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Abstract
In combinatorics of words, a concatenation of k consecutive equal blocks is called a power of
order k. In this paper we take a different point of view and define an anti-power of order k
as a concatenation of k consecutive pairwise distinct blocks of the same length. As a main
result, we show that every infinite word contains powers of any order or anti-powers of any order.
That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a
stronger result, which relates the density of anti-powers to the existence of a factor that occurs
with arbitrary exponent. From these results, we derive that at every position of an aperiodic
uniformly recurrent word start anti-powers of any order. We further show that any infinite
word avoiding anti-powers of order 3 is ultimately periodic, and that there exist aperiodic words
avoiding anti-powers of order 4. We also show that there exist aperiodic recurrent words avoiding
anti-powers of order 6, and leave open the question whether there exist aperiodic recurrent words
avoiding anti-powers of order k for k = 4, 5.
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1 Introduction

Suppose you are in a room with a hundred people and somebody tells you that by an
incredible coincidence the people in the room have all different birthdays. Of course this is
much less surprising than if all the people had the same birthday; still you remember from
your first course in combinatorics (or even before) that already in a class of fifty people the
probability that no two people have the same birthday is less than 3%. So actually you are
in a very special situation!1

For a number of instances of objects taken from a fixed class using some rule, being all
distinct can be viewed as a kind of regularity. This has been already considered extensively

1 To be more precise, the probability that at least two people have the same birthday in a room of 100
people is about 0.9999996928.
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in computer science. For example, the probability of collisions must be properly quantified
when designing hashing functions. In the context of string processing, one usually deals with
factors (substrings) of a word, and it is sometimes useful to factorize a word in blocks that
are all distinct — a widely known example is the Lempel-Ziv factorization, at the basis of
the eponymous compression algorithm. The problem of factoring a string in blocks that are
all distinct (sometimes called equality-free factorization [7]) has practical applications also
in bio-informatics, since it appears to be connected with gene synthesis [2]. Equality-free
factorizations have been further considered by Fernau et al. [4], motivated by injective pattern
matching with variables, which is identical to the special case of solving word equations
where the left side of the equation does not contain variables, and different variables must be
replaced by different words. In particular, in [4] it is proved that given a finite word w and a
number k, the problem whether it is possible to factorize w into at least k distinct factors is
NP-complete.

In the context of infinite words, the complexity of sequences is often described by means
of parameters that capture some kind of repetitiveness. To this end, one often considers as a
degree of repetitiveness the maximal number of consecutive all-equal blocks occurring in the
sequence, regardless of the length of the single blocks. A concatenation of k consecutive equal
blocks is called a power of order k, or simply a k-power. E.g., aabaabaabaab is a 4-power.
A first classification of infinite words consists in identifying those that are k-power-free for
some k ≥ 2, meaning that they do not contain any factor that is a k-power. Words avoiding
k-powers have been the object of study of combinatorics on words since the very beginning
of the theory [8] (cf. also [5]).

In this paper we adopt a different point of view based on the difference rather than on
the equality. We consider the problem of finding in infinite words consecutive blocks of
the same length that are all distinct. Of course, in the context of infinite words it is the
requirement that the blocks all have the same length that makes the problem non-trivial,
since otherwise one can always take arbitrarily long concatenations of blocks of increasing
length to guarantee that they are all distinct.

We define an anti-power of order k, or simply a k-anti-power, as a concatenation of k
consecutive pairwise distinct blocks of the same length. E.g., aabaaabbbaba is a 4-anti-power.
A simple computation shows that there are in general much more anti-powers than powers
for a fixed length and a fixed order; yet there are much less anti-powers than possible factors
of the same given length.

Let us focus on an example. The Thue-Morse word

t = 0110100110010110100101100110100110010110011010 · · ·

is perhaps the most prominent example in combinatorics of words [1]. It is defined as the
word whose n-th digit is the parity of the number of 1s in the binary expansion of n− 1 (so
the first digit is the parity of 1s in 0, the second digit is the parity of 1s in 1, the third digit
is the parity of 1s in 10, etc.). The Thue-Morse word does not contain overlaps, i.e., factors
of the form awawa for a letter a and a word w. In particular, the Thue-Morse word does
not contain 3-powers (note that, on the other hand, every infinite binary word must contain
2-powers).

