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Abstract
Let f : {0, 1}n × {0, 1}n → {0, 1} be a 2-party function. For every product distribution µ on
{0, 1}n × {0, 1}n, we show that

CCµ0.49(f) = O
((

log prt1/8(f) · log log prt1/8(f)
)2)

,

where CCµε (f) is the distributional communication complexity of f with error at most ε under
the distribution µ and prt1/8(f) is the partition bound of f , as defined by Jain and Klauck [Proc.
25th CCC, 2010]. We also prove a similar bound in terms of IC1/8(f), the information complexity
of f , namely,

CCµ0.49(f) = O
((

IC1/8(f) · log IC1/8(f)
)2)

.

The latter bound was recently and independently established by Kol [Proc. 48th STOC, 2016]
using a different technique.

We show a similar result for query complexity under product distributions. Let g : {0, 1}n →
{0, 1} be a function. For every bit-wise product distribution µ on {0, 1}n, we show that

QCµ0.49(g) = O
((

log qprt1/8(g) · log log qprt1/8(g)
)2)

,

where QCµε (g) is the distributional query complexity of f with error at most ε under the distri-
bution µ and qprt1/8(g)) is the query partition bound of the function g.

Partition bounds were introduced (in both communication complexity and query complexity
models) to provide LP-based lower bounds for randomized communication complexity and ran-
domized query complexity. Our results demonstrate that these lower bounds are polynomially
tight for product distributions.
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135:2 Partition Bound Is Quadratically Tight for Product Distributions

1 Introduction

Over the last decade, several lower bound techniques using linear programming formulations
and information complexity methods have been developed for problems in communication
complexity and query complexity. One of the central questions in communication complexity
is to understand the tightness of these lower bound techniques. For instance, over the last few
years, considerable effort has gone into understanding the information complexity measure.
Informally speaking, (internal) information complexity is the amount of information the
two parties reveal to each other about their respective inputs while computing the joint
function. It is known that for product distributions, the internal information complexity not
only lower bounds but also upper bounds the distributional communication complexity (up
to logarithmic multiplicative factors in the communication complexity) [1]. On the other
hand, recent works due to Ganor, Kol and Raz [3, 4, 5] show that there exist non-product
distributions which exhibit exponential separation between internal information complexity
and distributional communication complexity1. However, it is still open if internal information
complexity (or a polynomial of it) upper bounds the public-coin randomized communication
complexity (up to logarithmic multiplicative factors in the input size) [2].

Jain and Klauck [9], using tools from linear programming, gave a uniform treatment
of several of the existing lower bound techniques and proposed the partition bound. This
leads to following related (but incomparable) conjecture: does a polynomial of the partition
bound yield an upper bound on the communication complexity? We are not aware of any
counterexample to this conjecture2.

We consider these questions when the inputs to Alice and Bob are drawn from a product
distribution and show the following.

I Theorem 1. Let f : {0, 1}n×{0, 1}n → {0, 1}, and let ICε(f) and prtε(f) be the information
complexity and partition bound respectively of f with error at most ε. For a product distribution
µ on {0, 1}n × {0, 1}n, the distributional communication complexity of f under distribution
µ with error at most 0.49, denoted by CCµ0.49(f), can be bounded above as follows:

CCµ0.49(f) = O
((

IC1/8(f) · log IC1/8(f)
)2)

, (1.1)

CCµ0.49(f) = O

((
log prt1/8(f) · log log prt1/8(f)

)2
)
. (1.2)

Our technique yields bounds more general than those stated above (see discussion after
Proposition 7 for this generalization). We remark that recently (and independently of this
work) Kol [11] obtained the bound (1.1) using very different techniques. Kol’s result is
stronger in the sense that her bound is in terms of the information complexity ICµ(f) for the
product distribution µ, while our result is in terms of the worst case information complexity
IC(f) (note, ICε(f) = maxµ ICµε (f)). In fact, Kol showed that

CCµδ+ε(f) = O
(
ICµδ (f)2 · poly log ICµδ (f)/ε5) , (1.3)

and concluded that

CCµ0.49(f) = O
(
IC1/8(f)2 · poly log IC1/8(f)

)
. (1.4)

1 The third result of Ganor, Kol and Raz [5] actually demonstrates an exponential separation between
external information and communication complexity, albeit not for computing a Boolean function.

