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—— Abstract

In this paper we improve the deterministic complexity of two fundamental communication prim-
itives in the classical model of ad-hoc radio networks with unknown topology: broadcasting and
wake-up. We consider an unknown radio network, in which all nodes have no prior knowledge
about network topology, and know only the size of the network n, the maximum in-degree of any
node A, and the eccentricity of the network D.

For such networks, we first give an algorithm for wake-up, in both directed and undirected

networks, based on the existence of small universal synchronizers. This algorithm runs in

O( min{n,DA} lognlog A
loglog A

ranges of parameters, but particularly when maximum in-degree is small.

Next, we introduce a new combinatorial framework of block synchronizers and prove the

) time, improving over the previous best O(nlog2 n)-time result across all

existence of such objects of low size. Using this framework, we design a new deterministic
algorithm for the fundamental problem of broadcasting, running in O(nlog D loglog DTA) time.
This is the fastest known algorithm for this problems, improving upon the O(nlognloglogn)-
time algorithm of De Marco (2010) and the O(nlog? D)-time algorithm due to Czumaj and
Rytter (2003), the previous fastest results for directed networks, and is the first to come within
a log-logarithmic factor of the Q(nlog D) lower bound due to Clementi et al. (2003).

Our results have also direct implications on the fastest deterministic leader election and
clock synchronization algorithms in both directed and undirected radio networks, tasks which are
commonly used as building blocks for more complex procedures.
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terministic algorithms
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1 Introduction

1.1 Model of communication networks

‘We consider the classical model of directed ad-hoc radio networks with unknown structure.
A radio network is modeled by a directed network 9 = (V, E), where the set of nodes
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corresponds to the set of transmitter-receiver stations. The nodes of the network are assigned
different identifiers (IDs), and throughout this paper we assume that all IDs are distinct
numbers in {1,...,|V]|}. A directed edge (v,u) € E means that node v can send a message
directly to node u. To make propagation of information feasible, we assume that every node
in V is reachable in O from any other.

In accordance with the standard model of unknown (ad-hoc) radio networks (for more
elaborate discussion about the model, see, e.g., [1, 2, 5, 9, 10, 12, 17, 19, 22]), we make
the assumption that a node does not have any prior knowledge about the topology of the
network, its in-degree and out-degree, or the set of its neighbors. We assume that the only
knowledge of each node is the size of the network n, the mazimum in-degree of any node A,
and the eccentricity of the network D, which is the maximum distance from the source node
to any node in 9. For a discussion of these assumptions, see the full version of this paper.

Nodes operate in discrete, synchronous time steps, but we do not need to assume knowledge
of a global clock. When we refer to the “running time” of an algorithm, we mean the number
of time steps which elapse before completion (i.e., we are not concerned with the number of
calculations nodes perform within time steps). In each time step a node can either transmit
a message to all of its out-neighbors at once or can remain silent and listen to the messages
from its in-neighbors. We do not make any restriction on the size of messages.

The distinguishing feature of radio networks is the interfering behavior of transmissions.
In the most standard radio networks model, the model without collision detection (see, e.g.,
[1, 2, 10, 22]), which is studied in this paper, if a node v listens in a given round and precisely
one of its in-neighbors transmits, then v receives the message. In all other cases v receives
nothing; in particular, the lack of collision detection means that v is unable to distinguish
between zero of its in-neighbors transmitting and more than one.

The model without collision detection describes the most restrictive interfering behavior
of transmissions; also considered in the literature is a less restrictive variant, the model with
collision detection, where a node listening in a given round can distinguish between zero of
its in-neighbors transmitting and more than one (see, e.g., [12, 22]).

1.2 Communications primitives: broadcasting and wake-up

In this paper we consider two fundamental communications primitives, namely broadcasting
and wake-up, and consider deterministic protocols for each of these tasks.

1.2.1 Broadcasting

Broadcasting is one of the most fundamental problems in communication networks and has
been extensively studied for many decades (see, e.g., [22] and the references therein).