The shortest prefix of the Thue-Morse word that is a 2-antipower is 01. The shortest
prefix that is a 3-anti-power is 01101 · 00110 · 01011, of length 15. One can verify that the
shortest 4-anti-power prefix has length 20. The first few lengths of the shortest prefixes of t
that are k-anti-powers for different values of k are displayed in Table 1. A natural question
is therefore the following: Given an integer k > 1, is it always possible to find a prefix of t
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Table 1 The first few values of the sequence of lengths of the shortest prefixes of the Thue-Morse
word that are k-anti-powers.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 50 100

length 15 20 25 30 77 88 99 110 121 132 143 154 195 208 221 234 247 260 870 2450 9700

ratio 5 5 5 5 11 11 11 11 11 11 11 11 13 13 13 13 13 13 29 49 97

that is a k-anti-power? In this paper we answer this question in the affirmative. Actually, we
prove a much stronger result. Indeed, we prove that the existence of powers of any order or
anti-powers of any order is an unavoidable regularity:

I Theorem 1. Every infinite word contains powers of any order or anti-powers of any order.

Formally, an unavoidable regularity is a property P such that it is not possible to construct
arbitrarily long words not satisfying P (cf. [3]). Some important theorems in combinatorics on
words concern unavoidable regularities. Most of them follow from results originally stated in
other areas of combinatorics, e.g., the Ramsey’s, van der Waerden’s and Shirshov’s theorems
(see [3, 5, 6] for further details).

Actually, we prove a stronger result, from which Theorem 1 follows. Given an infinite
word x, we prove that if for some integer k the lower density of the set of lengths n for
which the prefix of x of length kn is a k-anti-power is smaller than one, then there exists a
word (whose length depends on k) that occurs in x with arbitrary exponent (Theorem 4).
This implies that if an infinite word x has the property that each of its factors appears
with bounded exponent (in the terminology of combinatorics on words we say that x is
ω-power-free), then in x must start anti-powers of any order at every position. In particular,
since a uniformly recurrent word is either purely periodic or ω-power-free, this property holds
for every aperiodic uniformly recurrent word, as for example the Thue-Morse word or any
Sturmian word2.

In the second part of the paper, we focus on the avoidability of anti-powers. We show
that any infinite word avoiding 3-anti-powers is ultimately periodic, and that there exist
aperiodic words avoiding 4-anti-powers. We also show that there exist aperiodic recurrent
words avoiding 6-anti-powers. We leave it as an open question to determine whether there
exist aperiodic recurrent words avoiding 4-anti-powers or 5-anti-powers.

We conclude with final considerations and discuss open problems and further possible
directions of investigation.

2 Preliminaries

Let N = {1, 2, 3, . . .}. Let A be a (possibly infinite) non-empty set, called the alphabet, whose
elements are called letters. A word over A is a finite or infinite sequence of letters from A.
The length |u| of a finite word u is the number of its letters. We let A+ denote the set of all
finite words of positive length over A, and AN the set of all infinite words over A, that is, the

2 Sturmian words are aperiodic words of minimal factor complexity. They are very well studied objects in
combinatorics on words (see for instance [6]).
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set of all maps from N to A. Given a finite word u, we write uω the infinite word uuu · · ·
obtained by concatenating an infinite number of copies of u.

Given a finite or infinite word x, we say that a word u is a factor of x if x = vuy for some
words v and y. We say that u is a prefix (resp. suffix) of x if x = uy (resp. x = yu) for some
word y. We say that a word u 6= x is a border of x if u is both a prefix and a suffix of x.

An infinite word x is purely periodic if there exists a positive integer p such that the
letters occurring at positions i and j coincide whenever i = j mod p. Equivalently, x is
purely periodic if and only if x = uω for some word u of length p. An infinite word x is
ultimately periodic if x = uy for a finite word u and a purely periodic word y. An infinite
word is aperiodic if it is not ultimately periodic.

An infinite word x is said to be recurrent if every finite factor of x occurs in x infinitely
often. Equivalently, x is recurrent if and only if every finite prefix of x has a second occurrence
as a factor. An infinite word x is said to be uniformly recurrent if every finite factor of x
occurs syndetically (that is, it occurs infinitely often and with bounded gaps). Equivalently,
x is uniformly recurrent if and only if for every finite factor u of x there exits an integer m
such that u occurs in every factor of x of length m.