2 The recent work of Göös et al. [6] demonstrates the existence of a total function for which the partition
bound is strictly sublinear in the randomized communication complexity. This still does not rule out
communication complexity being bound by a polynomial of the partition bound.
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Kol’s result (1.3) is incomparable to our second result in terms of partition bound (1.2).
We consider a similar question in query complexity and show the following.

I Theorem 2. Let g : {0, 1}n → {0, 1} be a function and µ be a bit-wise product distri-
bution on {0, 1}n. Let qprtε(g) be the query partition bound for g with error ε. Then, the
distributional query complexity with error at most 0.49 under the distribution µ, denoted by
QCµ0.49(f), can be bounded above as follows:

QCµ0.49(g) = O

((
log qprt1/8(g) · log log qprt1/8(g)

)2
)
.

A similar quadratic upper bound for query complexity for product distributions in terms
of approximate certificate complexity was obtained by Smyth [14]. His proof uses Reimer’s
inequality while our proof technique is based on Nisan and Wigderson’s [13] more elementary
approach.

Organization. The communication complexity result is proven in §2 while the query com-
plexity result is deferred to the full version [8] for lack of space.

2 Communication Complexity

2.1 Preliminaries
We work in Yao’s two-party communication model [15] (see Kushilevitz and Nisan [12] for
an excellent introduction to the area). Let X , Y and Z be finite non-empty sets, and let
f : X × Y → Z be a function. A two-party protocol for computing f consists of two parties,
Alice and Bob, who get inputs x ∈ X and y ∈ Y respectively, and exchange messages in order
to compute f(x, y) ∈ Z (using shared randomness).

For a distribution µ on X × Y, let the ε-error distributional communication complexity
of f under µ (denoted by CCµε (f)), be the number of bits communicated (for the worst-case
input) by the best deterministic protocol for f with average error at most ε under µ. Let
CCpub

ε (f), the public-coin randomized communication complexity of f with worst case error
ε, be the number of bits communicated (for the worst-case input) by the best public-coin
randomized protocol that for each input (x, y) computes f(x, y) correctly with probability at
least 1− ε. Randomized and distributional complexity are related by the following special
case of von Neumann’s minmax principle.

I Theorem 3 (Yao’s minmax principle [16]). CCpub
ε (f) = maxµ CCµε (f).

We will prove Theorem 1 by first showing an upper bound on communication complexity in
terms of the smooth rectangle bound and then observing that the smooth rectangle bound is
bounded above by the partition bound.

Smooth rectangle bound

The smooth rectangle bound was introduced by Jain and Klauck [9] as a generalization of the
rectangle bound. Just like the rectangle bound, the smooth rectangle bound also provides a
lower bound for randomized communication complexity. Informally, the smooth rectangle
bound for a function f under a distribution µ, is the maximum over all functions g , which
are close to f under the distribution µ, of the rectangle bound of g. However, it will be
more convenient for us to work with the following linear programming formulation. (See [9,

ICALP 2016



135:4 Partition Bound Is Quadratically Tight for Product Distributions

Lemma 2] and [10, Lemma 6] for the relations between the LP formulation and the more
“natural” formulation in terms of rectangle bound.) It is evident from the LP formulation
that the smooth rectangle bound is a further relaxation of the partition bound (defined
in the appendix). We will formulate our results in terms of a distributional version of the
above smooth rectangle bound. For µ : X × Y → R and any z ∈ Z and rectangle R, let
µz(R) := µ(R ∩ f−1(z)) and µz̄(R) := µ(R)− µz(R). Furthermore, let µz := µz(X ×Y) and
µz̄ := µz̄(X × Y). The smooth rectangle and its distributional version are defined below.

