
Competitive Analysis of Constrained Queueing
Systems

Sungjin Im∗1, Janardhan Kulkarni†2, and Kamesh Munagala‡3

1 Electrical Engineering and Computer Science, University of California,
Merced, CA, USA
sim3@ucmerced.edu

2 Microsoft Research, Redmond, WA, USA
jakul@microsoft.com

3 Department of Computer Science, Duke University, Durham, NC, USA
kamesh@cs.duke.edu

Abstract
We consider the classical problem of constrained queueing (or switched networks): There is a set
of N queues to which unit sized packets arrive. The queues are interdependent, so that at any
time step, only a subset of the queues can be activated. One packet from each activated queue
can be transmitted, and leaves the system. The set of feasible subsets that can be activated,
denoted S, is downward closed and is known in advance. The goal is to find a scheduling
policy that minimizes average delay (or flow time) of the packets. The constrained queueing
problem models several practical settings including packet transmission in wireless networks and
scheduling cross-bar switches.

In this paper, we study this problem using the the competitive analysis: The packet arrivals
can be adversarial and the scheduling policy only uses information about packets currently queued
in the system. We present an online algorithm, that for any ε > 0, has average flow time at most
O
(
R2

ε3 OPT +NR
)
when given (1+ε) speed, i.e., the ability to schedule (1+ε) packets on average

per time step. Here, R is the maximum number of queues that can be simultaneously scheduled,
and OPT is the average flow time of the optimal policy. This asymptotic competitive ratio
O(R

2

ε3 ) improves upon the previous O(Nε2 ) which was obtained in the context of multi-dimensional
scheduling [6]. In the full general model where N can be exponentially larger than R, this is an
exponential improvement. The algorithm presented in this paper is based on Makespan estimates
which is very different from that in [6], a variation of the Max-Weight algorithm. Further, our
policy is myopic, meaning that scheduling decisions at any step are based only on the current
composition of the queues. We finally show that speed augmentation is necessary to achieve any
bounded competitive ratio.

1998 ACM Subject Classification C.2.1 Network Architecture and Design: Packet-switching
networks, F.2.2 Nonnumerical Algorithms and Problems: Sequencing and scheduling

Keywords and phrases Online scheduling, Average flow time, Switch network, Adversarial

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.143

∗ S. Im was supported in part by NSF CCF-1409130.
† A part of this work was done while J. Kulkarni was at Duke University.
‡ K. Munagala was supported by NSF grants CCF-1408784, IIS-1447554, and CCF-1348696.

EA
T

C
S

© Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 143; pp. 143:1–143:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


143:2 Competitive Analysis of Constrained Queueing Systems

1 Introduction

Stochastic processing networks [16] capture a wide range of resource allocation scenarios. In
the general setting, there are a set of N queues, Q1, Q2, . . . , QN . Packets of unit size arrive
at these queues according to some arrival process. Time is discrete, and at each time step, at
most one packet from each queue can be served (or scheduled), each packet requiring unit
amount of service. The queues use shared resources for scheduling, leading to constraints
on the subsets of queues that can be simultaneously scheduled. Let S = {S1, S2, . . . , Sm}
denote the set of feasible subsets of queues that can be simultaneously scheduled at any time
slot; we assume the system S is downward closed so that if S ∈ S, then any subset of S
also belongs to S. 1 For such a system let R = maxS∈S |S| denote the maximum number of
packets that can be simultaneously be scheduled.

Such a general model was first formulated in the seminal work of Tassiulas and Ephrimedes
[16]. We first discuss some applications. First consider a n× n packet switch with crossbar
architecture [11, 12, 4]. Packets arrive at each of the n input ports, with each packet
specifying an output port to which it must be scheduled. The crossbar architecture enforces
the constraint that at most one packet can be scheduled per input or output port per time
slot. There are therefore N = n2 queues {Qij}, one per input-output pair (i, j). Queue
Qij queues packets arriving at input i for output j. A feasible subset of queues in S is a
matching of input to output ports, so that S is the set of all matchings between inputs
and outputs. A generalization of this setting arises in wireless networking, where there is
a queue Qij between every pair of locations i and j that are within communication radius;
a feasible subset of queues is any set of pairs (i, j) that can simultaneously communicate
without interference.

A similar problem arises in multicast switch scheduling [14], where packets arriving at an
input port of a crossbar switch need to be simultaneously transmitted to multiple output
ports.

We now present the formal model. Packets arrive into the queues according to an
adversarially chosen process during a finite time interval [0, T ]. We do not constrain the
number of packets that can arrive into any queue at any time step. We assume each packet
suffers a delay of at least one time slot. The main objective considered in this setting is the
average flow time. Let nt denote the number of packets awaiting service at time t; this is
the queue size at time t. Let n denote the total (finite) number of packets arriving in the
system. Let T ′ be a sufficiently large time, for example, T ′ = T + n, by which any ‘non-idle’
algorithm can complete all packets.

Average Flow Time = 1
n

T ′∑
t=0

nt . (1)

A scheduling policy is an algorithm that decides (at every time slot) the set of queues to
schedule. In an online policy, this decision is based on the number of packets in each queue,
but not on the knowledge of future arrivals. Policies whose decisions are based only on queue
sizes (or current system state) are termed Markovian in queueing theory. In this paper, we
will call such policies myopic. Our focus will be on designing myopic policies.

