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Abstract
We prove, using the subspace embedding guarantee in a black box way, that one can achieve the
spectral norm guarantee for approximate matrix multiplication with a dimensionality-reducing
map having m = O(r̃/ε2) rows. Here r̃ is the maximum stable rank, i.e., the squared ratio of
Frobenius and operator norms, of the two matrices being multiplied. This is a quantitative im-
provement over previous work of [Magen and Zouzias, SODA, 2011] and [Kyrillidis et al., arXiv,
2014] and is also optimal for any oblivious dimensionality-reducing map. Furthermore, due to the
black box reliance on the subspace embedding property in our proofs, our theorem can be applied
to a much more general class of sketching matrices than what was known before, in addition to
achieving better bounds. For example, one can apply our theorem to efficient subspace embed-
dings such as the Subsampled Randomized Hadamard Transform or sparse subspace embeddings,
or even with subspace embedding constructions that may be developed in the future.

Our main theorem, via connections with spectral error matrix multiplication proven in pre-
vious work, implies quantitative improvements for approximate least squares regression and low
rank approximation, and implies faster low rank approximation for popular kernels in machine
learning such as the gaussian and Sobolev kernels. Our main result has also already been ap-
plied to improve dimensionality reduction guarantees for k-means clustering, and also implies
new results for nonparametric regression.

Lastly, we point out that the proof of the “BSS” deterministic row-sampling result of [Batson
et al., SICOMP, 2012] can be modified to obtain deterministic row-sampling for approximate
matrix product in terms of the stable rank of the matrices. The original “BSS” proof was in
terms of the rank rather than the stable rank.
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11:2 Optimal Approximate Matrix Product in Terms of Stable Rank

1 Introduction

Much recent work has successfully utilized randomized dimensionality reduction techniques
to speed up solutions to linear algebra problems, with applications in machine learning,
statistics, optimization, and several other domains; see the recent monographs [19, 32, 42]
for more details. In our work here, we give new spectral norm guarantees for approximate
matrix multiplication (AMM). Aside from AMM being interesting in its own right, it has
become a useful primitive in the literature for analyzing algorithms for other large-scale
linear algebra problems as well. We show applications of our new guarantees to speeding
up standard algorithms for generalized regression and low-rank approximation problems.
We also describe applications of our results to k-means clustering (discovered in [11]) and
nonparametric regression [43].

In AMM we are given A,B each with a large number of rows n, and the goal is to compute
some matrix C such that ‖C −ATB‖X is “small”, for some norm ‖ · ‖X . Furthermore, we
would like to compute C much faster than the usual time required to exactly compute ATB.

Work on randomized methods for AMM began with [15], which focused on ‖ · ‖X = ‖ · ‖F ,
i.e., Frobenius norm. They showed by picking an appropriate sampling matrix Π ∈ Rm×n,
‖(ΠA)T (ΠB)−ATB‖F ≤ ε‖A‖F ‖B‖F with good probability if m = Ω(1/ε2). By a sampling
matrix, we mean the rows of Π are independent, and each row is all zero except for a 1 in
a (non-uniformly) random location. If A ∈ Rn×d and B ∈ Rn×p, note (ΠA)T (ΠB) can be
computed in O(mdp) time once ΠA and ΠB are formed, as opposed to the straightforward
O(ndp) time to compute ATB.

Frobenius error was also later achieved in [38] via a different approach, with some later op-
timizations in [22]. This was not via sampling, but rather to use Π drawn from a distribution
satisfying an “oblivious Johnson-Lindenstrauss (JL)” guarantee, i.e. a distribution D over
Rm×n satisfying the following condition for some ε, δ ∈ (0, 1/2): ∀x ∈ Rn, PΠ∼D(|‖Πx‖22 −
‖x‖22| > ε‖x‖22) < δ. Such a matrix Π can be taken with m = O(ε−2 log(1/δ)) [21]. Further-
more, one can take Π to be a Fast JL transform [1] (or any of the follow-up improvements
[2, 24, 36, 4, 20]) or a sparse JL transform [14, 22] to speed up the computation of ΠA and
ΠB. One could also use the Thorup-Zhang sketch [40] combined with a certain technique of
[28] (see [42, Theorem 2.10] for details) to efficiently boost success probability.

Other than Frobenius error, the main other error guarantee investigated in previous work
is spectral error. That is, we would like ‖C − ATB‖ to be small, where ‖M‖ denotes the
largest singular value of M . If one is interested in applying ATB to some set of input vectors
then this type of error is the most meaningful, since ‖C −ATB‖ being small is equivalent
to ‖Cx‖ ≈ ‖ATBx‖ for any x. The first work along these lines was again by [15], who gave
a procedure based on entry-wise sampling of the entries of A and B. The works [17, 39]
showed that row-sampling according to leverage scores also provides the desired guarantee
with few samples.

Then [38], combined with a quantitative improvement in [9], showed that one can take
a Π drawn from an oblivious JL distribution with δ = 2−Θ(r) where r(·) denotes rank and
r = r(A) + r(B). Then for Π with m = O((r + log(1/δ))/ε2), with probability at least 1− δ
over Π,

‖(ΠA)T (ΠB)−ATB‖ ≤ ε‖A‖‖B‖. (1)

As we shall see shortly via a very simple lemma (Lemma 3), a sufficient deterministic condition
implying Eq. (1) is that Π is an O(ε)-subspace embedding for the r-dimensional subspace
spanned by the columns of A,B. The notion of a subspace embedding was introduced by
[38].
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I Definition 1. Π is an ε-subspace embedding for U ∈ Rn×r, UTU = I, if Π satisfies Eq. (1)
with A = B = U , i.e. ‖(ΠU)T (ΠU)− I‖ ≤ ε. This is equivalent to ∀x ∈ Rr, (1− ε)‖x‖22 ≤
‖ΠUx‖22 ≤ (1 + ε)‖x‖22, i.e. Π preserves norms of all vectors in the subspace spanned by the
columns U .