I Definition 4 (Smooth rectangle bound).
For a function f : X × Y → Z and ε ∈ (0, 1), the (ε, δ)-smooth rectangle bound of f
denoted srecε,δ(f) is defined to be max{sreczε,δ(f) : z ∈ Z}, where sreczε,δ(f) is the optimal
value of the following linear program.
For a distribution µ on X × Y and function f : X × Y → Z, the (ε, δ)-smooth rectangle
bound of f with respect to µ denoted srecµε,δ(f) is defined to be max{srecz,µε,δ (f) : z ∈ Z},
where srecz,µε,δ (f) is the optimal value of the following linear program.

sreczε,δ(f)

min
∑
R

wR∑
R3(x,y)

wR ≥ 1− ε, ∀(x, y) ∈ f−1(z)

∑
R3(x,y)

wR ≤ δ, ∀(x, y) 6∈ f−1(z)

∑
R3(x,y)

wR ≤ 1, ∀(x, y)

wR ≥ 0, ∀R .

srecz,µε,δ (f)

min
∑
R

wR∑
(x,y)∈f−1(z)

µx,y
∑

R3(x,y)

wR ≥ (1− ε) · µz (2.1)

∑
R3(x,y)

wR ≤ δ, ∀(x, y) 6∈ f−1(z)

(2.2)∑
R3(x,y)

wR ≤ 1, ∀(x, y) (2.3)

wR ≥ 0, ∀R .

We will refer to the constraint in (2.1) as the covering constraint and the ones in (2.2) as
the packing constraints. Note that while there is a single covering constraint (averaged over
all the inputs (x, y) that satisfy f(x, y) = z) there are packing constraints corresponding to
each (x, y) /∈ f−1(z).

Similar to Yao’s minmax principle Theorem 3, we have the following proposition relating the
distributional version of the smooth rectangle bound to the smooth rectangle bound.

I Proposition 5. srecε,δ(f) = maxµ srecµε,δ(f).

The main result of this section is the following

I Theorem 6. For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and any product
distribution µ on {0, 1}n × {0, 1}n, we have the following.
1. CCµ0.49(f) = O

(
(log srecµ1/n2,1/n2(f))2 · logn

)
.

2. Furthermore, if there exists k ≥ 20 such that

d100 log srecµδ,δ(f)e ≤ k,

for δ ≤ 1/(30 · 100(k + 1)4), then

CCµ0.49(f) = O(k2).
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The above theorem is useful only when we have a upper bound on the smooth rectangle
bound for very small δ. The following proposition shows that such upper bounds for smooth
rectangle bound for such small δ can be obtained in terms of either the information complexity
or the partition bound.

I Proposition 7. For any Boolean function f : {0, 1}n×{0, 1}n → {0, 1} and any δ ∈ (0, 1),
we have the following bounds on srecδ,δ(f):

log srecδ,δ(f) ≤ O
(

log 1
δ

)
· IC1/8(f),

log srecδ,δ(f) ≤ O
(

log 1
δ

)
· log prt1/8(f).

(This proposition depends on the error-reduction properties of information complexity and
partition bound; a proof appears in the full version [8].) Using this proposition, we can

reduce the error (i.e., δ) to 1/n2 and show that CCµ0.49(f) = O

((
log prt1/8(f)

)2
· (logn)3

)
.

However, we can also reduce the error to 1/poly(log prt1/8(f)) and show that there exists
a k = O

(
log prt1/8(f) · log log prt1/8(f)

)
that satisfies the hypothesis for the second part of

Theorem 6. The bound (1.2) in Theorem 1 now follows by combining Propositions 7 and 5
and Theorem 6. A similar argument yields the bound (1.1).

In particular, the above discussion shows that our techniques apply to any complexity
measure (not necessarily partition bound and information complexity) which can be used to
bound the smooth rectangle bound for very small δ. An interesting question that arises in
this context is if we could bound smooth rectangle bound for small δ in terms of smooth
rectangle bound for large δ, say δ = 1/3 (i.e., is error-reduction for srec feasible?). This
question was answered in the negative for partial functions by Göös et al. [7] who show that
there exists a partial function f that has srec1/3(f) = O(logn) and yet srec1/4(f) = Ω(n).