The premise of the broadcasting task is that one particular node, called the source, has a
message which must become known to all other nodes. We assume that all other nodes start
in a dormant state and do not participate until they are “woken up” by receiving the source
message (this is referred to in some works as the “no spontaneous transmissions” rule). As
a result, while the model does not assume knowledge of a global clock, we can make this
assumption in practice, since the current time can be appended to the source message as
it propagates, and therefore will be known be all active nodes. This is important since it
allows us to synchronize node behavior into fixed-length blocks.
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1.2.2 Wake-up

The wake-up problem (see, e.g., [15]) is a related fundamental communication problem that
arises in networks where there is no designated “source” node, and no synchronized time-step
at which all nodes begin communicating. The goal is for all nodes to become “active” by
receiving some transmission. Rather than a single source node which begins active, we instead
assume that some subset of nodes spontaneously become active at arbitrary time-steps. The
task can be seen as a variant of broadcast, with possibly multiple sources, and without the
ability to assume a global clock. This last point is important, and results in wake-up protocols
being slower than those for broadcast, since nodes cannot co-ordinate their behavior.

1.3 Related work

As a fundamental communications primitive, the task of broadcasting has been extensively
studied for various network models for many decades.

For the model studied in this paper, directed radio networks with unknown structure and
without collision detection, the first sub-quadratic deterministic broadcasting algorithm was
proposed by Chlebus et al. [5], who gave an O(n'!/%)-time broadcasting algorithm. After
several small improvements (cf. [6, 21]), Chrobak et al. [9] designed an almost optimal
algorithm that completes the task in O(n log? n) time, the first to be only a poly-logarithmic
factor away from linear dependency. Kowalski and Pelc [17] improved this bound to obtain
an algorithm of complexity O(nlognlog D) and Czumaj and Rytter [11] gave a broadcasting
algorithm running in time O(n log? D). Finally, De Marco [20] designed an algorithm that
completes broadcasting in O(nlognloglogn) time steps. Thus, in summary, the state of the
art result for deterministic broadcasting in directed radio networks with unknown structure
(without collision detection) is the complexity of O(nmin{logn loglogn,log® D}) [11, 20].
The best known lower bound is Q(nlog D) due to Clementi et al. [10].

Broadcasting has been also studied in various related models, including undirected
networks, randomized broadcasting protocols, models with collision detection, and models
in which the entire network structure is known. For example, if the underlying network
is undirected, then Kowalski [16] gave a deterministic broadcasting algorithm running in
time O(nlog D). If spontaneous transmissions are allowed and a global clock available,
then deterministic broadcast can be performed in O(n) time in undirected networks [5].
Randomized broadcasting has been also extensively studied, and in a seminal paper, Bar-
Yehuda et al. [2] designed an almost optimal broadcasting algorithm achieving the running
time of O((D + logn) -logn). This bound has been later improved by Czumaj and Rytter
[11], and independently Kowalski and Pelc [18], who gave optimal randomized broadcasting
algorithms that complete the task in O(Dlog +log? n) time with high probability, matching
a known lower bound from [19]. In the model with collision detection, an O(D + log® n)-time
randomized algorithm due to Ghaffari et al. [12] is the first to exploit collisions and surpass
the algorithms (and lower bound) for broadcasting without collision detection.

For more details, see e.g., [22] and the references therein.

The wake-up problem (see, e.g., [15]) is a related communication problem that arises in
networks where there is no designated “source” node, and no synchronized time-step at which
all nodes begin communicating. Before any more complex communication can take place, we
must first require all nodes to be “active,” i.e., aware that they should be communicating.
This is the goal of wake-up, and it is a fundamental starting point for most other tasks in
this setting, for example leader election and clock synchronization [8].

The first sub-quadratic deterministic wake-up protocol was given in by Chrobak et al. [8],
who introduced the concept of radio synchronizers to abstract the essence of the problem.
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They give an O(ns/ 3logn)-time protocol. Since then, there have been two improvements in
running time, both making use of the radio synchronizer machinery: firstly to O(n3/ 2logn)
[4], and then to O(nlog®n) [3]. Unlike for the problem of broadcast, the fastest known
protocol for directed networks is also the fastest for undirected networks. A recent survey of
the current state of research on the wake-up problem is given in [15].

1.4 Our results

In this paper we present a new construction of universal radio synchronizers and introduce
and analyze a new concept of block synchronizers to improve the deterministic complexity
of two fundamental communication primitives in the model of ad-hoc radio networks with
unknown topology: broadcasting and wake-up.

By applying the analysis of block synchronizers, we present a new deterministic broad-
casting algorithm (Algorithm 1) in directed ad-hoc radio networks with unknown structure,
without collision detection, that for any directed network 91 with n nodes, with eccentricity
D, and maximum in-degree A, completes broadcasting in O(nlog D loglog %) time-steps.
This result almost matches a lower bound of (n log D) due to Clementi et al. [10], and
improves upon the previous fastest algorithms due to De Marco [20] and due to Czumaj and
Rytter [11], which require O(n lognloglogn) and O(nlog® D) time-steps, respectively.