An infinite word x is said to be k-power-free for some integer k > 1 if for every finite factor
u of x, one has that uk is not a factor of x. An infinite word x is said to be ω-power-free if
for every finite factor u of x there exists a positive integer l such that ul is not a factor of
x. Of course, if a word is k-power-free for some integer k, then it is ω-power-free, but the
converse is not always true.

An important relationship between uniformly recurrent and ω-power-free words is the
following (see for instance [3]):

I Theorem 2. Every uniformly recurrent word is either purely periodic or ω-power-free.

3 Unavoidability of powers or anti-powers

In order to state our main result, we need to introduce some definitions.
Let x be an infinite word and k ∈ N. We set

P (x, k) = {m ∈ N | the prefix of x of length km is a k-power} .

Analogously, we set

AP (x, k) = {m ∈ N | the prefix of x of length km is a k-anti-power} .

Note that P (x, 1) = AP (x, 1) = N and that P (x, k) ∩AP (x, k) = ∅ for every k ≥ 2. For
example, if x = 01ω, we have P (x, k) = AP (x, k) = ∅ for every k ≥ 3.

Recall that for any subset X ⊆ N, the lower density of X is defined by

d (X) = lim inf
n→∞

|X ∩ {1, 2, . . . , n}|
n

.

Note that if X is finite, then d (X) = 0. Moreover, if d (X) =< 1/t for some integer t > 0,
then that there exist infinitely many integers m such that {m,m+ 1, . . . ,m+ t− 1} ⊂ N \X.

We are now going to prove our main result (Theorem 4). We premise a technical lemma.

I Lemma 3. Let v be a border of a word w and u the word such that w = uv. If l is an
integer such that |w| > l|u|, then ul is a prefix of w.
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i(s � r) j(s � r)

Ui,r Uj,r

Uj,sUi,s

| {z }
w

| {z }
v

Figure 1 The proof of Theorem 4.

Proof. By induction on l. For l = 1 the statement trivially holds. Suppose l > 1. Since u
is shorter than v and both are prefixes of w, we have that u is a prefix of v. Let us write
v = uv′. Then w = uuv′ and v′ is a border of v. Since |v| = |w| − |u| > (l − 1)|u|, we can
apply the induction hypothesis and derive that ul−1 is a prefix of v, whence ul is a prefix of
w. J

I Theorem 4. Let x be an infinite word. Suppose that

d (AP (x, k)) <
(

1 +
(
k

2

))−1
= 2

2 + k(k − 1)

for some k ∈ N. Then there exists u ∈ A+ with |u| ≤ (k − 1)
(

k
2
)
such that ul is a factor of x

for every l ≥ 1.

Proof. Fix k such that d (AP (x, k)) < (1+
(

k
2
)
)−1. Since AP (x, 1) = N, and the lower density

of N is 1, we have k ≥ 2. We set M = (k − 1)
(

k
2
)
. We have to show there exists u ∈ A+ with

|u| ≤M such that ul is a factor of x for every l ≥ 1. By the pigeonhole principle, it suffices
to show that for every l ∈ N there exists u ∈ A+ with |u| ≤M such that ul is a factor of x.

So, let us fix l ∈ N, and set N = (l + 1)M. Since d (AP (x, k)) < (1 +
(

k
2
)
)−1, there exists

an integer m > N such that {m,m+ 1, . . . ,m+
(

k
2
)
} ⊂ N \AP (x, k).

For every j and r such that 0 ≤ j ≤ k − 1 and m ≤ r ≤ m+
(

k
2
)
, set

Uj,r = xjr+1xjr+2 · · ·x(j+1)r,

so that |Uj,r| = r and U0,r, U1,r, . . . , Uk−1,r are the first k consecutive blocks of x of length
r. Thus for each m ≤ r ≤ m +

(
k
2
)
there exist i and j, with 0 ≤ i < j ≤ k − 1, such that

Ui,r = Uj,r. By the pigeonhole principle, there exist r and s, with m ≤ r < s ≤ m+
(

k
2
)
, and

i and j, with 0 ≤ i < j ≤ k − 1, such that Ui,r = Uj,r and Ui,s = Uj,s.
Notice that (i+ 1)r > is+ 1 and (j + 1)r > js+ 1.
Let us now set w = xis+1xis+2 · · ·x(i+1)r and v = xjs+1xjs+2 · · ·x(j+1)r (see Figure 1).