An (ε, δ, r)-oblivious subspace embedding (OSE) is a distribution D over Rm×n such that
∀U ∈ Rn×r, UTU = I, it holds that PΠ∼D(‖(ΠU)T (ΠU)− I‖ > ε) < δ.

Fast subspace embeddings Π, i.e. such that the products ΠA and ΠB can be computed
quickly, are known using variants on the Fast JL transform such as the Subsampled Ran-
domized Hadamard Transform (SRHT) [38, 29, 41, 30], or via sparse subspace embeddings
[9, 33, 34, 27, 12, 10]. We also refer the reader to a slightly improved analysis of the SRHT in
our full version [13]. In most applications it is important to have a fast subspace embedding
to shrink the time it takes to transform the input data to a lower-dimensional form. The
SRHT is a randomized Π with the property that ΠA can be computed in time O(nd logn).
The sparse subspace embedding constructions have some parameter m rows and exactly s
non-zero entries per column, so that ΠA can be computed in time O(s · nnz(A)), where
nnz(·) is the number of non-zero entries, and there is a tradeoff in the upper bounds between
m and s.

An issue addressed by the work of [31] is that of robustness. As stated above, achieving
Eq. (1) requires Π be a subspace embedding for an r-dimensional subspace. However, consider
the case when A (and similarly for B) is of high rank but can be expressed as the sum of a
low-rank matrix plus high-rank noise of small magnitude, i.e., A = Ã + EA for Ã of rank
r(Ã)� r, and where ‖EA‖ is very small but EA has high (even full) rank. One would hope
the noise could be ignored, but standard results require Π to have a number of rows at least
as large as r, regardless of how small the magnitude of the noise is. Another case of interest
(as we will see in Section 3) is when A and B are each of high rank, but their singular values
decay at some appropriate rate. As discussed in Section 3, in several applications where
AMM is not the final goal but rather is used as a primitive in analyzing an algorithm for
some other problem (such as k-means clustering or nonparametric regression), the matrices
that arise do indeed have such decaying singular values.

The work [31] remedied this by considering the stable ranks r̃(A), r̃(B) of A and B. Define
r̃(A) = ‖A‖2F /‖A‖2. Note r̃(A) ≤ r(A) always, but can be much less if A has a small tail
of singular values. Let r̃ denote r̃(A) + r̃(B). Among other results, [31] showed that to
achieve Eq. (1) with good probability, one can take Π to be a random (scaled) sign matrix
with either m = Ω(r̃/ε4) or m = Ω(r̃ log(d+ p)/ε2) rows. As noted in follow-up work [25],
both the 1/ε4 dependence and the log(d+ p) factor are undesirable. In their data-driven low
dimensional embedding application, they wanted a dimension m independent of the original
dimensions, which are assumed much larger than the stable rank, and also wanted lower
dependence on 1/ε. To this end, [25] defined the nuclear rank as ñr(A) = ‖A‖∗/‖A‖ and
showed m = Ω(ñr/ε2) rows suffice for ñr = ñr(A) + ñr(B). Here ‖A‖∗ is the nuclear norm,
i.e., sum of singular values of A. Since ‖A‖2F is the sum of squared singular values, it is
straightforward to see that ñr(A) ≥ r̃(A) always. Thus there is a tradeoff: the stable rank
guarantee is worsened to nuclear rank, but dependence on 1/ε is improved to quadratic.

We show switching to the weaker ñr guarantee is unnecessary by showing quadratic
dependence on 1/ε holds even with stable rank. This answers the main open question of
[31, 25].
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To state our results in a more natural way, we rephrase our main result to say that we
achieve

‖(ΠA)T (ΠB)−ATB‖ ≤ ε

√(
‖A‖2 + ‖A‖

2
F

k

)(
‖B‖2 + ‖B‖

2
F

k

)
. (2)

for an arbitrary k ≥ 1, and we do so by using subspace embeddings for O(k)-dimensional
subspaces in a certain black box way (which will be made precise soon) regardless of the
ranks of A,B.
I Remark 1. Note that our previously stated main contribution is equivalent, since one
could set k = r̃(A) + r̃(B) to arrive at the conclusion that subspace embeddings for O(r̃)-
dimensional subspaces yield the guarantee in Eq. (1). Alternatively one could obtain the
Eq. (2) guarantee via Eq. (1) with error parameter ε′ = Θ(ε ·min{1,

√
(r̃(A) · r̃(B))/k}).

Henceforth, we use the following definition.

I Definition 2. For conforming matrices AT , B, we say Π satisfies the (k, ε)-approximate
spectral norm matrix multiplication property ((k, ε)-AMM) for A,B if Eq. (2) holds. If Π is
random and satisfies (k, ε)-AMM with probability 1− δ for any fixed A,B, then we say Π
satisfies (k, ε, δ)-AMM.

Our main contribution: We give two different characterizations for Π supporting (k, ε)-
AMM, both of which imply (k, ε, δ)-AMM Π having m = O((k+log(1/δ))/ε2) rows. The first
characterization applies to any OSE distribution for which a moment bound has been proven
for ‖(ΠU)T (ΠU)− I‖ (which is true for the best analyses of all known OSE’s). In this case,
we show a black box theorem: any (ε, δ, 2k)-OSE provides (k, ε, δ)-AMM. Since matrices with
subgaussian entries and m = Ω((k + log(1/δ))/ε2) are (ε, δ, 2k)-OSE’s, our originally stated
main result follows. This result is optimal, since [35] shows any randomized distribution over
Π with m rows having the (k, ε, δ)-AMM property must have m = Ω((k + log(1/δ))/ε2) (the
hard instance there is when A = B = U has orthonormal columns, and thus rank and stable
rank are equal).