Integral vs. Fractional Schedules. We make a distinction between integral and fractional
schedules. The definition above assumes time is slotted into unit length slots, and we execute

1 Such a set system is often called an independence system, and a set S ∈ S is said to be independent.



S. Im, J. Kulkarni, and K. Munagala 143:3

one schedule σ ∈ S per time slot. Using the notation in [15], let

〈S〉 =
{∑
σ∈S

ασσ |
∑
σ∈S

ασ ≤ 1, ασ ≥ 0 ∀σ ∈ S
}

(2)

For each S ∈ S, we let σ(S) denote a binary vector in 2[N ] that encodes the subset of
queues activated in S, and for notational convenience, we let σ ∈ S, omitting S. The set 〈S〉
therefore represents collections of schedules, each executed to a fraction, so that the total
fraction is one unit. A fractional schedule executes one schedule from 〈S〉 per time slot. In
other words, a fractional schedule assumes time is continuous, and that packets are divisible.
When α amount of schedule σ is executed, α amount of the corresponding packets leave
the system. Note that an integral schedule is a special case of a fractional schedule where
ασ ∈ {0, 1} for all σ ∈ S.

In fractional schedule, an alternative but equivalent definition of average flow time will
be useful: we assume that packets are processed in first-in-first-out manner in each queue,
and a packet j’s completion time Cj is the earliest time when the whole packet leaves the
queue. An individual packet’s flow time is defined as its completion time Cj minus its arrival
time at the queue, and the average flow time is the total flow time of all packets divided by
the total number of packets. It is easy to see this definition of average flow time coincides
with the above definition (1).

Let OPT denote the average flow time of the fractional policy that makes optimal
scheduling decisions with knowledge of all future arrivals. This is a valid relaxation since
allowing the optimal scheduler/the adversary to be fractional can only decrease its average
flow time. Our goal is to design an online integral scheduling policy whose average flow time,
for all input sequences, is at most c×OPT . We call c as the competitive ratio of the policy.
We will achieve this by first developing a fractional online schedule and then converting it
into an integral schedule online.

1.1 Resource Augmentation Analysis and Scalable Policies
A simple example shows that no online algorithm can have bounded competitive ratio. To
see this, consider a simple 2× 2 crossbar switch with two input ports and two output ports.
For some large L, at time t = 0, L packets arrive at both inputs destined for output 1. From
time t = L to t = 2L− 1, where one packet arrives per time step destined for output 2; the
algorithm is not told which input port these packets arrive at. (Suppose these arrive at input
1.) Beyond this time, there is one packet per time slot arriving at input 1 for output 1 and
input 2 for output 2. The optimal algorithm which knows the future, spends the first L steps
serving the L packets queued at input 1. From time t = L to t = 2L− 1, it schedules the
matching of input port 1 to output 2 and input port 2 to output 1. Beyond this time, it
has no queued packets, and can schedule each incoming packet in the same time slot. In
the limit as T → ∞, OPT = 1. Any online algorithm has to guess the behavior of OPT
between time t = L and t = 2L− 1. Suppose it keeps x ≤ L packets on input port 1 at time
t = L, then it has x packets queued for all time t ≥ L, leading to average flow time of x.
This shows an unbounded competitive ratio even for randomized strategies.

The above example is typical of several scheduling problems when the input is ad-
versarial [8, 7, 1], and motivates the need for resource augmentation analysis, a framework
introduced by Kalyanasundaram and Pruhs [8]. We say that an online algorithm is given
(1 + ε) speed for any ε > 0, if in the integral case, the algorithm is allowed to perform an
extra round of scheduling every b 1

ε c time steps; or is allowed to execute schedules at rate

ICALP 2016



143:4 Competitive Analysis of Constrained Queueing Systems

(1 + ε) in the fractional case. Equivalently, the online algorithm, given no extra speed, is
compared against the optimal scheduler with (1− ε)-speed. This view is more natural since
we simply constrain the space of feasible schedules used by the optimal policy to have (1− ε)
rate, i.e., use

∑
σ∈S ασ ≤ 1− ε in (2), and give a speed 1 to the online algorithm. This also

highlights the fact that resource augmentation is purely an analysis tool – the algorithms we
design are oblivious to such resource augmentation, using only the current queue sizes to
make scheduling decisions. We call an algorithm scalable if for every ε > 0, the competitive
ratio of the algorithm is f

(
N, 1

ε

)
for some function f .

We note that even with resource augmentation, the design of scalable scheduling policies
is non-trivial. Consider the stochastic setting where packets arrive in each queue according
to a Bernoulli process with known rate. This arguably benign setting is widely studied
in networks [16, 12, 13, 15]. Consider an 3 × 3 crossbar switch, and the natural policy
that maximizes instantaneous throughput: Consider the pairs of inputs and outputs such
that there is at least one packet queued for that input/output pair. Find a maximum size
matching of these input/output pairs and schedule this matching, choosing a matching at
random if there are multiple maximum matchings. It is known [12] that for Bernoulli traffic
where the arrival rates for all inputs and outputs are strictly smaller than one packet per
time step, the expected queue size (and hence expected flow time) of this policy can be
unbounded. However, for such input, there are other policies with bounded expected queue
size (see below for more details). This directly shows that there exists some ε > 0 for which
the maximum throughput policy, even with (1 + ε)-speed has unbounded competitive ratio,
and is hence not scalable.

