over some subset of executions S if there exists a negligible function negl : N 7→ R such
that for every non-uniform PPT algorithm (“distinguisher”) D, every polynomial p(·), every
sufficiently large k ∈ N, every adjacent pair (x, x′) ∈ {0, 1}n×{0, 1}n, and every advice string
zk of size ≤ p(k) Pr[Dk(Mk(x)) = 1∧ (Mk(x) ∈ Sk)] ≤ eεk ×Pr[Dk(Mk(x′)) = 1∧ (Mk(x′) ∈
Sk)] + negl(k) where we write Dk(y) for D(1k, zk, y) and the probability is taken over the
randomness of mechanism Mk and distinguisher Dk.

I Definition 4 (Two-Party Differential Privacy). Let π : 〈A,B〉 be a protocol with inputs
of A and B in {0, 1}n. Then π provides ε-DP if: (1) for every x ∈ {0, 1}n the mechanism
represented by the function viewAπ (x, ·) over the inputs y ∈ {0, 1}n is ε-DP, and (2) for every
y ∈ {0, 1}n the mechanism represented by viewBπ (·, y) over the inputs x ∈ {0, 1}n is ε-DP.

In the two-party computational setting, εk-IND-CDP is defined analogously. Formally,
let {πk := 〈A,B〉(1k)}k∈N be an ensemble of interactive functions where the inputs of
A and B are in {0, 1}n. We say that {πk}k∈N provides εk-IND-CDP if: (1) for every
x ∈ {0, 1}n {viewAπ (k, x, ·)}k provides εk-IND-CDP over the inputs y ∈ {0, 1}n, and (2) for
every y ∈ {0, 1}n {viewAπ (k, ·, y)}k provides εk-IND-CDP over the inputs x ∈ {0, 1}n.

I Definition 5 (Accuracy in Differential Privacy [19]). The accuracy of a randomized Boolean
mechanism M : {0, 1}n 7→ {0, 1} with respect to a Boolean function f : {0, 1}n 7→ {0, 1}
is defined as: Accf (M) = minx{Pr[M(x) = f(x)]}, where the probability is taken over the
randomness of M .

The accuracy of a symmetric two-party protocol π := 〈A,B〉 w.r.t. f : {0, 1}n×{0, 1}n 7→
{0, 1} is the accuracy of the (Boolean) mechanism outπ : {0, 1}n × {0, 1}n 7→ {0, 1}; where
outπ returns the official output. Accuracy in the computational setting is defined analogously.

For every Boolean mechanism M : {0, 1}n 7→ {0, 1} and Boolean function f : {0, 1}n 7→
{0, 1}, if M is ε-DP then: Accf (M) ≤ λ

1+λ where λ = eε.3 We call the bound ρ = λ
1+λ ,

the optimal accuracy, achieved by setting M(x) = f(x)⊕ e such that Pr[e = 0] = λ
1+λ .

If M satisfies ε-IND-CDP, then Accf (M) ≤ λ
1+λ + negl(k) for a negligible function negl(·).

If a symmetric protocol ensemble {πk}k∈N provides ε-IND-CDP for a constant ε > 0, then
the accuracy of this ensemble w.r.t. the XOR function is at most λ+negl(k)

1+λ = ρ+ negl′(k)
for constant ε. The accuracy ρ can be achieved using secure two-party computation [37].

3 Noisy Channels Reduce to Optimal Two-Party IND-CDP

I Theorem 6. If there exists a two-party εk-IND-CDP protocol with accuracy ρk(> 1/2)
such that ρk ≥ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then
there exists a protocol implementing the ρk-noisy-channel functionality.

3 Informally, if this is not the case, there exists a distinguisher such that the ratio between the probability
that it guesses the input correctly versus incorrectly is greater than eε, thereby violating ε-DP.
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Proof. Let {πk}k where πk = 〈A,B〉(1k) be an ensemble of εk-IND-CDP protocols for
computing the XOR function with accuracy ρk ≥ λ

1+λ where λ = eεk , and εk > 0 is a constant.
Note that since the protocol is εk-IND-CDP and εk > 0, we have that ρk ≤ λ

1+λ + negl(k) for
some negligible function negl(k). For the rest of the proof, we denote εk by ε, and ρk by ρ.

The following protocol ensemble {πk := 〈S,R〉(1k)}k implements a ρ-noisy-channel: S
receives bit x as input, and R has no input. R samples a random bit y and the parties
execute the ε-IND-CDP protocol 〈A(x), B(y)〉(1k) and obtain the (same) bit z as official
output of this protocol. R outputs x̃ = z ⊕ y and S outputs ⊥. The correctness of this
protocol follows directly from the accuracy of the ε-IND-CDP protocol. We now show that it
satisfies sender-security.