Our second characterization (appearing in the full version) identifies certain deterministic
conditions which, if satisfied by Π, imply the desired (k, ε)-AMM property. These conditions
are of the form: (1) Π should preserve a certain set of O(log(1/ε)) different subspaces
of varying dimensions (all depending on k, ε and not on the ranks of A,B) with varying
distortions, and (2) for a certain two matrices in our analysis, left-multiplication by Π should
not increase their operator norms by more than an O(1) factor. These conditions are chosen
carefully so that matrices with subgaussian entries and m = Ω(k/ε2) satisfy all conditions
simultaneously with high probability, again thus proving our main result while also suggesting
that the conditions we have identified are the “right” ones.

Due to the black box reliance on the subspace embedding primitive in our proofs, Π
need not only be a subgaussian map. Thus not only do we improve on m compared with
previous work, but also in terms of the general class of Π our result applies to. For example
given our first characterization, not only does it suffice to use a random sign matrix with
Ω(k/ε2) rows, but in fact one can apply our theorem to more efficient subspace embeddings
such as the SRHT or sparse subspace embeddings, or even constructions discovered in the
future. That is, one can automatically transfer bounds proven for the subspace embedding
property to the (k, ε)-AMM property. Thus, for example, the best known SRHT analysis
(see the full version) implies (k, ε, δ)-AMM for m = Ω((k + log(1/(εδ)) log(k/δ))/ε2) rows.
For sparse subspace embeddings, the analysis in [10] implies m = Ω(k log(k/δ)/ε2) suffices
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with s = O(log(k/δ)/ε) non-zeroes per column of Π. The only reason for the log k loss in
m for these particular distributions is not due to our theorems, but rather due to the best
analyses for the simpler subspace embedding property in previous work already incurring the
extra log k factor (note being a subspace embedding for a k-dimensional subspace is simply
a special case of (k, ε)-AMM where A = B = U has k orthonormal columns). In the case of
the SRHT, this extra log k factor is actually necessary [41]; for sparse subspace embeddings,
it is conjectured that the log k factor can be removed and that m = Ω((k + log(1/δ))/ε2)
actually suffices to obtain an OSE [34, Conjecture 14]. We also discuss in Remark 2 that
one can set Π to be Π1 ·Π2 where Π1 has subgaussian entries with O(k/ε2) rows, and Π2
is some other fast OSE (such as the SRHT or sparse subspace embedding), and thus one
could obtain the best of both worlds: (1) Π has O(k/ε2) rows, and (2) can be applied to
any A ∈ Rn×d in time T + O(km′d/ε2), where T is the (fast) time to apply Π2 to A, and
m′ is the number of rows of Π2. For example, by appropriate composition as discussed in
Remark 2, Π can have O(k/ε2) rows and support multiplying ΠA for A ∈ Rn×d in time
O(nnz(A)) + Õ(ε−O(1)(k3 + k2d)).

We also observe the proof of the main result of [3] can be modified to show that given any
A,B each with n rows, and given any ε ∈ (0, 1/2), there exists a diagonal matrix Π ∈ Rn×n
with O(k/ε2) non-zero entries, and that can be computed by a deterministic polynomial time
algorithm, achieving (k, ε)-AMM. The original work of [3] achieved Eq. (1) with m = O(r/ε2)
for r being the sum of ranks of A,B. The work [3] stated their result for the case A = B,
but the general case of potentially unequal matrices reduces to this case; see Section 4. Our
observation also turns out to yield a stronger form of [23, Theorem 3.3]; also see Section 4.

As mentioned, aside from AMM being interesting on its own, it is a useful primitive widely
used in analyses of algorithms for several other problems, including k-means clustering [5, 11],
nonparametric regression [43], linear least squares regression and low-rank approximation
[38], approximating leverage scores [16], and several other problems (see [42] for a recent
summary). For all these, analyses of correctness for algorithms based on dimensionality
reduction via some Π rely on Π satisfying AMM for certain matrices in the analysis.

After making certain quantitative improvements to connections between AMM and
applications, and combining them with our main result, in Section 3 we obtain the following
new results.

1. Generalized regression: Given A ∈ Rn×d and B ∈ Rn×p, consider the problem of
computing X∗ = argminX∈Rd×p ‖AX−B‖. It is standard that X∗ = (ATA)+ATB where
(·)+ is the Moore-Penrose pseudoinverse. The bottleneck here is computing ATA, taking
O(nd2) time. A popular approach is to instead compute X̃ = ((ΠA)T (ΠA))+(ΠA)TΠB,
i.e., the minimizer of ‖ΠAX −ΠB‖. Note that computing (ΠA)T (ΠA) (given ΠA) only
takes a smaller O(md2) amount of time. We show that if Π satisfies (k,O(

√
ε))-AMM

for UA, PĀB, and is also an O(1)-subspace embedding for a certain r(A)-dimensional
subspace (see Theorem 7), then

‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k)‖PAB −B‖2F

where PA is the orthogonal projection onto the column space of A, PĀ = I −PA, and UA
has orthonormal columns forming a basis for the column space of A. The punchline is
that if the regression error PĀB has high actual rank but stable rank only on the order
of r(A), then we obtain multiplicative spectral norm error with Π having fewer rows.
Generalized regression is a natural extension of the case when B is a vector, and arises for
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example in Regularized Least Squares Classification, where one has multiple (non-binary)
labels, and for each label one creates a column of B; see e.g. [7] for this and variations.