1.2 Our Results
Our main result is a myopic scheduling policy for arbitrary scheduling constraints S whose
asymptotic competitive ratio only depends on R. Recall that R = maxS∈S |S| is the maximum
number of packets that can be feasibly scheduled any time slot. We first develop a fractional
online scheduler, and then convert it into a feasible integral policy.

I Theorem 1. There is an online fractional policy, which we name Sampling Independent
Set from Min-Makespan (SISM), that is myopic, and is O(R

2

ε3 +N)-competitive when
compared to the optimal scheduler with (1− ε)-speed. More precisely, the online policy has an
average flow time O(R

2

ε3 OPT +N) where OPT is the optimal algorithm’s average flow time.
If the online algorithm does not have to be myopic, the competitive ratio can be improved to
O(R

2

ε4 ).

We note that if OPT is large, then the competitive ratio depends only on R = maxS∈S |S|,
which could be much smaller than N , and is a more robust measure of the complexity of
the scheduling constraints S. On the other hand, N can be made larger by simply splitting
one queue into several “virtual queues". (A related notion to R, called rank, is used in [15]
as a measure of the complexity of S.) In fact, N can be exponentially larger than R. As
mentioned before, the best known competitive ratio prior to this work was O(Nε2 ) [6] which
was found in the context of multi-dimensional scheduling. Further, our algorithm is very
different from [6] which can’t avoid a linear dependency on N ; this previous work will be
discussed in detail in Section 1.4.

Fractional Scheduling Policy. Our scheduling policy SISM is quite natural. At time step
t, let nit denote the (possibly fractional) number of packets queued at queue Qi. At time t,



S. Im, J. Kulkarni, and K. Munagala 143:5

assuming no more packets arrive in the future, solve the makespan minimization problem:
Find a fractional cover {λ(S)}S∈S such that if these schedules are executed (in arbitrary
order), then all queues Qi are emptied, i.e.

∑
S:i∈S λ(S) = nit. We process each independence

set S at a rate in proportion to its weight {λ(S)}. An equivalent view which explains the
algorithm’s name is that each cover (independent set) S exists in λ(S) copies, and we sample
a cover uniformly, and process it by an infinitesimal amount.

We first show that our algorithm is O(R2/ε3)-competitive for the fractional average
flow time. Roughly speaking, the algorithm incurs a cost equal to the total remaining size
of packets for the fractional flow – the discrepancy between the total remaining size and
the total number of packets is at most N , hence the N appears in the competitive ratio.
Alternatively, by using a standard method of converting fractional flow to integral flow, we
can get a competitive ratio with no dependency on N , but the resulting algorithm is no
longer myopic.

We note that the SISM has running time poly(|S|). However, for several applications,
|S| itself may be exponential in N , the number of queues, leading to an exponential time
algorithm. This dependence is unavoidable given the generality of the problem statement:
For myopic policies that can not store past scheduling decisions, it is easy to check that
maximizing instantaneous throughput encodes computing independent set of a general graph,
a problem whose solution cannot be approximated to any constant factor unless P = NP .
Assuming P 6= NP , this implies there is no myopic policy with poly(N) computation per
time slot, which has bounded competitive ratio even with constant speed. Nevertheless, for
the case of scheduling crossbar switches, our policy has poly(N) computation time per step
using the Birkhoff-von Neumann theorem (see for instance [13]). Furthermore, as mentioned
above, for settings such as scheduling jobs in data centers where the number of resources in
contention is constant, we can assume S to have constant size.

Integral Policy. As mentioned above, we convert our fractional policy SISM into an integral
scheduler on the fly using an emulation technique from [15]. For comparison, best previous
policies [4] required speed of at least 2, and were specific to crossbar switches.

I Theorem 2. There is an online integral policy that is myopic, and is O(R
2

ε3 + NR)-
competitive when compared to the optimal scheduler with (1 − ε)-speed. More precisely,
the online policy has an average flow time O(R

2

ε3 OPT + NR) where OPT is the optimal
scheduler’s average flow time.

1.3 Technical Contributions
Our analysis proceeds via establishing amortized local competitiveness [7], a framework
first introduced in [2]. Potential functions are often very useful when local competitiveness
analysis fails. As one can deduce from (1), we can perform a strictly local competitiveness
analysis if we can upper bound the number of packets alive in SISM’s queues at any time
by the analogous number for the optimal scheduler. However, this approach fails since the
optimal scheduler can cleverly group packets and complete them more quickly than our
algorithm. Intuitively, in the presence of an arbitrary independence set system S, the number
of queued packets can change very dynamically. In such settings, potential functions allow
us to compare the online algorithm to the optimal scheduler more robustly over time.

As illustrated in [7], the standard approach to designing a potential function is to establish
a rough estimate of the algorithm’s flow time assuming that no more packets arrive. We use
the minimum makespan needed to complete all queued packets as our estimate. A standard

ICALP 2016



143:6 Competitive Analysis of Constrained Queueing Systems

way of converting this quantity into a potential function is to now replace each packet’s
remaining size with the lag that measures how much the algorithm is behind the optimal
scheduler in processing that packet. This conversion makes the potential resilient to discrete
events such as new packets arriving, and allows us to focus on how the potential changes as
packets are continuously processed. However, the analysis is still complicated since SISM’s
schedule can be very different from OPT’s schedule, which means the algorithm’s processing
may not change the potential in the right direction when needed.