Our result reveals that a non-trivial speed-up can be achieved for a broad spectrum of net-
work parameters. Since A < n, our algorithm has the complexity at most O(n log D loglog D).
Therefore, in particular, it significantly improves the complexity of broadcasting for shallow
networks, where D < n®® . Furthermore, the dependency on A reduces the complexity
even further for networks where the product DA is near linear in n including sparse networks
which can appear in many natural scenarios.

Our broadcasting result has also direct implications on the fastest deterministic leader
election algorithm in directed and undirected radio networks. It is known that leader election
can be completed in O(logn) times broadcasting time (see, e.g., [9, 13]) (assuming the
broadcast algorithm extends to multiple sources, which is the case here as long as we have a
global clock), and so our result improves the bound to achieve a deterministic leader election
algorithm running in O(nlognlog D loglog DTA) time. For undirected networks the best
result is O(nlog®? ny/loglogn) time [7] (we note that the O(nlog D) broadcast protocol of
[16] cannot be used at a logn slowdown for leader election, since it relies on token traversal
and does not extend to multiple sources). Our result therefore favorably compares for shallow
networks (for small D) even in undirected networks.

We also present a deterministic algorithm (Algorithm 2) for the related task of wake-up.
We show the existence of universal radio synchronizers of delay g(k) = O(%), and

min{n,DA}lognlog A .
Toglog A ). This

demonstrate that this yields a wake-up protocol taking time O(
improves over the previous best result, the O(n log? n)-time protocol of [3]; the improvement is
largest when A is small, but even when it is polynomial in n, our algorithm is a log log n-factor
faster.

Our improved result for wake-up has direct applications to communication algorithms in
networks that do not have access to a global clock, where wake-up is an essential starting
point for most more complex communication tasks. For example, wake-up is used as a
subroutine in the fastest known protocols for fundamental tasks of leader election and clock
synchronization (cf. [8]). These are two fundamental tasks in networks without global
clocks, since they allow initially unsynchronized networks to be brought to a state in which
synchronization can be assumed, and results from the better-understood setting with a global
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clock can then be applied. Our wake-up protocol yields O(mm{”’?og’olgi nlog 8 time leader

election and clock synchronization algorithms, which are the fastest known in both directed
and undirected networks.

1.5 Previous approaches

Almost all deterministic broadcasting protocols with sub-quadratic complexity (that is, since
[5]) have made use of the concept of selective families (or some similar variant thereof,
such as selectors). These are families of sets for which one can guarantee that any subset
of [n] := {1,2,...,n} below a certain size has an intersection of size exactly 1 with some
member of the family. They are useful in the context of radio networks because if the
members of the family are interpreted to be the set of nodes which are allowed to transmit
in a particular time-step, then after going through each member, any node with an active
in-neighbor and an in-neighborhood smaller than the size threshold will be informed. Most
of the recent improvements in broadcasting time have been due to a combination of proving
smaller selective families exist, and finding more efficient ways to apply them (i.e., choosing
which size of family to apply at which time).

One of the drawbacks of selective-family based algorithms is that applying them requires
coordination between nodes. For the problem of broadcast, this means that some time may
be wasted waiting for the current selective family to finish, and also that nodes cannot alter
their behavior based on the time since they were informed, which might be desirable. For
the problem of wake-up, this is even more of a difficulty; since we cannot assume a global
clock, we cannot synchronize node behavior and hence cannot use selective families at all.

To tackle this issue, Chrobak et al. [8] introduced the concept of radio synchronizers.

These are a development of selective families which allow nodes to begin their behavior at
different times. A further extension to universal synchronizers in [4] allowed effectiveness
across all in-neighborhood sizes. However, the adaptability to different node start times
comes at a cost of increased size, meaning that synchronizer-based wake-up algorithms were
slightly slower than selective family-based broadcasting algorithms .

The proofs of existence for selective families and synchronizers follow similar lines: a
probabilistic candidate object is generated by deciding on each element independently at
random with certain carefully chosen probabilities, and then it is proven that the candidate

satisfies the desired properties with positive probability, and so such an object must exist.
The proofs are all non-constructive (and therefore all resulting algorithms non-explicit; cf.

Indyk [14] for an explicit construction of selective families).