2. Low-rank approximation: We are given A ∈ Rn×d and integer k ≥ 1, and we want
to compute Ak = argminr(X)≤k ‖A − X‖. The Eckart-Young theorem implies Ak is
obtained by truncating the SVD of A to the top k singular vectors. The standard way
to use dimensionality reduction for speedup, introduced in [38], is to let S = ΠA then
compute Ã = APS . Then return Ãk, the best rank-k approximation of Ã, instead of Ak
(it is known Ãk can be computed more efficiently than Ak; see [8, Lemma 4.3]). We show
if Π satisfies (k,O(

√
ε))-AMM for Uk and A−Ak, and is a (1/2)-subspace embedding for

the column space of Ak, then

‖Ãk −A‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F .

The punchline is that if the stable rank of the tail A−Ak is on the same order as the rank
parameter k, then standard algorithms from previous work for Frobenius multiplicative
error actually in fact also provide spectral multiplicative error. This property indeed
holds for any k for popular kernel matrices in machine learning such as the gaussian and
Sobolev kernels (see [37] and Examples 2 and 3 of [43]), and low-rank approximation
of kernel matrices has been applied to several machine learning problems; see [18] for a
discussion.

We also explain in Section 3 how our result has already been applied in recent work on
dimensionality reduction for k-means clustering [12], and how it generalizes results in [43] on
dimensionality reduction for nonparametric regression to use a larger class of embeddings Π.

1.1 Preliminaries and notation
We frequently use the singular value decomposition (SVD). For a matrix A ∈ Rn×d of rank
r, consider the compact SVD A = UAΣAV

T
A where UA ∈ Rn×r and VA ∈ Rd×r each have

orthonormal columns, and ΣA is diagonal with strictly positive diagonal entries (the singular
values of A). We assume (ΣA)i,i ≥ (ΣA)j,j for i < j. We let PA = UAU

T
A denote the

orthogonal projection operator onto the column space of A. We use span(A) to refer to the
subspace spanned by A’s columns.

Often for a matrix A we write Ak as the best rank-k approximation to A under Frobenius
or spectral error (obtained by writing the SVD of A then setting all (ΣA)i,i to 0 for i > k).
We often denote A−Ak as Ak̄. For matrices with orthonormal columns, such as UA, (UA)k
denotes the n × k matrix formed by removing all but the first k columns of U . When A
is understood from context, we often write UΣV T instead of UAΣAV

T
A , and Uk to denote

(UA)k (and Σk for (ΣA)k, etc.).

2 Analysis of matrix multiplication for stable rank

First we record a simple lemma relating subspace embeddings and AMM; proof in full
version [13].

I Lemma 3. Let E = span{A,B}, and let Π be an ε-subspace embedding for E. Then
Eq. (1) holds.

Lemma 3 implies that if A,B each have rank at most r, it suffices for Π to have Ω(r/ε2)
rows.
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In the following subsection, we give one characterization for Π to provide (k, ε, δ)-
AMM, only requiring Π to have Ω((k + log(1/δ))/ε2) rows, independent of r. The other
characterization also allows for this many rows, but is different in that it identifies certain
deterministic conditions such that, if those hold, Π provides (k, ε)-AMM. Thus, the second
characterization can even apply to deterministic Π such as the truncated SVD. We provide
this second characterization only in the full version.

2.1 Characterization for (k, ε, δ)-AMM via a moment property
Here we provide a way to obtain (k, ε)-AMM for any Π whose subspace embedding property
has been established using the moment method, e.g. sparse subspace embeddings [33, 34, 10],
dense subgaussian matrices (as analyzed in the full version), or even the SRHT (also, as
analyzed in the full version). Our approach in this subsection is inspired by the introduction
of the “JL-moment property” in [22] to analyze approximate matrix multiplication with
Frobenius error. The following is a generalization of [22, Definition 6.1], which was only
concerned with d = 1.

I Definition 4. A distribution D over Rm×n has (ε, δ, d, `)-OSE moments if for all matrices
U ∈ Rn×d with orthonormal columns, EΠ∼D

∥∥(ΠU)T (ΠU)− I
∥∥` < ε` · δ.

The acronym “OSE” refers to oblivious subspace embedding, a term coined in [34] to refer to
distributions over Π yielding a subspace embedding for any fixed subspace of a particular
bounded dimension with high probability. We start with a simple lemma; proof in full
version.

I Lemma 5. Suppose D satisfies the (ε, δ, 2d, `)-OSE moment property and A,B (1) have the
same number of rows, and (2) sum of ranks at most 2d. Then EΠ∼D

∥∥(ΠA)T (ΠB)−ATB
∥∥` <

ε`‖A‖`‖B‖`δ.

Then, just as [22, Theorem 6.2] showed that having OSE moments with d = 1 implies
approximate matrix multiplication with Frobenius norm error, here we show that having
OSE moments for larger d implies approximate matrix multiplication with operator norm
error.

I Theorem 6. Given k, ε, δ ∈ (0, 1/2), let D be any distribution over matrices with n columns
with the (ε, δ, 2k, `)-OSE moment property for some ` ≥ 2. Then, for any A,B,

P
Π∼D

(
‖(ΠA)T (ΠB)−ATB‖ > ε

√
(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)

)
< δ (3)

Proof. We can assume A,B each have orthogonal columns. This is since, via the full SVD,
there exist orthogonal matrices RA, RB such that ARA and BRB each have orthogonal
columns. Since neither left nor right multiplication by an orthogonal matrix changes operator
norm,

‖(ΠA)T (ΠB)−ATB‖ = ‖(ΠARA)T (ΠBRB)− (ARA)TBRB‖.