As mentioned above, the potential we use is based on the minimum makespan when
each packet’s remaining size replaced with its lag, which can be very different from the
minimum makespan schedule constructed by SISM. We therefore need to relate these two
schedules, which is not at all obvious. It becomes crucial that SISM sample an independent
set uniformly at random from its min-makespan schedule. This ensures two nice properties.
First, it decreases the makespan of SISM uniformly with time. More importantly, due to the
uniform sampling nature, it processes packets in proportion to their respective remaining sizes.
Using these two properties, we show that if the optimal scheduler has very few packets left
(and these are exactly the times when the algorithm needs the potential), the min-makepsan
schedule for the packet lags (i.e., the potential) mostly consists of independent sets where
all packet’s size decrease almost uniformly. Hence the potential decreases in the desired
direction.

We finally note that we do not know how to use popular linear programming approaches,
such as dual fitting [5] for this problem. We do note that it is relatively straightforward to
obtain a O(1)-competitive algorithm with R-speed using these methods, and the hard part
is to obtain a scalable algorithm.

1.4 Related Work
Constrained queueing systems are among the most widely studied settings in scheduling
theory. Existing work falls in the realm of queueing theory, and has mostly focused on the
stochastic case where packet arrivals are i.i.d. according to some stochastic process (most
commonly Bernoulli or Poisson). In this context, the key assumption is that the arrival
rates into the queues are feasible (in a certain natural sense), and the focus is on designing
policies that are stable, meaning that the expected flow time is finite. The seminal result
of [16] shows that the maximum weight policy is stable: This policy defines the weight of a
queue as the number of packets waiting at the queue, and at each time step, finds a feasible
schedule in S such that the sum of the weights of the queues in the schedule is maximized.
When specialized to a n× n crossbar switch, this policy finds a maximum weight matching
between inputs and outputs [12], where the weight of an input/output pair is the number of
packets queued at that input for that output. In this context, for Bernoulli arrivals, this
policy has expected queue size (or average flow time) O(n2) [15].

Most theoretical work on constrained queueing has focused on improving delay bounds in
the stochastic setting. The work of [13] constructs a policy with average flow time O(n logn)
for an n × n crossbar switch. Their algorithm considers a batch of L packets per input
and output, finds a makespan minimizing schedule over L time steps for this batch, and
runs this schedule for the next L steps. Such a policy is clearly not myopic since the policy
is computed in batches; in addition, they set L carefully based on the input arrival rates,
making the policy specific to the stochastic setting. Our policy Min-Makespan can be
thought of as an online, myopic analog of this policy. Finally, the work of [15] presents a
policy with expected flow time O(n), which can be generalized to arbitrary constraints S;
their policy is based on modeling the constrained system S as a network of queues, and using



S. Im, J. Kulkarni, and K. Munagala 143:7

a proportional fairness type queueing policy called Store and Forward Allocation (SFA) [3, 10]
on this queueing network. The SFA policy is a fractional scheduling policy that is specific to
stochastic arrivals, and we need new ideas for the adversarial setting. The main contribution
of [15] is an emulation of fractional scheduling policies by integral policies, and we use this
same technique for converting our fractional schedules to integral ones.

We emphasize that the hard part of our problem is to obtain a scalable algorithm, i.e.,
algorithms that have bounded competitive ratio for any ε extra speed, in addition to being
myopic. It is relatively simple to obtain competitive algorithms that use speed that depends
on S. In particular, for scheduling a crossbar switch, any greedy maximal matching algorithm
is 1-competitive with speed 2. In fact, in this same setting, the work of Chuang et al. [4]
shows something far stronger: With speedup 2, suitably designed stable marriage algorithms
are 1-competitive on any QoS property of delays (such as weighted flow time, lk-norms of
flow time, etc). However, these algorithms are specific to switch scheduling; furthermore,
they have unbounded competitive ratio with speed less than 2, and are hence not scalable.

The constrained queueing problem (fractional version) is a special case of the polytope
scheduling problem (PSP) formulated in [5]. The authors show that the proportional fairness
(PF) algorithm [9] can be adapted to derive a competitive scheduling algorithm for this
general setting. The objective considered is the sum of completion times of the jobs. Using
the KKT conditions combined with dual fitting, the authors show that the PF algorithm is
constant competitive on this objective even when jobs have arbitrary lengths and weights.
The flow time objective we consider corresponds to the difference between completion time
and release date of a job, and is typically a more difficult objective to optimize even in
simpler settings.

In [6], PSP was reformulated with queues. In PSP-Q, the polytope is defined over
queues. This constrains how much each queue can be processed. Then, any two jobs arriving
into the same queue are interchangeable in the sense that one job can be replaced with
the other job, preserving how much the queue is processed. In [6], it was shown that the
Normalized Max-Weight algorithm is (1 + ε)-speed O(N/ε2)-competitive – roughly speaking,
the maximum weight independence set is scheduled assuming that each queue’s weight is
equal to the number of jobs in the queue. The work in [6] can handle weighted jobs, but the
linear dependency on N was unavoidable due to the nature of the algorithm. On the other
hand, this paper can only handle packets of the same size, but the competitive ratio only
depends on R.