Returning to the problem of broadcasting, a breakthrough came in 2010 with a paper
by De Marco [20] which took a new approach. Rather than having all nodes synchronize
their behavior, it instead had them begin their own unique pattern, starting immediately

upon being informed. These behavior patterns were collated into a transmission matrix.

The existence of a transition matrix with appropriate selective properties was then proven
probabilistically. The ability for a node to transmit with a frequency which decayed over
time allowed De Marco’s method to inform nodes with a very large in-neighborhood faster,

and this in turn reduced total broadcasting time from O(nlog® D) [11] to O(nlognloglogn).

A downside of this new approach is that having nodes begin immediately, rather than
wait until the beginning of the next selector, gives rise to a far greater number of possible
starting-time scenarios that have be accounted for during the probabilistic proof. This caused
the logarithmic factor in running time to be logn rather than log D. Further, the method
was comparatively slow to inform nodes of low in-degree, compared to a selective family of
appropriate size. These are the difficulties that our approach will have to overcome.
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1.6 Overview of our approach

Our wake-up result follows a similar line to the previous works; we prove the existence of
smaller universal synchronizers than previously known, using the probabilistic method. Our
improvement stems from new techniques in analysis rather than method, which allow us to
gain a log-logarithmic factor by choosing what we believe are the optimal probabilities by
which to construct a randomized candidate.

Our broadcasting result takes a new direction, some elements of which are new and
some of which can be seen as a compromise between selective family-type objects and the
transmission schedules of De Marco [20]. We first note that nodes of small in-degree can be
quickly dealt with by repeatedly applying (n, % )-selective families “in the background” of
the algorithm. This allows us to tailor the more novel part of the approach to nodes of large
in-degree. We have nodes perform their own behavior patterns with decaying transmission
frequency over time, but they are semi-synchronized to “blocks” of length roughly 7, in
order to cut down the number of circumstances we must consider. This idea is formalized by
the concept of block synchronizers, combinatorial objects which can be seen as an extension
of the radio synchronizers used for wake-up.

An important new concept used in our analysis of block synchronizers (and also in our
proof of small universal synchronizers) is that of cores. Cores reduce a set of nodes and
starting times to a (usually smaller) set of nodes which are active during a critical period. In
this way we can combine many different circumstances into a single case, and demonstrate
that for our purposes they all behave in the same way.

The most technically involved part of both of the proofs is the selection of the probabilities
with which we generate a randomized candidate object (universal synchronizer or block
synchronizer). Intuitively, when thinking about radio networks, a node in our network is
aiming to inform its out-neighbors, and it should assume that as time goes on, only those with
large in-neighborhoods will remain uninformed (because these nodes are harder to inform
quickly). Therefore a node should transmit with ever-decreasing frequency, roughly inversely
proportional to how large it estimates remaining uninformed neighbors’ in-neighborhoods
must be. However, these in-neighborhoods cannot be estimated exactly, and so we must
tweak the probabilities slightly to cover the possible range. In block synchronizers we do this
using phases of length O(loglog DTA) during which nodes halve their transmission probability
every step, but since behavior must be synchronized to achieve this we cannot do the same
for radio synchronizers. Instead, we allow our estimate to be further from the true value,
and require more time-steps around the same value to compensate.

As with previous results based on selective families, synchronizers, or similar combinatorial
structures, the proofs of the structures we give are non-constructive, and therefore the
algorithms are non-explicit.

2 Combinatorial tools

Our communications protocols rely upon the existence of objects with certain combinatorial
properties, and we will separate these more abstract results from their applications to radio
networks. In this section, we will define the combinatorial objects we will need to make use
of, and prove their existence. Next, in Sections 3-4, we will demonstrate in details how these
combinatorial objects can be used to obtain fast algorithms for broadcasting and wake-up.
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2.1 Selective families

We begin with a brief discussion about selective families, whose importance in the context
of broadcasting was first observed by Chlebus et al. [5]. A selective family is a family of
subsets of [n] := {1,...,n} such that every subset of [n] below a certain size has intersection
of size exactly 1 with a member of the family. For the sake of consistency with successive
definitions, rather than defining the family of subsets S;, we will instead use the equivalent
definition of a set of binary sequences SV (that is, Sy = 1 if and only if v € 5;).