Thus, we replace A by ARA and similarly for B. We may also assume the columns
a1, a2, . . . of A are sorted so that ‖ai‖2 ≥ ‖ai+1‖2 for all i. Henceforth we assume A has
orthogonal columns in this sorted order (and similarly for B, with columns bi). Now, treat
A as a block matrix in which the columns are blocked into groups of size k, and similarly
for B (if the number of columns of either A or B is not divisible by k, then pad them

ICALP 2016



11:8 Optimal Approximate Matrix Product in Terms of Stable Rank

with all-zero columns until they are). Let the spectral norm of the ith block of A be
si = ‖a(i−1)·k+1‖2, and for B denote the spectral norm of the ith block as ti = ‖b(i−1)·k+1‖2.
These equalities for A,B hold since their columns are orthogonal and sorted by norm. We
claim

∑
i s

2
i ≤ ‖A‖2 + ‖A‖2F /k (and similarly for

∑
i t

2
i ). To see this, let the blocks of

A be A′1, . . . , A′q where si = ‖A′i‖. Note s2
1 = ‖A′1‖ ≤ ‖A‖. Also, for i > 1 we have

s2
i = ‖a(i−1)·k+1‖22 ≤ 1

k

∑
(i−2)·k+1≤j≤(i−1)·k ‖aj‖22 = 1

k‖A
′
i−1‖2F . Thus

∑
i>1 s

2
i ≤ ‖A‖2F /k.

Define C = (ΠA)T (ΠB) − ATB. Let v{i} denote the ith block of a vector v (the k-
dimensional vector whose entries consist of entries (i− 1) · k + 1 to i · k of v), and C{i},{j}
the (i, j)th block of C, a k × k matrix (the entries in C contained in the ith block of rows
and jth block of columns).

Now, ‖C‖ = sup‖x‖=‖y‖=1 x
TCy. For any such vectors x and y, we define new vectors x′

and y′ whose coordinates correspond to entire blocks: we let x′i = ‖x{i}‖, with y′ defined
analogously. We similarly define C ′ with entries corresponding to blocks of C, where
C ′i,j = ‖C{i},{j}‖. Then xTCy ≤ x′TC ′y′, simply by bounding the contribution of each block.
Thus it suffices to upper bound ‖C ′‖, which we bound by its Frobenius norm ‖C ′‖F . Now,
recalling for a random variable X that ‖X‖` denotes (E |X|`)1/` and using Minkowski’s
inequality (that ‖ · ‖` is a norm for ` ≥ 1),

‖‖C ′‖2F ‖`/2 =

∥∥∥∥∥∥
∑
i,j

‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2
∥∥∥∥∥∥
`/2

≤
∑
i,j

‖‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2‖`/2

≤
∑
i,j

ε2s2
i t

2
j · δ2/` (Lemma 5) = ε2

(∑
i

s2
i

)
·

∑
j

t2j

 δ2/`,

which is at most (ε
√

(‖A‖2 + ‖A‖2
F

k )(‖B‖2 + ‖B‖2
F

k )δ1/`)2. Now, E ‖C ′‖`F = ‖‖C ′‖2F ‖
`/2
`/2,

implying

P

(
‖C ′‖ > ε

√
(‖A‖2 + ‖A‖

2
F

k
)(‖B‖2 + ‖B‖

2
F

k
)
)

≤ P

(
‖C ′‖F > ε

√
(‖A‖2 + ‖A‖

2
F

k
)(‖B‖2 + ‖B‖

2
F

k
)
)

<
E ‖C ′‖`F(

ε

√
(‖A‖2 + ‖A‖2

F

k )(‖B‖2 + ‖B‖2
F

k )
)` ,

and the latter is at most δ. J

We now discuss the implications of applying Theorem 6 to specific OSE’s.

2.1.1 Subgaussian maps
In the full version we show that if Π has independent subgaussian entries and m = Ω((k +
log(1/δ))/ε2) rows, then it satisfies the (ε, δ, 2k,Θ(k + log(1/δ))) OSE moment property.
Thus Theorem 6 applies to show that such Π will satisfy (k, ε, δ)-AMM.

2.1.2 SRHT
The SRHT is the matrix product Π = SHD where D ∈ Rn×n is n × n diagonal with
independent ±1 entries on the diagonal, H is a “bounded orthonormal system” (i.e. an
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orthogonal matrix in Rn×n with maxi,j |Hi,j | = O(1/
√
n)), and the m rows of S are inde-

pendent and each samples a uniformly random element of [n]. Bounded orthonormal systems
include the discrete Fourier matrix and the Hadamard matrix; thus such Π exist supporting
matrix-vector multiplication in O(n logn) time. Thus when computing ΠA for some n× d
matrix A, this takes time O(nd logn) (by applying Π to A column by column). In the full
version we show that the SRHT with m = Ω((k + log(1/(εδ)) log(k/δ))/ε2) satisfies the
(ε, δ, 2k, log(k/δ))-OSE moment property, and thus provides (k, ε, δ)-AMM. Interestingly our
analysis of the SRHT in the full version seems to be asymptotically tighter than any other
analyses in previous work even for the basic subspace embedding property, and even slightly
improves the by now standard analysis of the Fast JL transform given in [1].