2.2 Proof of Theorem 6
In this section, we construct a communication protocol tree with a small number of leaves
from the optimal solutions to the LPs corresponding to srec0,µ

ε,δ and srec1,µ
ε,δ . The construction

of the protocol tree with a small number of leaves is inspired by a construction due to
Nisan and Wigderson, in the context of log-rank conjecture [13, Theorem 2] (see also [12,
Combinatorial proof of Theorem 2.11]). Unlike the earlier constructions, our protocol works
for a distribution and allows for error. As a result, the decomposition into sub-problems
needs to be performed more carefully. This step critically uses the product nature of the
distribution µ.

The decomposition is accomplished using an inductive argument. We will work with
the quantity srec0 + srec1. That is, we will show that if this sum is small, then there is a
protocol with few leaves. Suppose srec0 ≤ srec1. Since srec0 is small, we will conclude that
there is a large rectangle biased towards 0 (see Lemma 8). Based on this large rectangle, the
entire communication matrix is partitioned into three parts: (1) the large biased rectangle
itself, (2) a rectangle whose corresponding sub-problem admits an LP solution leading to a
smaller srec1 value (the underlying product nature of the distribution µ is used here) and (3)
a rectangle where the total measure with respect to µ drops significantly (see Lemma 9).

We say that a rectangle R is (1− α)-biased towards to 0 if µ1(R) ≤ αµ0(R).

ICALP 2016



135:6 Partition Bound Is Quadratically Tight for Product Distributions

I Lemma 8 (large biased rectangle). Let µ be a product distribution. If srec0,µ
ε,δ (f) ≤ D, then

for every ρ ∈ (0, 1) there exists a rectangle S such that S is (1− ρ)-biased towards 0 and

µ(S) ≥ µ0(S) ≥ 1
D
·
(

(1− ε) · µ0 −
(
δ

ρ

)
· µ1

)
.

(The proof appears in §2.3.) We will apply the above lemma with ρ =
√
δ and conclude that

there exists a large rectangle S = X0×Y0 that is (1−
√
δ)-biased towards 0. Let X1 = X \X0

and Y1 = Y \ Y0. For i, j ∈ {0, 1}, define rectangles R(ij) := Xi × Yj , R(1∗) := X1 × Y, and
R(∗1) := X × Y1. (Note, S = R(00).) For i, j ∈ {0, 1, ∗}, let µ(ij) be the restriction of µ
to the rectangle R(ij). We show in the lemma below that the function f when restricted
to either R(10) or R(01) has the property that the corresponding srec1 drops by a constant
factor. Define

ε(f) := 1−

(∑
(x,y)∈f−1(1) µx,y

∑
R:(x,y)∈R wR

)
µ1

,

ε(ij)(f) := 1−

(∑
(x,y)∈f−1(1)∩R(ij) µx,y

∑
R:(x,y)∈R wR

)
µ1(R(ij))

; for i, j ∈ {0, 1}.

It follows from the covering constraint that ε(f) ≤ ε. Furthermore, ε(f) is an average of the
ε(ij)’s in the sense that ε(f) =

(∑
i,j∈{0,1} µ1(R(ij))ε(ij)

)
/µ1.

I Lemma 9. Suppose the product distribution µ and rectangles R(ij) are as above; in
particular, R(00) is (1−

√
δ)-biased towards 0. There exists an (ij) ∈ {(01), (10)} such that one

of the following holds: (a) 2µ(ij)(f−1(1)) ≤ µ(ij)(f−1(0)) or (b) srec1,µ(ij)

ε(ij)+30 4√
δ,δ

(f) ≤ 0.9D
where ε(ij) is as defined above.

We will prove this lemma in §2.3. Let us assume the above lemmas and obtain the low cost
communication protocol claimed in Theorem 6.

Suppose µ(01) satisfies srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9D as given by the above lemma. Consider
the decomposition of the space X ×Y given by (R(00), R(01), R(1∗) = R(10) ∪R(11)). We note
that R(00) is a large biased rectangle, R(01) has lower srec1 value while R(1∗) has lower µ
value (since R(00) is large) and its srec values are no larger than that of the entire space. In
the case when µ(10) satisfies srec1,µ(10)

ε(10)+30 4√
δ,δ

(f) ≤ 0.9D, we similarly have the decomposition
(R(00), R(10), R(∗1) = R(01) ∪R(11)).