2 Fractional Scheduling Policy: SISM

In this section, we present our fractional scheduling policy Sampling Independent Set
from Min-Makespan (SISM), and analyze its performance for the average flow time
objective. For convenience, we abuse the notation slightly to let Qi(t) denote the (possibly
fractional) number of packets (or workload) waiting at queue Qi. See Figure 1 for the
description of the algorithm.

To compute a desired fractional cover, we can simply solve a linear programming over
the variables {λ(S)}S∈S . Then, the running time will be a polynomial in |S|. Note that this
computation needs to be done only when new packets arrive since otherwise the optimal
cover remains the same. As mentioned earlier, for the special case of switch scheduling,
such an optimal cover can be computed in polynomial time in N by using the Birkhoff-von
Neumann theorem; we can represent the current workload as a square matrix; and obtain a
doubly stochastic matrix by adding dummy quantities so that the entries in each row and

ICALP 2016



143:8 Competitive Analysis of Constrained Queueing Systems

Sampling Independent Set from Min-Makespan (SISM)
At each time t,

Compute a fractional cover {λ(S)}S∈S that completes the workload {Qi(t)}i∈[N ]
with the minimum makespan LQ(t).
(i.e., LQ(t) = min

∑
S∈S λ(S) s.t.

∑
S∈S:i∈S λ(S) = Qi(t)).

Schedule each independent set S at a rate of λ(S)/LQ(t).

Figure 1 The SISM Procedure.

column add up to maxiQi(t) and normalizing the matrix; and decompose it into permutation
matrices.

Our scheduling policy has the following nice property.

I Proposition 3. The policy SISM decreases each Qi(t) at a rate of Qi(t)
LQ(t) at all times when

no packets arrive or are completed by SISM or the optimal scheduler.

The proof easily follows by viewing the policy as sampling an independence set uniformly
from a multi-set of independent sets where each independence set S exists in λ(S) copies,
and observing each queue Qi appears in exactly Qi(t) independent sets in the multi-set.

2.1 Potential Function
Throughout the analysis, we assume that the optimal scheduler (OPT) is restricted to
(1 − 10ε)-speed for ε ≤ 1/10. Our analysis is based on a potential function. To formally
define the potential function, we need more notation. Let Q∗i (t) denote the workload waiting
at Qi at time t in the optimal schedule. Define Zi(t) := max{Qi(t) − Q∗i (t), 0} to be the
algorithm’s lag on queue Qi compared to the optimal scheduler. Define LZ(t) to be the
minimum makespan achievable assuming that each queue Qi has Zi(t) workload. More
precisely,

LZ(t) := min
λZ

∑
S∈S

λZ(S) s.t.
∑

S∈S:i∈S
λZ(S) = Zi(t) ∀i ∈ [N ] (3)

The potential function Φ(t) is defined as follows.

Φ(t) = R

ε
(LZ(t))2 (4)

2.2 High Level Idea
We first give a high-level overview of the analysis. For notational convenience, let time ∞
refer to a sufficiently large time step by which all packets are completed by our policy and
the optimal scheduler. This is well-defined since the total number of packets arriving into
queues is finite. Our final goal is to show∫ ∞

0
V (t)dt ≤ 2R2

ε3

∫ ∞
0

V ∗(t)dt, (5)

where V (t) :=
∑
iQi(t) denotes the total workload waiting in our algorithm’s queues.

Likewise, V ∗(t) is analogously defined for the optimal scheduler. The left-hand-side quantity
is the algorithm’s total fractional flow time, and the right-hand-side quantity is the optimal
scheduler’s total fractional flow time, which is at most the optimal scheduler’s total integral



S. Im, J. Kulkarni, and K. Munagala 143:9

flow time. Once we establish the bound (5), using the fact that the number of packets alive
at each time t is at most V (t) +N , we will be able to complete the analysis.

To show (5), it suffices to show that the following standard conditions are satisfied.
1. Boundary condition: Φ(0) = Φ(∞) = 0.
2. Discontinue changes: Φ(t) does not change when a packet arrives, or is completed by the

online algorithm or the optimal scheduler.
3. Continuous changes: For every time t when no job arrives or completes, V (t) + d

dtΦ(t) ≤
2R2

ε3 V
∗(t).

The first condition is easy to check since the potential is clearly 0 when no jobs are waiting
in the algorithm’s or in the optimal scheduler’s queues. When a new packet arrives into Qi,
Qi(t) and Q∗i (t) both increase by 1, hence Zi(t) and LZ(t) remain the same. Completion
of packets does not affect the potential since Zi(t) and LZ(t) are defined in the continuous
time domain. Hence the second condition follows. Note that there are only a finite number
of time steps when discontinuous changes occur.

2.3 Competitive Analysis of Queue Size
In view of the above discussion, we will focus on proving the third condition concerning
continuous changes. Throughout this section, we will consider an infinitesimal time interval
[t, t+ dt] during which no discontinuous changes occur. We will consider two cases. In the
first case where the algorithm has a workload comparable to that of the optimal solution, we
charge the algorithm’s workload plus the possible potential increase to the optimal solution’s
workload. In the other case, the algorithm’s workload in each queue Qi is very similar to Zi(t)
which is always non-negative and measures how much the algorithm is behind the optimal
solution in terms of the workload in queue Qi. This is the case where the potential helps the
algorithm in need. In this case, the algorithm will effectively decrease the makespan LZ(t)
based on lags {Zi(t)} in the potential function, which will cancel off the potential increase
due to the optimal solution’s processing and give enough credits to pay for the algorithm’s
workload due to the extra speed the algorithm is given.