2.1.3 Sparse subspace embeddings
The sparse embedding distribution with parameters m, s is as follows [9, 34, 22]. The matrix
Π has m rows and n columns. The columns are independent, and for each column exactly s
uniformly random entries are chosen without replacement and set to ±1/

√
s independently;

other entries in that column are set to zero. Alternatively, one could use the CountSketch [6]:
the m rows are equipartitioned into s sets of size m/s each. The columns are independent,
and in each column we pick exactly one row from each of the s partitions and set the
corresponding entry in that column to ±1/

√
s uniformly; the rest of the entries in the column

are set to 0. Note ΠA can be multiplied in time O(s · nnz(A)), and thus small s is desirable.
It was shown in [33, 34], slightly improving [9], that either of the above distributions

satisfies the (ε, δ, k, 2)-OSE moment property for m = Ω(k2/(ε2δ)), s = 1, and hence (k, ε, δ)-
AMM (though this particular conclusion follows easily from [22, Theorem 6.2]). It was also
shown in [10], improving upon [34], that they satisfy the (ε, δ, k, log(k/δ))-OSE moment
property, and hence also (k, ε, δ)-AMM, for m = Ω(Bk log(k/δ)/ε2), s = Ω(logB(k/δ)/ε)
for any B > 2. The work [10] does not explicitly discuss the OSE moment property for
sparse subspace embeddings, but it is implied; see the full version. It is conjectured that for
B = O(1), m = Ω((k + log(1/δ))/ε2) should suffice [34, Conjecture 14].

I Remark 2. Currently there appears to be a tradeoff: one can either use Π s.t. ΠA can be
computed quickly, such as sparse subspace embeddings or the SRHT, but then m is at least
k log k. Alternatively one could achieve the optimal m = O(k/ε2) using subgaussian Π, but
then multiplying by Π is slower: O(mnd) time for A ∈ Rn×d. However, settling for a tradeoff
is unnecessary. One can obtain the “best of both worlds” by composition so that ΠA will
have the desired O(k/ε2) rows and ΠA computed in time O(nnz(A)) + Õ(ε−O(1)(k3 + k2d));
see full version.

3 Applications

Spectral norm approximate matrix multiplication with dimension bounds depending on
stable rank has immediate applications for the analysis of generalized regression and low-rank
approximation problems. We also point out to the reader recent applications of this result to
kernelized ridge regression [43] and k-means clustering [11].

3.1 Generalized regression
Here we consider generalized regression: attempting to approximate a matrix B as AX, with
A of rank at most k. Let PA be the orthogonal projection operator to the column space of A,
with PĀ = I−P ; then the natural best approximation will satisfy AX = PAB. This minimizes
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both the Frobenius and spectral norms of AX −B. A standard approximation algorithm
for this is to replace A and B with sketches ΠA and ΠB, then solve the reduced problem
exactly (see e.g. [8], Theorem 3.1). This will produce X̃ = UA((ΠUA)TΠUA)−1(ΠUA)TΠB.
Below we give a lemma on the guarantees of the sketched solution in terms of properties of
Π; proof is in full version.

I Theorem 7. If Π (1) satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplic-

ation property for UA, PĀB, and (2) is a (1/2)-subspace embedding for the column space
of A (which is implied by Π satisfying the spectral norm approximate matrix multiplication
property for UA with itself), then ‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k) · ‖PAB −B‖2F .

3.2 Low-rank approximation

Now we apply the generalized regression result from Section 3.1 to obtain a result on low-rank
approximation: approximating A in the form ŨkΣ̃kṼ Tk , where Ũk has only k columns and
both Ũk and Ṽk have orthonormal columns. Here, we consider a previous approach (see e.g.
[38]): (1) let S = ΠA, (2) let PS be the orthogonal projection operator to the row space of S
and Ã = APS , and (3) compute an SVD of Ã and keep only the top k singular vectors, then
return the resulting low rank approximation Ãk of Ã. It turns out computing Ãk can be
done much more quickly than computing Ak; see details in [8, Lemma 4.3]. Let Ak, Uk, Ak̄
be as in Section 1.1.

I Theorem 8. If Π (1) satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplica-

tion property for Uk, Ak̄, and (2) is a (1/2)-subspace embedding for the column space of Uk
then ‖A− Ãk‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F

3.3 Kernelized ridge regression

In nonparametric regression one is given data yi = f∗(xi) + wi for i = 1, . . . , n, and the goal
is to recover a good estimate for the function f∗. Here the yi are scalars, the xi are vectors,
and the wi are independent noise, often assumed to be distributed as mean-zero gaussian
with some variance σ2. Unlike linear regression where f∗(xi) is assumed to take the form
〈β, x〉 for some vector β, in nonparametric regression we allow f∗ to be an arbitrary function
from some function space. Naturally the goal then is to recover some f̃ from the data that is
close to f∗ whp over the noise.

Recent work [43] considers the well studied problem of obtaining f̃ so that ‖f̃ − f∗‖2n
is small with high probability over the noise w, where one uses the definition ‖f − g‖2n =
1
n

∑n
i=1(f(xi)− g(xi))2. The work [43] considers the case where f∗ comes from a space of

functions which is the closure of all functions g expressable as g(x) =
∑N
i=1 αik(x, zi) over

all N , α ∈ RN , and vectors zi for some PSD kernel function k. See the full version for
details, but the punchline is the maximum likelihood estimator for f̃ is then the solution
fLS to a Kernelized Ridge Regression (KRR) problem, and fLS(x) can be expressed as
a linear combination of kernel evaluations

∑n
i=1 αik(x, xi). Then defining matrix K with

Ki,j = k(xi, xj), KRR is equivalent to computing

αLS = argmin
α∈Rn

{
1

2nα
TK2α− 1

n
αTKy + λnα

TKα

}
=
(

1
n
K2 + 2λnK

)−1
· 1
n
Ky,

which can be computed in O(n3) time. The work [43] then focuses on speeding this up, by
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instead computing a solution to the lower-dimensional problem