This suggests a natural inductive protocol Π for f that we formalize in the lemma below.
For our induction it will be convenient to work with µ that are not necessarily nor-

malized. So, we will only assume µ : X × Y → [0, 1] but not that |µ| := µ(X × Y) =∑
(x,y)∈X×Y µ(x, y) = 1. For a protocol Π, let the advantage of Π be defined by

advµ(Π) =
∑

(x,y):f(x,y)=Π(x,y)

µ(x, y)−
∑

(x,y):f(x,y)6=Π(x,y)

µ(x, y).

Let L(Π) be the number of leaves in Π.
We now formulate the induction hypothesis as follows.

I Lemma 10. Fix a function f : X ×Y → {0, 1} and a product distribution (not necessarily
normalized) µ : X ×Y → [0, 1] such that |µ| ≥ 0. Let ε, δ ∈ (0, 1) and ∆ ∈ (0, |µ|). Let s, t be
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non-negative integers such that

s ≥ s(µ, ε, δ) :=
⌈
100 · log 2(srec0,µ

ε,δ (f) + srec1,µ
ε,δ (f))

⌉
;

t ≥ t(µ, ε, δ) := d100 · 2s log(|µ|/∆)e .

Then, there is a protocol Π such that

L(Π) ≤ 4
(
s+ t

t

)
− 1; (2.4)

advµ(Π) ≥
(

1
10 − ε− 30(s+ 1) 4

√
δ

)
|µ| −∆ · L(Π). (2.5)

I Remark. Since ε ≤ 1
2 , our definitions imply that srec1,µ

ε,δ (f) + srec1,µ
ε,δ (f)) ≥ 1

2 ; thus s ≥ 0.
Similarly, since ∆ ≤ |µ|, we have t ≥ 0.

Proof. First, we observe that if max{µ0, µ1} ≥ 2 min{µ0, µ1}, then the protocol Π consisting
of just one leaf, with the most popular value as label, meets the requirements: for, advµ(Π) ≥
1
3 |µ| and L(Π) = 1, and our claim holds. Also, we may assume that ε− 30(s+ 1) 4

√
δ < 1

10 ,
for otherwise the claim is trivially true.

We now proceed by induction on s + t, assuming that µ is balanced: max{µ0, µ1} ≤
2 min{µ0, µ1}.

Base case (s = 0)

Since s = 0, we have log srec1,µ
ε,δ (f) ≤ 1

100 . We will show a protocol Π where Alice sends one bit
after which Bob announces the answer. Consider the optimal solution 〈wR : R a rectangle〉
to the LP corresponding to srec1,µ

ε,δ (f); thus, OPT :=
∑
R wR = srec1,µ

ε,δ (f) ≤ 21/100 ≤ 2. Let
R = RX × RY be a random rectangle picked with probability proportional to wR (using
public coins). In the protocol Π, Alice tells Bob if x ∈ RX , and Bob returns the answer 1
if (x, y) ∈ RY and returns 0 otherwise. Let pxy := PrR[(x, y) ∈ R]. Then, by (2.1) we have∑

(x,y)∈f−1(1) µ(x, y)pxy ≥ (1− ε)µ1/OPT, and by (2.2), we have
∑

(x,y)∈f−1(0) µ(x, y)pxy ≤
δµ0/OPT. Thus,

ER

 ∑
(x,y):Π(x,y)6=f(x,y)

µ(x, y)

 =
∑

(x,y)∈f−1(1)

µ(x, y)(1− pxy) +
∑

(x,y)∈f−1(0)

µ(x, y)px,y

≤ µ1 − (1− ε)µ1/OPT + δµ0/OPT
≤ µ1 − ((1− ε)µ1 − δµ0)/OPT

≤ 1
2(µ1 + εµ1 + δµ0) (since OPT ≤ 2). (2.6)

Fix a choice R for which the quantity under the expectation is at most 1
2 (µ1 + εµ1 + δµ0).

Then,

adv(Π) = |µ| − 2
∑

(x,y):Π(x,y)6=f(x,y)

µ(x, y)

≥ |µ| − (µ1 + εµ1 + δµ0)

≥
(

1
3 − ε− δ

)
|µ| (since µ1 ≤ 2µ0).