We begin with a couple of definitions.

I Definition 4. A queue Qi is said to be tight at time t if Zi(t) ≥ (1− ε)Qi(t), otherwise
loose. An independent set S ∈ S is said to be tight at time t if all queues in S are tight.
Otherwise, S is said to be loose.

The following simple observation will be used throughout the analysis.

I Proposition 5. LQ(t) ≤ V (t) ≤ R · LQ(t).

To study the continuous changes of Φ(t), we will first take a close look at the optimal sched-
uler’s effect on Φ(t), freezing the algorithm’s effect. Let d

dtΦ(t)
∣∣
OPT denote the continuous

change of Φ(t) due to the optimal scheduler’s processing.

I Lemma 6. d
dtΦ(t)

∣∣
OPT ≤ 2(1− 10ε)Rε LZ(t).

Proof. Fix a time t and consider an infinitesimal time interval [t1 = t, t2] where no discon-
tinuous changes occur. Let LZ,1 denote the minimum makespan for queues with workload
{Zi(t1)}i∈[N ]. Let L′Z,2 the minimum makespan for queues with workload {Z ′i(t2)} where
Z ′i(t2) := max{Qi(t1)−Q∗i (t2), 0} ≤ max{Qi(t1)−Q∗i (t1), 0}+ (Q∗i (t1)−Q∗i (t2)). Note that
(Q∗i (t1)−Q∗i (t2)) is non-negative, and refers to the amount of work that the optimal scheduler

ICALP 2016



143:10 Competitive Analysis of Constrained Queueing Systems

does for queue Qi during [t1, t2]. Observe that L′Z,2 ≤ LZ,1 + (1 − 10ε)(t2 − t1). This is
because one can empty all queues with sizes Zi(t1) + (Q∗i (t1) − Q∗i (t2)) by following the
schedule that achieves the makespan LZ,1 for workload {Zi(t1)}, and the optimal schedule
during [t1, t2] with 1-speed; recall that the optimal scheduler has (1 − 10ε)-speed. Such
a schedule only does more work than the required workload, {Z ′i(t2)}i∈[N ]. Hence due to
downward closedness of S, we have d

dtLZ(t)
∣∣
OPT ≤ 1− 10ε, which completes the proof. J

We now study the more interesting case of continuous changes of Φ(t) due to the
algorithm’s processing freezing the optimal scheduler’s processing. We consider two cases
depending on the magnitude of the volume of loose queues. Let Vloose(t) denote the total
sum of Qi(t) over all loose queues Qi. Vtight(t) is similarly defined for tight queues.

Case (i): Vloose(t) ≥ (ε/R)V (t), i.e. Vtight(t) ≤ (1−ε/R)V (t). By definition, for any
loose queue Qi, we have Zi(t) := max{Qi(t)−Q∗i (t), 0} ≤ (1− ε)Qi(t), hence Q∗i (t) ≥ εQi(t).
Thus V ∗(t) ≥

∑
i:looseQ

∗
i (t) ≥

∑
i:loose εQi(t) = (ε2/R)V (t). We directly charge V (t) to

V ∗(t). We also charge d
dtΦ(t)

∣∣
OPT to V ∗(t). Towards this end, we use Lemma 6 together

with the following simple observation which immediately follows from Zi(t) ≤ Qi(t) for all i,
and downward closedness of S.

I Proposition 7. LZ(t) ≤ LQ(t).

Hence d
dtΦ(t)

∣∣
OPT ≤

2R
ε LZ(t) ≤ 2R

ε LQ(t) ≤ 2R
ε V (t) ≤ 2R2

ε3 V
∗(t).

The algorithm’s processing can only decrease Φ(t), i.e. d
dtΦ(t)

∣∣
algo
≤ 0, but we do not

need it in this case; in the other case, we will need a stronger bound which is stated in
Lemma 10. Combining these, the desired third condition easily follows.

Case (ii): Otherwise. This is the more interesting case where the potential plays a crucial
role. We begin with showing the following lemma. Intuitively, since Zi(t) is very close to
Qi(t) over most queues, the makespan for workload {Zi(t)} should be almost as large as the
makespan for workload {Qi(t)}.

I Lemma 8. LZ(t) ≥ (1− 3ε)LQ(t).

Proof. It is easy to see that the total weight of tight independent sets in {λQ(S)} is at least
LQ(t) − ε

RV (t) ≥ (1 − ε)LQ(t), since one unit of loose workload in a queue can make at
most one unit of independent sets loose. In other words, among independent sets of total
weight LQ(t), tight independent sets have total weight at least (1 − ε)LQ(t), which lower
bounds how much tight independent sets contribute to the makespan. Now for the sake
of contradiction, suppose that LZ(t) < (1 − 3ε)LQ(t). This implies that there is a way of
scheduling tight queues Qi with workload Zi(t) ≥ (1 − ε)Qi(t) within (1 − 3ε)LQ(t) time
steps, so all tight queues Qi with workload Qi(t) within (1− 3ε)LQ(t)/(1− ε) < (1− ε)LQ(t)
time steps. Hence we can complete all workload appearing in the tight independent sets more
quickly than (1− ε)LQ(t) time steps, which is a contraction to the minimality of LQ(t). J

For notational convenience, let {λZ(S)} be an optimal fractional cover that achieves the
minimum makespan for workload {Zi(t)} as illustrated in (3). We now take a close look at
{λZ(S)} focusing on tight independent sets.