α̃LS = argmin
α∈Rm

{
1

2nα
TΠK2ΠTα− 1

n
αTΠKy + λnα

TΠKΠTα

}
=
(

1
n

ΠK2ΠT + 2λnΠKΠT

)−1
· 1
n

ΠKy

and then returning as f̃ the function specified by the weight vector α̃ = ΠT α̃LS . Note that
once various matrix products are formed (where the running time complexity depends on the
Π being used), one only needs to invert an m×m matrix thus taking O(m3) time. They then
prove that ‖f̃ − f∗‖n is small with high probability as long as Π satisfies two deterministic
conditions (see the proof of Lemma 2 [43, Section 4.1.2], specifically equation (26) in that
work): (1) Π is a (1/2)-subspace embedding for a particular low-dimensional subspace, and
(2) ‖ΠB‖ = O(‖B‖) for a particular matrix B of low stable rank (B is UD2 in [43]). Note
by the triangle inequality, ‖ΠB‖ ≤ ‖(ΠB)TΠB − BTB‖1/2 + ‖B‖, and thus it suffices for
Π to provide AMM for the product BTB, where B has low stable rank. Item (1) simply
requires a subspace embedding in the standard sense, and for item (2) [43] avoided AMM by
obtaining a bound on ‖ΠB‖ directly by their own analyses for gaussian Π and the SRHT.
Our result thus provides a unifying analysis which works for a larger and general class of Π,
including for example sparse subspace embeddings.

3.4 k-means clustering
In the works [5, 11], the authors considered dimensionality reduction methods for k-means
clustering. Recall in k-means clustering one is given n points x1, . . . , xn ∈ Rd, as well as an
integer k ≥ 1, and the goal is to find k points y1, . . . , yk ∈ Rd minimizing

∑n
i=1 minkj=1 ‖xi−

yj‖22. One key observation common to both [5, 11] is that k-means clustering is closely
related to the problem of low-rank approximation. More specifically, given a partition
P = {P1, . . . , Pk}, define the n × k matrix XP by (XP)i,j is 1/

√
|Pj | if i ∈ Pj , and zero

otherwise. Let A ∈ Rn×d have rows x1, . . . , xn. Then the k-means problem can be rewritten
as computing P∗ = argminP‖A−XPXT

PA‖2F , where P ranges over all partitions of {1, . . . , n}
into k sets (the yi are the distinct rows of XPXT

PA). It is easy to verify the columns of XP
are orthonormal, so XPXT

P is the orthogonal projection onto the column space of XP . Thus
if one defines S as the set of all rank k orthogonal projections obtained as XPXT

P for some
k-partition P, then the above can be rewritten as the constrained rank-k projection problem
of computing P∗ = argminP∈S‖(I − P )A‖2F .

The work [11] showed that if S is any subset of projections of rank at most k (henceforth
rank-k projections) and Π ∈ Rm×d satisfies certain technical conditions to be divulged soon,
then if P̃ ∈ S minimizes the Π-reduced problem minP∈S ‖(I − P )AΠT ‖2F up to a factor of γ,
then P̃ minimizes the original problem minP∈S ‖(I − P )A‖2F up to (1 +O(ε))γ.

One set of sufficient conditions for Π is as follows (see [11, Lemma 10]). There is a matrix
B ∈ R(n+2k)×d of stable rank O(k), where k is the number of cluster centers yi above, such
that if

‖(ΠBT )T (ΠBT )−BBT ‖ < ε, (4)
and

∣∣‖ΠB2‖2F − ‖B2‖2F
∣∣ ≤ εk (5)

then P̃ provides good error as discussed above. Thus for Eq. (4) it suffices for Π to provide
(O(k), ε/2)-AMM for BT , BT , and our results apply. Obtaining Eq. (5) is much simpler and
can be derived from the JL moment property (see the proof of [22, Theorem 6.2]).
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Without our results on stable-rank AMM provided in this current work, [11] gave a different
analysis, avoiding [11, Lemma 10], which for subgaussian Π required m = Θ(k · log(1/δ)/ε2)
rows (note the product between k and log(1/δ) instead of the sum).

4 Stable rank and row selection

As well as random projections, AMM (and subspace embeddings) by row selection are also
common in algorithms. This corresponds to setting Π to a diagonal matrix S with relatively
few nonzero entries. Unlike random projections, there are no oblivious distributions of such
matrices S with universal guarantees. Instead, S must be determined (either randomly or
deterministically) from the matrices being embedded.

There are two particularly algorithmically useful methods for obtaining such S. The first
is importance sampling: independent random sampling of the rows, but with nonuniform
sampling probabilities. For rank-k matrices, O(k(log k)/ε2) samples suffice [17, 39]. The
second method is the deterministic selection method given in [3], often called “BSS”, choosing
only O(k/ε2) rows. This still runs in polynomial time, but originally required many expensive
linear algebra steps and thus was slower in general; see [26] for runtime improvements.

The method used in [39] (matrix Chernoff bound) can be extended to the stable-rank
case, making even the log factor in the number of samples depend only on the stable rank;
see the full version for details. We here give an extension of BSS that covers low stable rank
matrices as well. The proof is in the full version, and follows by observing that it suffices to
just perform a slight modification of the original BSS proof.

I Theorem 9. Given two matrices A and B, each with n rows, and an ε ∈ (0, 1), there
exists a diagonal matrix S with O(k/ε2) nonzero entries satisfying the (k, ε)-AMM property
for A, B. Such an S can be computed by a polynomial-time algorithm.

When A = B and ATA is the identity, this is just the original BSS result. It is also
stronger than Theorem 3.3 of [23], implying it when A is the combination of the rows√
N/T · vi from that theorem statement with an extra column containing the costs, and a

constant ε. The techniques in that paper, on the other hand, can prove a result comparable
to Theorem 9, but with the row count scaling as k/ε3 rather than k/ε2.