ICALP 2016



135:8 Partition Bound Is Quadratically Tight for Product Distributions

Base case (t = 0)

In this case, |µ| = ∆, and the protocol Π with a single leaf that gives the most probable
answer achieves adv(Π) ≥ 0 ≥ |µ| −∆.

Induction step

We will use Lemma 8 to decompose the communication matrix into a small number of
rectangles. After an exchange of a few bits to determine in which rectangle the input lies,
Alice and Bob will be left with a problem for which s or t is significantly smaller. Assume
srec1,µ

ε,δ (f) ≥ srec1,µ
ε,δ (f); in particular, srec1,µ

ε,δ (f) ≤ 2s/100.
Formally, from Lemma 8 (taking ρ =

√
δ), we obtain a rectangle R(00) = X0 × Y0 such

that (a) R(00) is (1 −
√
δ)-biased towards 0, and (b) µ(R(00)) ≥ 1

2s/100 (1 − ε − 2
√
δ)|µ0| ≥

1
3·2s/100 (1−ε−2

√
δ)|µ|. Recall the definitions of the rectangles R(10), R(01), R(11), R(1∗), R(∗1)

and the corresponding restrictions of µ, namely, µ(01), µ(10), µ(11), µ(1∗), µ(∗1). Suppose the
choice of ij in Lemma 9 for which one of the alternatives holds is ij = 01 (the other case
ij = 10 is symmetric). The protocol Π proceeds as follows. Alice starts by telling Bob if
x ∈ X0.
Alice says x ∈ X0. Now, Bob tells Alice if y ∈ Y0.

Bob says y ∈ Y0. The protocol Π(00) in this case has one leaf with answer 0; thus
adv(Π(00) ≥ |µ(00)| · (1−

√
δ).

Bob says y 6∈ Y0. Alice and Bob follow the protocol Π(01) promised by induction for
R(01) under µ(01). To bound the number of leaves in Π(01), we will consider the two
alternatives ((a) and (b)) specified in Lemma 9 separately. First (alternative (a))
suppose 2µ(01)(f−1(1)) ≤ µ(01)(f−1(0)); then we immediately declare 0 as the response,
so that L(Π(01)) = 1 and adv(Π(01)) ≥ |µ(01)|/3. If alternative (b) holds, then we have

srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9srec1,µ
ε,δ (f). (2.7)

Then, we obtain Π(01) by induction. We take ε(01) + 30 4
√
δ as ε (if this quantity is

greater than 1, then we use a trivial protocol with one leaf and zero advantage). With
the reduction promised in (2.7), we may use a value of s that is the old s minus 1.
Thus, we have

L(Π(01)) ≤ 4
(

(s− 1) + t

t

)
− 1;

adv(Π(01)) ≥ |µ(01)| ·
(

1
10 − (ε(01) + 30 4

√
δ)− 30s 4

√
δ

)
−∆ · L(Π(01)).

Alice says x 6∈ X0. Alice and Bob follow the protocol Π(1∗) obtained by applying the
induction hypothesis to the rectangle R(1∗) and the associated distribution µ(1∗). Observe
that

|µ(1∗)| ≤ |µ| − µ(R(00)) ≤ |µ|
(

1− 1
3 · 2s/100 (1− ε− 2

√
δ)
)
≤ |µ|

(
1− 1

4 · 2s

)
. (2.8)

For the last inequality we used ε+ 2
√
δ ≤ 1

10 , for otherwise (2.5) holds trivially. Now,
(2.8) implies that log |µ(1∗)| ≤ log |µ| − 1

1002s ; so, for our induction we may take t← t− 1.
The parameters ε, δ and ∆ remain the same. The original LP solutions are still valid for
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the subproblem, so we use the same s. The protocol Π(1∗) obtained by induction satisfies
the following inequalities.

L(Π(1∗)) ≤ 4
(
s+ (t− 1)
t− 1

)
− 1;

adv(Π(1∗)) ≥ |µ(1∗)| ·
(

1
10 − ε

(1∗) − 30(s+ 1) 4
√
δ

)
−∆ · L(Π(1∗)).