For some m € N, let each v € [n] have its own length-m binary sequence SV =
SgS7Sy ... Sk 4.
» Definition 1. S = {S"},c[y is an (n, k)-selective family if for any X C [n] with

1 < |X| <k, there exists j € [0,m) such that ) S =1. (We say that such j hits X.)

2.1.1 Application to radio networks

During the course of radio network protocols we can “apply” a selective family S on an
n-node network by having each node v transmit in time-step j if and only if v has a message
it wishes to transmit and S} =1 (see, e.g., [5, 10]). Some previous protocols involved nodes
starting to transmit immediately if they were informed of a message during the application
of a selective family (or a variant called a selector designed for such a purpose), but here we
will require nodes to wait until the current selective family is completed before they start
participating. That is, nodes only attempt to transmit their message if they knew it at the
beginning of the current application.

The result of applying an (n, k)-selective family is that any node u which has between
1 and k active neighbors before the application will be informed of a message upon its
conclusion. This is because there must be some time-step j which hits the set of u’s active

neighbors, and therefore exactly one transmits in that time-step, so u receives a message.

This method of selective family application in radio networks was first used in [5].

2.1.2 Existence of small selective families

The following standard lemma (see, e.g., [10]) posits the existence of (n, k)-selective families
of size O(klog 7). This has been shown to be asymptotically optimal [10].

» Lemma 2 (Small selective families). For some constant ¢ and for any 1 < k < n there
exists an (n, k)-selective family of size at most m = cklog 7.

2.2 Radio synchronizers

Radio synchronizers are an extension of selective families designed to account for nodes in
a radio network starting their behavior patterns at different times, and without access to
a global clock. They were first introduced in [8] and used in an algorithm for performing
wake-up, and this is also the purpose for which we will apply them.

To define radio synchronizers, we first define the concept of activation schedule.

» Definition 3. An n-activation schedule is a function w : [n] — N.

We will extend the definition to subsets X C [n] by setting w(X) = min,ex w(v).
As for selective families, let each v € [n] have its own length-m binary sequence SV =

S§5755 ... 87, _1. We then define radio synchronizers as follows:
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» Definition 4. S = {S"},¢}, is an (n, k,m)-radio synchronizer if for any activation
schedule w and for any X C [n] with 1 < |X| < k, there exists j € [w(X),w(X) 4+ m) such
that >° ey 87 ) =1

One can see that the definition is very similar to that of selective families (Definition 1),
except that now each v’s sequence is offset by the value w(v). To keep track of this shift in
expressions such as the sum in the definition, we will call such values j columns. As with
selective families, we say that any column j satisfying the condition in Definition 4 hits X.

In [4], this concept was extended to universal radio synchronizers which cover the whole
range of k from 1 to n. Let g : [n] = N be a non-decreasing function, which we will call the
delay function.

» Definition 5. S = {S"},¢[, is an (n, g)-universal radio synchronizer if for any acti-
vation schedule w, and for any X C [n], there exists column j € [w(X),w(X) + g(]X])) such

that 3-, cx 57 ) =1

2.2.1 Application of universal radio synchronizers to radio networks

One can apply universal radio synchronizers to the problem of wake-up in radio networks by
having w(v) represent the time-step in which node v becomes active during the course of a
protocol (either spontaneously or by receiving a transmission). Subsequently, v interprets
S as the pattern in which it should transmit, starting immediately from time-step w(v).
That is, in each time-step j after activation, v checks the next value in SV (i.e., S;.Lw(v)),
transmits if it is 1 and stays silent otherwise. Then, the selective property specified by the
definition guarantees that any node u with an in-neighborhood of size ¢ hears a transmission
within at most g(q) steps of its first in-neighbor becoming active.

2.2.2 Existence of small universal radio synchronizers
We will prove existence of small universal synchronizers.

» Theorem 6. For some constant ¢ and for any n € N there exists an (n, g)-universal

radio synchronizer with g(q) = %.

The proof of Theorem 6 is deferred to the full version, but here we present its main ideas.

Our universal synchronizer must hit any set X within ¢g(X) columns of the set’s start
column w(X). Our first step is to narrow down the amount of sets and activation schedules
we must consider by defining the core of a set. The core removes elements of X which only
become active after we must already have hit X (i.e. after column w(X) 4 ¢(X)), and then
shifts all values of w so that w(X) = 0. Multiple different sets X under multiple different
activation schedules can have the same core, and therefore behave the same way during the
critical period. So, by considering cores instead of the original sets and activation schedules,
we can reduce the amount of cases we must account for.