Sender security. Assume to the contrary, that the protocol does not satisfy sender-security.
That is, there exists a non-uniform PPT distinguisher DR, a fixed polynomial q(·), and
infinitely many values k for which (there exists a polynomial-sized advice string zk such that)
AdvRπ (k) ≥ 1/q(k). Fix one such k from now on and let:

pk = Pr[DR(zk, viewRπk) = 1|E = 0]− Pr[DR(viewRπk) = 1|E = 1]. (2)

Note that AdvRπ (k) = |pk|. Without loss of generality, let pk > 0 for this k, and therefore
by assumption pk ≥ 1/q(k). We abuse notation and write DR = 1 to denote the event that
DR(1k, zk, viewRπ′

k
) = 1.4 Since pk 6= 0 we must have that 0 < Pr[DR = 1] < 1.

Let E be the random variable denoting the error bit for the ε-IND-CDP protocol. That
is, for the ε-IND-CDP protocol, E = x̃ ⊕ x. Since we are in the computational setting,
the accuracy of the protocol may be different for each input, denoted by: ρ00, ρ01, ρ10, ρ11.
However, they must all be within a negligible distance from each other and therefore lie
within the interval [ρ− negl(k), ρ+ negl(k)], where ρ denotes ρ00. Since a correct output is
equivalent to E = 0, and each input is selected with equal probability, Pr[E = 0] (which
is equivalent to “average” accuracy) also lies in the same interval. We show that if pk is
noticeable then differential privacy is violated on the set of transcripts where DR outputs 1.

I Claim 7. Pr[E = 0 ∧ DR = 1] > eε × Pr[E = 1 ∧ DR = 1] + pk
2 .

Proof. Let Pr[E = 0] = ρ∗, and µ(k) be a negligible function so that ρ∗ = λ
1+λ +µ(k) > 1/2.

Also, Pr[E = 0]/Pr[E = 1] is equal to ρ∗/(1− ρ∗) = λ+ µ′(k) for some negligible function
µ′. Now, since Pr[DR = 1] 6= 0, we can write (using Bayes’ rule):

Pr[E = 0 ∧ DR = 1] = Pr[DR = 1|E = 0]× Pr[E = 0]
=
(
pk + Pr[DR = 1|E = 1]

)
× Pr[E = 0] (By equation 2)

=
(
pk + Pr[E = 1|DR = 1]× Pr[DR = 1]

Pr[E = 1]

)
× Pr[E = 0] (Bayes’ rule)

= pk · Pr[E = 0] + Pr[E = 1 ∧ DR = 1]× Pr[E = 0]
Pr[E = 1]

Note that: pk ·Pr[E = 0] = pkρ
∗ > pk/2, and Pr[E=0]

Pr[E=1] = ρ∗

1−ρ∗ = λ+µ′(k) > λ. Therefore,
Pr[E = 0 ∧ DR = 1] > pk

2 + λ · Pr[E = 1 ∧ DR = 1]. J

4 Note that the input of the sender in sampling view viewRπ′
k
is uniformly chosen by definition of sender-

security; and further, since k has been fixed, letting DR := DR(1k, zk, viewRπ′
k
) is unambiguous and well

defined. Note that now, pk = Pr[DR = 1|e = 0]− Pr[DR = 1|e = 1].
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Obtain inputs Mk(x), Sk, D′k
If Sk(Mk(x)) = 1, Dk(Mk(x)) = D′k(Mk(x))
If Sk(Mk(x)) 6= 1, Dk(Mk(x)) = 0

Figure 1 Algorithm for ε-IND-CDP Distinguisher Dk.

We say that a subset S of transcripts is PPT-checkable, if there exists a probabilistic
poly-time “checking” algorithm for deciding membership of a transcript in S.

I Claim 8. If Pr[E = 0 ∧ DR = 1] > eε × Pr[E = 1 ∧ DR = 1] + pk
2 is such that pk

2 is
non-negligible over uniformly chosen sender input, then the protocol ensemble {πk}k does
not preserve ε-IND-CDP on the PPT-checkable subset of transcripts satisfying DR = 1.