Putting all the contributions together, we obtain

L(Π) = 1 + L(Π(01)) + L(Π(1∗))

≤ 1 +
(

4
(

(s− 1) + t

t

)
− 1
)

+
(

4
(
s+ (t− 1)
t− 1

)
− 1
)

= 4
(
s+ t

t

)
− 1;

adv(Π) ≥ |µ(00)| · (1−
√
δ)

+ |µ(01)| ·
(

1
10 − (ε(01) + 30 4

√
δ)− 30s 4

√
δ

)
−∆ · L(Π(01))

+ |µ(1∗)| ·
(

1
10 − ε

(1∗) − 30(s+ 1) 4
√
δ

)
−∆ · L(Π(1∗))

≥
(

1
10 − ε− 30(s+ 1) 4

√
δ

)
|µ| −∆ · L(Π). J

The above lemma yields a protocol whose protocol tree has a small number of leaves, but not
necessarily small depth. We can balance the protocol tree using the following proposition.

I Proposition 11 ([12, Lemma 2.8]). If f has a deterministic communication protocol tree
with ` leaves, then f has a protocol tree with depth at most O(log `).

We are now in a position to complete the proof of the main theorem of this section.

Proof of Theorem 6. To prove the first part of Theorem 6, we invoke Lemma 10 with
∆ = 1/24n and ε = δ = 1/n2 to derive a protocol tree Π with at most

L(Π) = n
O

(
log srec1,µ

1/n2,1/n2 (f)
)2

leaves and advantage at least 1/20. The first part now follows from Proposition 11.
To prove the second part of Theorem 6, we invoke Lemma 10 with s = k, ∆ = 1/25k2 and

ε = δ = 1/(30 · 100(k+ 1)4) where k satisfies the hypothesis. With this setting of parameters
t = d500 · 2kk2e ≤ 22k (for k ≥ 20). Lemma 10 implies a protocol tree Π with at most

L(Π) ≤ (t+ s)s ≤ t2s ≤ 24k2

leaves and advantage at most 1/20. The second claim then follows from Proposition 11. J

2.3 Proofs of Lemmas 8–9
Proof of Lemma 8. Fix z ∈ {0, 1}. In the following we say that a rectangle R is biased
(towards 0) if µ1(R) ≤ ρ · µ0(R); otherwise, we say it is unbiased. Fix a solution 〈wR :

ICALP 2016
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R is a rectangle〉 that achieves the optimum srec0,µ
ε,δ (f) ≤ D. It follows

∑
R:unbiased

wR · µ0(R) ≤
∑

R:unbiased
wR ·

µ1(R)
ρ

≤ 1
ρ
·
∑
R

wR · µ1(R)

= 1
ρ

∑
(x,y)∈f−1(1)

µ(x, y)
∑

R:(x,y)∈R

wR

≤ δ

ρ
· µ1,

where the last inequality follows from the packing constraints (2.2). We now use the covering
constraints (2.1) to conclude that∑

R:biased
wR · µ0(R) =

∑
R

wR · µ0(R)−
∑

R:unbiased
wr · µ0(R) ≥ (1− ε) · µ0 −

δ

ρ
· µ1. (2.9)

Define a probability distribution on the rectangles R as follows p(R) := wR/srec0,µ
ε,δ (f). Then

(2.9) can be rewritten as

ER [Ibiased(R) · µ0(R)] ≥ 1
D
·
(

(1− ε) · µ0 −
δ

ρ
· µ1

)
.

Hence, there exists a large biased rectangle S = X0 × Y0 as claimed. J

Proof of Lemma 9. Since R(00) is (1−
√
δ)-biased towards 0, we have from the packing and

covering constraints (2.2) and (2.3) that∑
(x,y)∈R(00)

µx,y
∑

R3(x,y)

wR

=
∑

(x,y)∈R(00)∩f−1(1)

µx,y
∑

R3(x,y)

wR +
∑

(x,y)∈R(00)∩f−1(0)

µx,y
∑

R3(x,y)

wR

≤ µ1(R(00)) + δµ0(R(00)) ≤ (
√
δ + δ)µ0(R(00)) ≤ 2

√
δµ(R(00)).