We then probabilistically generate a candidate universal synchronizer, and prove that it
does indeed satisfy the required property with positive probability. The crucial part of this
method is our choice of probabilities with which we include each element in the candidate.

We expect to be able to hit a core of size ¢ within % columns. Therefore, for
cqlogqlogn
loglog q
containing v that we have left to hit should be larger than ¢. If we want to hit a set of size

roughly ¢ by randomly selecting each element of [n], then we optimize our probability of
doing so by selecting each element with probability roughly é This translates to setting

a particular element v and for columns greater than w(v) + , all remaining cores
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cqlogglogn

Toglozg this works out to

Yilogqlosn = 1 With probability roughly %. Substituting j =
log lo
ol log jlogn

: .. However, as it transpires, this is not
7 loglogj ’ ’

give the probability of 57 =1 to be roughly
quite the optimal choice.

To see what we should choose instead, we must first examine how we analyze our candidate.
We define the load fo(j) of a column j with respect to a core C' this is the expected number
of elements of the core selected in that column. We show that the probability of hitting the
core on j is at least fo(j)27/cU). Ideally, we want fc(j) to be constant for cores of roughly
the size we should currently be hitting, and then this hitting probability is also constant.

However, if we use the probabilities P[SY = 1] = %, we in fact find that fo(j) can be

between (1) and O(log j), depending upon the times at which its elements became active.

This log j-sized gap cannot be closed, since we can easily find cores which do indeed have
loads at either end of the range. What we can do, however, is tweak the probabilities to shift
this range down and maximize hitting probability over it.

Specifically, if we shift probabilities down by a factor of ; , i.e. to P[S 1] ~ log .

j
we shift the range of possible loads to be between Q(M) and O(log log j), ensuring that

the hitting probability is Q(lolg’l%) This is as close to constant as we can get; the gap is
984 factor in our delay function g.
glogq

With this bound on the probability of hitting a particular core at a particular column,

what necessitates the

we can use independence to obtain an lower bound for hitting a core over the whole range of
valid columns, and then use a union bound to show that we can hit all cores with positive
probability.

2.3 Block synchronizers

Next, we introduce block synchronizers, which are a new type of combinatorial object designed
for use in a fast broadcasting algorithm. They can be seen as an extension of both radio
synchronizers and the transmission matrix formulation of De Marco [20].

Let each v € [n] have its own length-m binary sequence SV = S§S7Sy ... Sy, _;. Define a
function pup : N — N, for some ﬁxed B, which rounds its input up to the next multiple of B,
that is, pp(z) = min{pB : p > £,p € N}; we will call s(v) := pp(w(v)) the start column of

v. We extend s to subsets of [n ] in the obvious way, s(X) = up(w(X)).

» Definition 7. S = {S"} [, is an (n, A, r, B)-block synchronizer if for any activation
schedule w and any set X C [n] with | X| < A, there exists column j € [s(X), s(X) + B]'l):—l-\)

such that 37 o 57 ) =1

Block synchronizers differ from radio synchronizers in two ways: Firstly, on top of the

offsetting effect of the activation schedule, there is also the function pp that effectively “snaps”

behavior patterns to blocks of size B, hence the name block synchronizer. Secondly, the size

of the range in which we must hit X is linearly dependent on |X| rather than being fixed.

The parameter r is the increment by which each block increases the size of sets we can hit.

2.3.1 Application of block synchronizers to radio networks

The idea of our broadcasting algorithm will be that any node v waits until the start of the
first block after its activation time w(v), and then begins its transmission pattern S¥. The
definition of block synchronizer aims to model this scenario. The hitting condition ensures
that any node with an in-neighborhood of size ¢ < A will be informed within B[] time-steps
of the start of the block in which its first in-neighbor begins transmitting.

139:9
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2.3.2 Existence of small block synchronizers
We prove the following theorem.

» Theorem 8. For some constant ¢ and for any n, D, A € N with D, A <n < DA, there

» > ¢35 log Dloglog %)—block synchronizer.

exists an (n, A
The proof of this theorem is deferred to the full version, but we outline its main ideas.
We begin in a similar way to that of Theorem 6, in that we define the concept of a core to

narrow down the range of possibilities we must consider. The difference is that now elements

v have their behavior patterns snapped to blocks, so the core need only store the number of

the first block v becomes active, rather than the exact column. This significantly reduces

the number of possible cores, and is essential for obtaining the log D factor in size, rather

than logn. As before, cores also shift the activation schedule to begin at 0.