I Lemma 9. The total weight of tight independent sets in {λZ(S)} is at least (1− 3ε)LZ(t).

Proof. Recall that the total workload of loose queues is at most (ε/R)V (t) ≤ εLQ(t).
The total weight of tight independent sets in {λZ(S)} is then at least LZ(t) − εLQ(t) ≥
LZ(t)− εLZ(t)/(1− 3ε) ≥ (1− 3ε)LZ(t). The first inequality is due to Lemma 8. J



S. Im, J. Kulkarni, and K. Munagala 143:11

Let yi(t) denote the total weight of tight independent sets in {λZ(S)} that contain queue
Qi. Since our goal is to lower bound the potential’s decrease due to A’s processing, we can
assume that Qi is processed at a rate of yi(t)

LQ(t) ≤
Zi(t)
LQ(t) ≤

Qi(t)
LQ(t) due to Proposition 3 and

downward closeness of S. For each tight independent set S, imagine that we process queue
Qi in S at a rate of λZ (S)

LQ(t) – here note that each Qi is processed exactly at a rate of yi(t)
LQ(t)

in total. Hence the weight of tight indepedent set S decreases at a rate of λZ(S)
LQ(t) , and the

total weight of tight independent sets decreases at a rate of (1−3ε)LZ (t)
LQ(t) ≥ (1− 3ε)2 ≥ 1− 6ε

by summing over all tight independent sets, and subsequently by applying Lemma 9 and 8.
Hence we derive the following lemma.

I Lemma 10. d
dtLZ(t)

∣∣∣
algo
≤ −(1− 6ε), and d

dtΦ(t)
∣∣∣
algo
≤ −2Rε (1− 6ε)LZ(t).

We are now ready to complete the analysis. By Lemma 6, 10, 8, we have d
dtΦ(t) =

−8R · LZ(t) ≤ −4R · LQ(t) ≤ −4V (t). In either of the two cases, we have shown the third
condition on Φ(t) concerning the continuous changes.

2.4 From Queue Size to Flow Time
So far we have shown (5). By processing packets in each queue in first-in-first-out order,
we have that 0 ≤ Ai(t)−Qi(t) < 1 for all i, where Ai(t) denotes the number of packets in
queue Qi at time t. Let A(t) :=

∑
iAi(t). Let T be the collection of maximal intervals such

that V (t) > 0 at all times t during T , for each time interval T ∈ T . Note that A(t) = 0 if
V (t) = 0. Hence the algorithm’s total flow time is∑

T∈T

∑
t∈T

A(t) ≤
∑
T∈T

∑
t∈T

∫ t+1

τ=t

(
V (t) +N

)
dτ ≤ O(R

2

ε3
)
∫ ∞

0
V ∗(t)dt+N

∑
T∈T
|T |

Since our algorithm processes at least one unit of workload at each time if it exists, it is
easy to observe that

∑
T∈T |T | is at least Ω(1) times the total number of packets. Knowing

that each packet has flow time at least one, we can upper bound N
∑
T∈T |T | by N times

the total number of packets. By dividing both sides of the inequality by the total number of
packets, we derive the first part of Theorem 1.

The second part follows by a standard method of converting an algorithm good for
fractional flow time into one for integral flow time. In fact, the quantity

∫∞
0 V (t)dt in

Equation (5) is the algorithm’s total fractional flow time, where each packet incurs a penalty
equal to its remaining size. In general, one can translate an online algorithm that is c-
competitive with s speed for the average fractional flow time objective online into one that
is O(c/ε)-competitive with s(1 + ε)-speed for the average integral flow objective, for any
0 ≤ ε < 1. For example, see [7]. However, after this conversion, the algorithm is no longer
myopic.

3 Emulation by Integral Schedules

Once we have a fractional algorithm we can convert it into an integral algorithm with a small
loss in the competitive algorithm. We remind the reader that an integral algorithm must
schedule exactly one independent set S out of S at each time t. In contrast, a fractional
algorithm schedules an independent set S for any infinitesimal time step dt, and reduces
each queue in S by dt. Shah et al. [15] show that given an fractional schedule B, one can
obtain an integral schedule on the fly that has an O(RN) upper bound on the algorithm’s
total lag at each time as opposed to the optimal schedule.

ICALP 2016



143:12 Competitive Analysis of Constrained Queueing Systems

Let QBi (t) be the number of packets waiting in queue Qi at time t in the integral
algorithm B’s schedule. The quantity QAi (t) is analogously defined for a given fractional
online algorithm A – however, QAi (t) does not have to be integral at an integer time point.
Define B’s lag as opposed to A as ∆i(t) := max{QBi (t)−QAi (t), 0}. The integral algorithm
B has the following description at any time t.

Compute a (fractional) min-makespan schedule on {∆i(t), i = 1, 2, . . . , N}.

In the above solution, if some independent set is scheduled to an amount at least 1,
schedule this independent set.

Otherwise, let W (t) = {i|∆i(t) ≥ 1}. Find an independent set that schedules the most
number of packets from W (t), and schedule this set.

The following lemma restates Lemma 5.7 and 5.8 in [15].

I Lemma 11. For the algorithm B as described above, we have
∑
i ∆i(t) ≤ R(N + 2).