Acknowledgments. We thank Jarosław Błasiok for pointing out the connection between
low stable rank approximate matrix multiplication and the analyses in [43].

References
1 Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and approxim-

ate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.
2 Nir Ailon and Edo Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss

transform. ACM Transactions on Algorithms, 9(3):21, 2013.
3 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.

SIAM J. Comput., 41(6):1704–1721, 2012.
4 Jean Bourgain. An improved estimate in the restricted isometry problem. Geometric

Aspects of Functional Analysis, 2116:65–70, 2014.
5 Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas. Random-

ized dimensionality reduction for k-means clustering. IEEE Transactions on Information
Theory, 61(2):1045–1062, 2015.

6 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theor. Comput. Sci., 312(1):3–15, 2004.



M.B. Cohen, J. Nelson, and D. P. Woodruff 11:13

7 Pei-Chun Chen, Kuang-Yao Lee, Tsung-Ju Lee, Yuh-Jye Lee, and Su-Yun Huang. Multi-
class support vector classification via coding and regression. Neurocomputing, 73(7-9):1501–
1512, 2010.

8 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 205–214, 2009.

9 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC), pages 81–90, 2013. Full version at http://arxiv.org/abs/1207.6365v4.

10 Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 278–287, 2016.

11 Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Mădălina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-
ings of the 47th ACM Symposium on Theory of Computing (STOC), 2015. Full version at
http://arxiv.org/abs/1410.6801v3.

12 Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proc. of the 6th Annual
Conference on Innovations in Theoretical Computer Science (ITCS), pages 181–190, 2015.

13 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. CoRR, abs/1507.02268, 2015.

14 Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss trans-
form. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), 2010.

15 Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for
matrices I: approximating matrix multiplication. SIAM J. Comput., 36(1):132–157, 2006.

16 Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. Journal of Machine Learning
Research, 13:3475–3506, 2012.

17 Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for `2
regression and applications. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1127–1136, 2006.

18 Alex Gittens and Michael W. Mahoney. Revisiting the nystrom method for improved large-
scale machine learning. In Proceedings of the 30th International Conference on Machine
Learning (ICML), pages 567–575, 2013.

19 Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

20 Ishay Haviv and Oded Regev. The restricted isometry property of subsampled Fourier
matrices. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), to appear, 2016.

21 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

22 Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM,
61(1):4, 2014.

23 Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph sparsi-
fication and nearly optimal ultrasparsifiers. In Proceedings of the 42nd ACM Symposium
on Theory of Computing (STOC), pages 57–66, 2010.

24 Felix Krahmer and Rachel Ward. New and improved Johnson-Lindenstrauss embeddings
via the Restricted Isometry Property. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

ICALP 2016

http://arxiv.org/abs/1207.6365v4
http://arxiv.org/abs/1410.6801v3


11:14 Optimal Approximate Matrix Product in Terms of Stable Rank

25 Anastasios T. Kyrillidis, Michail Vlachos, and Anastasios Zouzias. Approximate matrix
multiplication with application to linear embeddings. CoRR, abs/1403.7683, 2014.

26 Yin Tat Lee and He Sun. Constructing linear sized spectral sparsification in almost linear
time. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 250–269, 2015.

27 Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2013.

28 Yingyu Liang, Maria-Florina Balcan, Vandana Kanchanapally, and David P. Woodruff.
Improved distributed principal component analysis. In Proceedings of the 27th Annual
Conference on Advances in Neural Information Processing Systems (NIPS), 2014.

29 Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.
Randomized algorithms for the low-rank approximation of matrices. Proceedings of the
National Academy of Sciences, 104(51):20167–20172, 2007.

30 Yichao Lu, Paramveer Dhillon, Dean Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized Hadamard transform. In Proceedings of the 26th Annual
Conference on Advances in Neural Information Processing Systems (NIPS), 2013.

31 Avner Magen and Anastasios Zouzias. Low rank matrix-valued Chernoff bounds and approx-
imate matrix multiplication. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1422–1436, 2011.

32 Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011.

33 Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the 45th ACM
Symposium on Theory of Computing (STOC), pages 91–100, 2013.

34 Jelani Nelson and Huy L. Nguy˜̂en. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 117–126, 2013.

35 Jelani Nelson and Huy L. Nguy˜̂en. Lower bounds for oblivious subspace embeddings. In
Proceedings of the 41st International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 883–894, 2014.

36 Jelani Nelson, Eric Price, and Mary Wootters. New constructions of RIP matrices with fast
multiplication and fewer rows. In Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2014.

37 Nima Reyhani, Hideitsu Hino, and Ricardo Vigário. New probabilistic bounds on eigen-
values and eigenvectors of random kernel matrices. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence (UAI), pages 627–634, 2011.

38 Tamás Sarlós. Improved approximation algorithms for large matrices via random projec-
tions. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 143–152, 2006.

39 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

40 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.

41 Joel A. Tropp. Improved analysis of the subsampled randomized Hadamard transform.
Adv. Adapt. Data Anal., 3(1–2):115–126, 2011.

42 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

43 Yun Yang, Mert Pilanci, and Martin J. Wainwright. Randomized sketches for kernels: Fast
and optimal non-parametric regression. CoRR, abs/1501.06195, 2015.


	Introduction
	Preliminaries and notation

	Analysis of matrix multiplication for stable rank
	Characterization for (k,epsilon,delta)-AMM via a moment property
	Subgaussian maps
	SRHT
	Sparse subspace embeddings


	Applications
	Generalized regression
	Low-rank approximation
	Kernelized ridge regression
	k-means clustering

	Stable rank and row selection