Proof. From Pr[E = 0 ∧ DR = 1] > eε Pr[E = 1 ∧ DR = 1] + pk
2 it follows that Pr[x̃ =

x ∧ DR = 1] > eε Pr[x̃ 6= x ∧ DR = 1] + pk
2 , over the randomness of x where x̃ denotes the

output of the receiver. Since x is uniformly chosen in {0, 1},

Pr[x̃ = 1 ∧ DR = 1|x = 1] + Pr[x̃ = 0 ∧ DR = 1|x = 0]

> eε (Pr[x̃ = 0 ∧ DR = 1|x = 1]) + eε (Pr[x̃ = 1 ∧ DR = 1|x = 0]) + pk
2

Now, it is easy to observe that either of the following statements are true.
1. Pr[x̃ = 1 ∧ DR = 1|x = 1] > eε × Pr[x̃ = 1 ∧ DR = 1|x = 0] + pk

4 OR,
2. Pr[x̃ = 0 ∧ DR = 1|x = 0] > eε × Pr[x̃ = 0 ∧ DR = 1|x = 1] + pk

4

In either case, it is possible to claim the existence of a distinguisher. If pk is noticeable
and statement 1 holds, then there exists a distinguisher D1

k
′ with output equal to receiver

output x̃, which violates IND-CDP over the PPT checkable subset corresponding to DR = 1.
On the other hand, if pk is noticeable and statement 2 is true, then there exists a distinguisher
D2
k
′ with output equal to 1 − x̃, which violates IND-CDP over the PPT checkable subset

corresponding to DR = 1.
It follows from this claim that if pk is noticeable, then the protocol ensemble {πk}k does

not preserve ε-IND-CDP on the PPT-checkable subset of transcripts on which DR = 1,
because there exists distinguisher D′k ∈ {D1

k
′
, D2

k
′} and a corresponding pair of inputs

(x∗, x∗′) ∈ ({0, 1} × {0, 1}) such that Pr[D′k = 1 ∧DR = 1|x = x∗] > eε × Pr[D′k = 0 ∧DR =
1|x = x∗′] + pk

4 . In other words, there exists a non-uniform distinguisher that violates
ε-IND-CDP on this subset. This proves the claim. J

I Claim 9. A two-party protocol ensemble that provides ε-IND-CDP over all executions also
provides ε-IND-CDP over any PPT-checkable subset of executions.

Proof. Assume to the contrary that there exists a two-party ε-IND-CDP protocol for which
there is a non-uniform PPT distinguisher D′k that violates ε-IND-CDP over some PPT-
checkable subset of executions (denoted by Sk). Let Sk denote the code of a PPT-checking
algorithm that returns 1 if some execution Mk(x) ∈ Sk, and 0 otherwise.

Then, we construct a non-uniform PPT distinguisher Dk (Figure 1) that accepts Sk, D′k
as advice zk, and violates ε-IND-CDP for the protocol.

We know that for some polynomial p(·), some sufficiently large k ∈ N, some (x∗, x∗′) ∈
{0, 1} × {0, 1}, some advice string z′k of size at most p(k) and all functions negl : N 7→ R, it
holds that: Pr[D′k(Mk(x∗)) = 1 ∧ (Mk(x∗) ∈ Sk)] > eεk Pr[D′k(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈
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Sk)] + negl(k), where the probability is taken over the randomness of mechanism Mk and
distinguisher D′k, and D′k(y) represents D′(1k, zk, y). Then, by a simple manipulation:

Pr[Dk(Mk(x∗)) = 1] = Pr[Dk(Mk(x∗)) = 1 ∧ (Mk(x∗) ∈ Sk)]
> eε Pr[D′k(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈ Sk)] + negl(k)
= eε

(
Pr[Dk(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈ Sk)] + Pr[Dk(Mk(x∗′)) = 1 ∧ (Mk(x∗′) 6∈ Sk)]

)
+ negl(k),= eε Pr[Dk(Mk(x∗′)) = 1] + negl(k).

Therefore, we have a non-uniform PPT distinguisher Dk such that for some polynomial
p(·), some sufficiently large k ∈ N, for the same (x∗, x∗′) ∈ ({0, 1} × {0, 1}), some advice
string zk of size at most p(k) and all functions negl : N 7→ R it holds that Pr[D′k(Mk(x∗)) =
1] > eεk × Pr[D′k(Mk(x∗′)) = 1] + negl(k). This completes the proof of this claim. J

From these claims, it follows that if pk is noticeable, then {πk}k does not preserve ε-IND-
CDP. This is a contradiction, therefore pk = negl(k), and the noisy channel is sender-secure.

Receiver security. The output z of the ε-IND-CDP-protocol, obtained by both parties, is
symmetric with respect to the input of each party. Moreover, since the inputs of both parties
are chosen uniformly at random, the security of the receiver follows in a manner similar to
sender security. This completes the proof of the theorem. J

Combining this with Crépeau-Kilian’s reduction [5] of OT to noisy channels, we obtain:

I Corollary 10. If there exists a two-party εk-IND-CDP protocol with accuracy ρk such that
ρk ≥ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then there exists
an ensemble of protocols implementing the semi-honest oblivious-transfer functionality in the
computational setting.