Note that the above lemma is only concerned with the difference between the queues of
the two algorithms A and B. However, we can now use an idea similar to the one we used in
Section 2.4. The crucial observation is that the discrepancy

∑
i ∆i(t) can occur only at the

times where the algorithm B has at least one packet at time t; the number of such times
is at least the total number of packets arriving at queues. Theorem 2 easily follows from
Theorem 1 and this observation.

4 Conclusions

In this paper, we studied competitive algorithms for constrained queueing systems, which
have been extensively studied in stochastic queueing theory. In queueing theory, the goal
is to obtain a stable algorithm when the load reaches the inherent “system threshold". A
parameter is often used to measure the proximity of the system load to the threshold. For
example, in the special case of switch scheduling, the expected load arriving at queues is
assumed to have a makespan at most 1− ε for ε > 0. The work of [15] shows an expected
total queue size of O(R/ε + RN), and the additive term RN is ignored assuming that ε
is arbitrarily small. In contrast, we give an O(R2/ε3 +RN)-competitive algorithm for the
average flow time objective when compared to the optimal scheduler with (1 − ε)-speed.
As illustrated in the seminal paper [8] that introduced the resource augmentation analysis
model, a slightly weaker adversary/benchmark is also motivated by the system threshold.
The goal is to design an online algorithm whose objective is comparable to the optimal offline
solution with the least possible speed augmentation for all adversarial inputs. As mentioned
before, such an algorithm is said to be scalable. Despite the seemingly similar goals and
motivations as well as the seemingly similar analytic bounds, the relation between queueing
theory (stability) and competitive analysis (scalability) remains unclear. Our work suggests
the possibility of making a rigorous connection between the two concepts.

An open problem is to get tighter upper or lower bounds on the competitive ratio, even in
the special case of switch scheduling. The lower bounds in [5, 6] do not hold since it requires
packets having varying sizes. The only known negative resultis that the problem does not
admit a (bounded) competitive algorithm without speed augmentation. However, we cannot
even rule out the existence of O(poly(1/ε))-competitive algorithms with (1 + ε)-speed.



S. Im, J. Kulkarni, and K. Munagala 143:13

References
1 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time

explained by dual fitting. In SODA, pages 1228–1241, 2012. URL: http://dl.acm.org/
citation.cfm?id=2095213.

2 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1):3:1–3:39, March 2007.

3 T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo. A queueing analysis of max-min
fairness, proportional fairness and balanced fairness. Queueing Syst. Theory Appl., 53(1-
2):65–84, June 2006. doi:10.1007/s11134-006-7587-7.

4 Shang-Tse Chuang, Ashish Goel, Nick McKeown, and Balaji Prabhakar. Matching output
queueing with a combined input/output-queued switch. IEEE Journal on Selected Areas
in Communications, 17(6):1030–1039, 1999.

5 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. In STOC,
2014.

6 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive flow time algorithms
for polyhedral scheduling. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 506–524, 2015. doi:
10.1109/FOCS.2015.38.

7 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competit-
iveness in online scheduling. SIGACT News, 42(2):83–97, 2011. doi:10.1145/1998037.
1998058.

8 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4):617–643, 2000.

9 F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication networks:
Shadow prices, proportional fairness and stability. The Journal of the Operational Research
Society, 49(3):pp. 237–252, 1998.

10 F.P. Kelly, L. Massoulié, and N.S. Walton. Resource pooling in congested networks: pro-
portional fairness and product form. Queueing Systems, 63(1-4):165–194, 2009. doi:
10.1007/s11134-009-9143-8.

11 Nick McKeown. The islip scheduling algorithm for input-queued switches. IEEE/ACM
Transactions on Networking, 7(2):188–201, 1999.

12 Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Walrand. Achieving
100% throughput in an input-queued switch. IEEE Transactions on Communications,
47(8):1260–1267, 1999.

13 Michael J. Neely, Eytan Modiano, and Yuan-Sheng Cheng. Logarithmic delay for n × n
packet switches under the crossbar constraint. IEEE/ACM Trans. Netw., 15(3):657–668,
June 2007.

14 Balaji Prabhakar, Nick McKeown, and Ritesh Ahuja. Multicast scheduling for input-queued
switches. IEEE Journal on Selected Areas in Communications, 15(5):855–866, 1997.

15 Devavrat Shah, Neil Walton, and Yuan Zhong. Optimal queue-size scaling in switched net-
works. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems, SIGMETRICS’12,
pages 17–28, 2012.

16 Leandros Tassiulas and Anthony Ephremides. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio networks. IEEE
Transactions on Automatic Control, 37(12):1936–1948, 1992.

ICALP 2016

http://dl.acm.org/citation.cfm?id=2095213
http://dl.acm.org/citation.cfm?id=2095213
http://dx.doi.org/10.1007/s11134-006-7587-7
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1145/1998037.1998058
http://dx.doi.org/10.1145/1998037.1998058
http://dx.doi.org/10.1007/s11134-009-9143-8
http://dx.doi.org/10.1007/s11134-009-9143-8

	Introduction
	Resource Augmentation Analysis and Scalable Policies
	Our Results
	Technical Contributions
	Related Work

	Fractional Scheduling Policy: SISM
	Potential Function
	High Level Idea
	Competitive Analysis of Queue Size
	From Queue Size to Flow Time

	Emulation by Integral Schedules
	Conclusions