We wish to proceed in a similar manner as in the proof of small universal synchronizers,
generating a candidate probabilistically and then proving that it satisfies the desired property
with positive probability. While we could do this directly for block synchronizers using
the same method, we would obtain a size of O(nlog Dloglog A). Our improved bound of
O(nlog Dloglog %) results from noting that we can afford to hit cores smaller than 7 using
selective families, leaving a narrower range of cores to be hit by our randomized candidate
object. Therefore, we define an upper block synchronizer which need only hit cores above a

), and this is the object we prove the existence of with

certain size threshold (in our case, %
the probabilistic method.

Once again, the most technical aspect of the proof lies in the probabilities with which
we choose elements in our candidate object. Again, we define the load of a column f¢ ()
to be the expected number of elements in a core C which are selected in column j, and
show that the probability of hitting the core at j is at least fe(j)2~/¢(). By choosing our
probabilities to be roughly inversely proportional to the size of cores we expect to remain
un-hit, we can guarantee that on a constant fraction of columns we have f¢(j) = (1) and
fe(3) = O(log %) = O(log DTA). However, the way in which we deal with this range differs
from the case of universal synchronizers.

Since our elements’ behavior is snapped to blocks, we can synchronize changes in proba-
bility of selection between all elements. Specifically, we have O(loglog %)—bngth phases in
which the selection probability of all elements halves every consecutive column (in addition
to the slight decrease that occurs between columns naturally). This means that fe(j) also
roughly halves every column within phases, and so there is at least one column within each
phase in which it is within some constant range (we use the interval (3,1)). Then, the
probability of hitting the core at that column is also at least some constant.

With this bound, we can again use independence of columns and a union bound to
show that our candidate upper block synchronizer hits all cores larger than 5 with positive
probability. Then, it remains only to insert a (n, 75)-selective family at the start of every
block in order to hit smaller cores, and we meet the conditions of a block synchronizer.

3 Algorithms for broadcasting and wake-up
In this section we present our algorithms for broadcasting and wake-up in radio networks.

3.1 Broadcasting

We will assume that DA > n, otherwise an earlier O(DAlog %X )-time protocol from [10] can
be used to achieve O(DAlog %) = O(nlog D) time.
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Let S be an (n, A, 3, B)-block synchronizer, with B = ¢4 log D log log DA " and recall

» Do n
that pp(z) = min{pB : p > £,p € N}. We will say that the source node becomes active
at time-step 0, and any other node v becomes active in a time-step i if it received its first

transmission at time-step ¢ — 1. Our broadcasting algorithm is the following (Algorithm 1):

Algorithm 1 Broadcast at a node v

Let ¢ be the time-step in which v becomes active
for j from 0 to DB — 1, in time-step pp(i) + j do v transmits source message iff S} =1
end for

3.2 Wake-up

Let S be an (n, g)-universal radio synchronizer with g(q) = %. We will say that a

node v becomes active in a time-step i if it either spontaneous wakes up at i, or received its
first transmission at time-step ¢ — 1. Our wake-up algorithm is the following (Algorithm 2):

Algorithm 2 Wake-up at a node v

Let ¢ be the time-step in which v becomes active
for j from 0 to g(n) — 1, in time-step ¢ + j do v transmits source message iff S}J =1
end for

4 Analysis of broadcasting and wake-up algorithms

In this section we show that our algorithms for broadcasting and wake-up have the claimed
running times. We begin with the analysis of the broadcasting algorithm.

» Theorem 9. Algorithm 1 performs broadcast in O(nlog D loglog DTA) time-steps.

To begin the analysis, fix some arbitrary node v and let P be a shortest path from
the source (or first informed node) = to v. Number the nodes in this path consecutively,
e.g., Py = v and Pyjsy(y,0) = v. Classify all other nodes into layers dependent upon the
furthest node along the path P to which they are an in-neighbor (some nodes may not
be an in-neighbor to any node in P; these can be discounted from the analysis). That is,
layer Ly = {u € V' : maxy in-neighbour to p; ¢ = £} for ¢ < dist(x,v). We separately define
layer Lgist(z,v)+1 to be {v}.

At any time step, we call a layer leading if it is the foremost layer containing an active
node, and our goal is to progress through the network until the final layer is leading, i.e., v is
active. The use of layers allows us to restrict to the set of nodes of our main interest: if we
focus on the path node whose in-neighborhood contains the leading layer, we cannot have
interference from earlier layers since they contain no in-neighbors of this path node, and we
cannot have interference from later layers since they are not yet active.