4 Noisy Channels Reduce to Non-Optimal Two-Party IND-CDP

I Theorem 11. If there exists a two-party εk-IND-CDP protocol with non-optimal accuracy
ρ1
k ≤ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then there
exists a protocol implementing the (ρ1

k,
λ
m − 1, λm − 1)-passive weak binary symmetric channel

functionality where ρ1
k > 1/2, λ = eεk and m = ρ1

k

1−ρ1
k

.

The proof of this theorem follows in a similar manner as Theorem 6, and can be found in the
full version of our paper. While our reduction to weak noisy channels holds for all parameters
ε > 0 and accuracies ρ1

k, the range of parameters for which such channels give OT is small.
The following corollary follows from Theorem 11, and Corollary 1.

I Corollary 12. If there exists a two-party εk-IND-CDP protocol with non-optimal accuracy
ρ1
k ≤ eεk

1+eεk with respect to the exclusive-or function for a constant ε > 0, then there exist
constants c1,

{
c2 <

ec1

1+ec1

}
, such that for all εk > c1 and ρ1

k > c2, there is a protocol
implementing the semi-honest oblivious transfer functionality.

5 Conclusion and Open Problems

5.1 Extension to Functionalities with an Embedded XOR
Recall that we say that a function f contains an embedded XOR on adjacent inputs if there
exist adjacent inputs x0, x1, y0, y1 and outputs z0, z1 such that f(x1, yb) = zXOR(a,b) for all
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a, b ∈ {0, 1}. It is easy to observe that any finite functionality f with an embedded XOR,
which can be computed with optimal accuracy restricted to its embedded XOR on adjacent
inputs, can be used to obtain a differentially private optimally accurate XOR functionality
over boolean inputs. Accuracy of XOR follows from the accuracy of the original functionality
f , and privacy of XOR follows because differential privacy is a worst-case guarantee which
must be maintained even when restricted to a single bit of the adjacent inputs. The resulting
differentially private optimally accurate XOR protocol can then be used to obtain a secure
noisy channel and therefore, perform oblivious transfer.

5.2 Open Problems

Characterizing All Functionalities. It remains an intriguing open problem to obtain a
complete characterization of functionalities whose differentially private evaluation with
optimal accuracy in a distributed setting, is cryptographically complete. It is interesting to
obtain a complete characterization even for boolean functionalities, since the differentially
private evaluation of any non-trivial functionality with optimal accuracy (such as the inner
product and hamming distance functionalities considered by McGregor et al. [36]) implies the
differentially private evaluation of a non-trivial boolean functionality with optimal accuracy.

Consider, the case of boolean AND. This functionality is interesting, because any non-
trivial boolean functionality must contain embedded AND or XOR on adjacent inputs [3].
Therefore, for instance, showing that any (possibly polynomial round) protocol that gives
a differentially private protocol for the boolean AND functionality with optimal accuracy,
is cryptographically complete – would imply the completeness of an optimally accurate
distributed differentially private protocol for any non-trivial boolean functionality. However,
unlike XOR, the AND functionality is not completely informative about the other party’s
input. In case the input of a party is 0, even a non-noisy output of the ideal AND functionality
conveys absolutely no information about the input of the other party. In case the input is 1,
the output allows to exactly compute the other party’s input. Therefore, if a party has input
0, the differentially-private output would be completely useless for this party, while there
could be additional leakage from the transcript (allowed by differential privacy) that we do
not know how to use. Such functionalities appear to have interesting connections to weak
oblivious transfer, from which it is not completely known how to obtain oblivious transfer.

Characterizing non-optimal accuracies. From the work of McGregor et al. [36] and Goyal
et al. [19] in the information theoretic setting, it is clear that for any privacy parameter ε,
there is a constant gap in the maximal achievable accuracies of any ε differentially private
protocol in the client-server and distributed settings. Goyal et al. [19] additionally showed
that any hope of bridging this gap would imply the existence of one-way functions. The
black box separation results of [21, 25] also hold for differentially private protocols with any
accuracy in this range. Yet, it is unclear whether all protocols with accuracies in this range
must imply the existence of oblivious transfer.

Our techniques for non-optimal accuracies give rise to weak noisy channels and weak
versions of oblivious transfer, which for a constant range of parameters, do imply full-fledged
oblivious transfer. Yet, there is a large gap between the upper and lower bounds for weak
oblivious transfer amplification, and since our reductions go via noisy channels – this gap
lends itself to our setting. We believe that this provides additional motivation to revive (and
continue) research on the characterization of weak noisy channels.
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