Hence,

∑
R

wR ·
(
µ(R(00) ∩R)
µ(R(00))

)
≤ 2
√
δ. (2.10)

Group the rectangles in to subsets as follows:

B(01) :=
{
R : µ(R(01) ∩R)

µ(R(01))
≥ 10 4

√
δ

D

}
, B(10) :=

{
R : µ(R(10) ∩R)

µ(R(10))
≥ 10 4

√
δ

D

}
,

B :=
{
R : µ(R(11) ∩R)

µ(R(11))
≥ 10
D

}
.

By (2.3), we have∑
(x,y)∈R(11)

µx,y
∑

R3(x,y)

wR ≤
∑

(x,y)∈R(11)

µx,y = µ(R(11)).
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Or equivalently,∑
R

wR
D
· µ(R(11) ∩R)

µ(R(11))
≤ 1
D
.

Hence,∑
R∈B

wR ≤ 0.1D. (2.11)

We will now argue that either
∑
R∈B(01) wR ≤ 0.9D or

∑
R∈B(10) wR ≤ 0.9D. Suppose, for

contradiction, that neither is true. Then, by (2.11) we have∑
R∈(B(01)∩B(10))\B

wR ≥ 0.7D. (2.12)

Since µ is a product distribution we have

µ(R(01) ∩R)
µ(R(01))

· µ(R(10) ∩R)
µ(R(10))

= µ(R(00) ∩R)
µ(R(00))

· µ(R(11) ∩R)
µ(R(11))

.

Using the above we have∑
R

wR ·
(
µ(R(00) ∩R)
µ(R(00))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
µ(R(00) ∩R)
µ(R(00))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
µ(R(01) ∩R)
µ(R(01))

)
·
(
µ(R(10) ∩R)
µ(R(10))

)/(
µ(R(11) ∩R)
µ(R(11))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
10 4
√
δ

D

)
·

(
10 4
√
δ

D

)/(
10
D

)

≥ 10
√
δ

D
· (0.7D)

= 7
√
δ.

This contradicts (2.10). Hence, either
∑
R∈B(01) wR ≤ 0.9D or

∑
R∈B(10) wR ≤ 0.9D. Assume,

wlog that
∑
R∈B(01) wR ≤ 0.9D. If f is 1/2-biased towards 0 with respect to the distribution

µ(01), then the alternative (a) of the lemma holds, and we are done. Otherwise, that is
µ0(R(01)) ≤ 2µ1(R(01)) or equivalently µ(R(01)) ≤ 3µ(01)

1 (R(01)). We will infer from this that
srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9D. Consider the primal solution given by

w′R =
{
wR, if R ∈ B(01)

0, if R /∈ B(01).

Clearly, w′R, being a part of the original solution, satisfies (2.2) and (2.3), and has objective
value at most 0.9D. All we need to show is that it satisfies the covering constraint (2.1). For
this, we first consider∑

R/∈B(01)

wR ·
(
µ1(R(01) ∩R)
µ(R(01))

)
≤

∑
R/∈B(01)

wR ·
(
µ(R(01) ∩R)
µ(R(01))

)
≤ 10 4

√
δ

D
·D ≤ 10 4

√
δ.

(2.13)

ICALP 2016



135:12 Partition Bound Is Quadratically Tight for Product Distributions

Now, ∑
(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y)

w′R

=
∑

(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y),R∈B(01)

wR

=
∑

(x,y)∈f−1(1)∩R(01)

µx,y

 ∑
R∈(x,y)

wR −
∑

R∈(x,y),R/∈B(01)

wR


= (1− ε(01))µ1(R(01))−

∑
(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y),R/∈B(01)

wR

= (1− ε(01))µ1(R(01))−
∑

R/∈B(01)

wRµ1(R(01) ∩R)

≥ (1− ε(01))µ1(R(01))− 10 4
√
δµ(R(01)) [From (2.13)]

≥ (1− ε(01))µ1(R(01))− 30 4
√
δµ1(R(01)) [Since µ(R(01)) ≤ 3µ1(R(01))]

= (1− ε(01) − 30 4
√
δ)µ1(R(01))

Thus, (2.1) holds for R(01) with ε replaced by ε(01) + 30 4
√
δ. J
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