» Lemma 10. Let h: [A] — N be a non-decreasing function, and define T'(n, D, A, h) to be
the supremum of the function Zf)zl h(qi), where integers 1 < q; < A satisfy the additional
constraint Zi’;l q¢; < n. If a broadcast or wake-up protocol ensures that any layer (under
any choice of v) of size g remains leading for no more than h(q) time-steps, then all nodes
become active within T'(n, D, A, h) time-steps.

Proof. Let ¢; = |L;|. Layer Lgist(w,0)+1 must be leading (and thus node v active) once

dist(z,v)
ist(.0)

no other layers are leading, and so this occurs ) ;= (¢;) time-steps after layer L

ICALP 2016
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becomes leading. Since S p(g) < S22 h(g;) and S32 | ¢; <, this is no more than
T(n,D,A,h) time-steps. Since v was chosen arbitrarily, all nodes must be active within
T(n,D,A,h) time-steps of z becoming active. <

We make use of Lemma 10 to give bounds on the running times of our algorithms:

» Lemma 11. Algorithm 1 ensures that any layer of size q remains leading for fewer than
B[] time-steps.

Proof. For all nodes w, let w(w) be the time-step that w becomes active during the course of
the algorithm. By definition of a block selector, for any layer L; of size g; there is a time-step
J < s(Li) + B[%] in which exactly one element of L; transmits. Then, either path node
P; hears the transmission (and so layer L; is no longer leading in time-step j + 1), or P;
has active in-neighbors not in L;, in which case these must be in a later layer so L; is not
leading. Thus, L; can remain leading for no more than s(L;) + B[%£] — w(L;) < B[4
time-steps. |

With these tools, we are now ready to complete the proof of Theorem 9.

Proof. Proof of Theorem 9 By Lemma 10, Algorithm 1 ensures that all nodes are active
(and have therefore heard the source message) within T'(n, D, A, h) time-steps, where h(q) =
B[], We will use an upper bound T'(n, D, A, h'), where h'(g) = B2, Since A’ is linear

r

and increasing, ZiD:1 h'(g;) subject to Z?:l ¢; < n is maximized whenever 2?:1 q; = n, for
example at ¢; = 55 for all 4 € [D]. So, the algorithm completes broadcast within

D D
n 4+ 2r DA
(=)= B2 = 3BD = 3¢'nlog D loglog —
; (D) ; , cnlog lVloglog o
time-steps. |

In a similar way, we can analyze Algorithm 2.

min(n,DA) lognlog A
log log A

» Theorem 12. Algorithm 2 performs wake-up in O( ) time-steps.

5 Conclusions

The task of broadcasting in radio networks is a longstanding, fundamental problem in
communication networks. Our result for deterministic broadcasting in directed networks
combines elements from several of the previous works with some new techniques, and, in
doing so, makes a significant improvement to the fastest known running time. Our algorithm
for wake-up also improves over the previous best running time, and relies on a proof of
smaller universal synchronizers, a combinatorial object first defined in [4].

Neither of these algorithms are known to be optimal. The best known lower bound
for both broadcasting and wake-up is Q(min(nlog D, DAlog %)) [10]; our broadcasting
algorithm therefore comes within a log-logarithmic factor, but our wake-up algorithm remains
a logarithmic factor away.

As well as the obvious problems of closing these gaps, there are several other open
questions regarding deterministic broadcasting in radio networks. Firstly, the lower bound
for undirected networks is weaker than that for directed networks [18], and so one avenue
of research would be to find an O(nlog D) lower bound in undirected networks, matching
the broadcasting time of [16]. Secondly, the algorithms given here, along with almost all
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previous work, are non-explicit, and therefore it remains an important challenge to develop
explicit algorithms that can come close to the existential upper bound. The best constructive
algorithm known to date is by Indyk [14], but it is a long way from optimality.

Some variants of the model also merit interest, in particular the model with collision
detection. It is unknown whether the capacity for collision detection improves deterministic
broadcast time, as it does for randomized algorithms [12]. Collision detection does remove
the requirement of spontaneous transmissions for the use of the O(n) algorithm of [5], but a
synchronized global clock would still be required. It should be noted that collision detection
renders the wake-up problem trivial, since if every active node transmits in every time-step,
collisions will wake up the entire network within D time-steps.
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