We have

|v| = (j + 1)r − js < (i+ 1)r − is = |w|,

whence v is a border of w. Writing w = uv, we have

1 ≤ |u| = |w| − |v| = (j − i)(s− r) ≤ (k − 1)
(
k

2

)
= M,
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and

|w| > |v| = r − j(s− r) ≥ m− (k − 1)
(
k

2

)
= m−M > N −M = lM.

Thus, |w| > l|u| and, by Lemma 3, ul is a prefix of w, and therefore ul is a factor of x. J

A more precise consequence of Theorem 4 is the following.

I Corollary 5. Let x be a uniformly recurrent word. Then either

d (AP (x, k)) ≥ 2
2 + k(k − 1) (1)

for every k ∈ N or there exists r > 0, such that

d (P (x, k)) ≥ r (2)

for every k ∈ N.

Proof. According to Theorem 4, if (1) does not hold for some k′ ∈ N, then x = uω for some
u with 1 ≤ |u| ≤ (k′ − 1)

(
k′

2
)
. Whence n|u| ∈ P (x, k) for each n, k ∈ N. The result now

follows by setting r = 1/|u|. J

Note that the d (P (x, k)) ≥ r for every k is stronger than just d (P (x, k)) > 0. Conversely,
if d (P (x, k)) > 0 for some k ≥ 2, then d (P (x, 2)) > 0, and from this it is immediate to see
that x is periodic. In fact, something stronger is true: following the notation in the proof of
Theorem 4, if there exists j ≥ 1 such that d {r | U0,r = Uj,r} > 0, then x is periodic. And
d (P (x, 2)) > 0 is a special case of this assumption (when j = 1).

I Corollary 6. Let x be a uniformly recurrent word. If

d (AP (x, k)) < 2
2 + k(k − 1)

for some k ∈ N, then x is purely periodic.

Another direct consequence of Theorem 4 is the following.

I Theorem 7. Let x be an infinite word. If x is ω-power-free, then at every position of x
start anti-powers of any order.

Proof. Suppose that there exists a positive integer k and a suffix x′ of x such that no prefix
of x′ is a k-anti-power. Then AP (x′, k) = ∅, whence d (AP (x′, k)) = 0. By Theorem 4,
there exists a factor u of x′ such that ul is a factor of x′ for every l ≥ 1, hence x is not
ω-power-free. J

From Theorems 2 and 7, we derive the following corollary.

I Corollary 8. Let x be a uniformly recurrent aperiodic word. Then at every position of x
start anti-powers of any order.
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4 Avoiding anti-powers

In this section we deal with avoidability of anti-powers.

I Definition 9. Given k > 1, we say that an infinite word x avoids k-anti-powers if no factor
of x is a k-anti-power. That is, among any k consecutive blocks of the same length in x, at
least two of them are equal. We say that an infinite word x avoids anti-powers if x avoids
k-anti-powers for some k.

Periodic words avoid anti-powers, the period length being an upper bound for the maximal
number of distinct consecutive blocks of the same length. In the following, we discuss the
avoidability of anti-powers for aperiodic words. By Corollary 8, if an aperiodic word avoids
anti-powers, then it cannot be uniformly recurrent.

Of course, any word containing at least two different letters cannot avoid 2-anti-powers.
For 3-anti-powers, we have the following result.

I Lemma 10. Let x be an infinite word. If x avoids 3-anti-powers, then x is a binary word.

Proof. Suppose x avoids 3-anti-powers and contains three different letters. Then there is
a factor of x of the form u = abnc with n ≥ 1 and a, b, c distinct letters. We will extend
this factor to the right and force a 3-anti-power for every n. For n = 1, the word abc is
already an anti-power. Take now n = 2. To avoid 3-anti-powers, abbc can only be extended
to abbcb. In the next step, the only option is abbcbc, and after that abbcbcb. But now, the
word abbcbcbyy′ contains a 3-anti-power for every letters y, y′. Suppose now u = abnc with
n ≥ 3. If n is odd, let m = (n− 1)/2 and note that u can be factored as abm · bm+1 · c, so
that u will be extended to the right to a 3-anti-power of length 3(m + 1). If n is even, u
can be factored as u = abm · bm+1 · bc, so that again u will be extended to the right to a
3-anti-power of length 3(m+ 1). J

Hence, in what follows we will suppose that x is an infinite word over the binary alphabet
A = {0, 1}.

I Proposition 11. Let x be an infinite word. If x avoids 3-anti-powers, then it cannot
contain a factor of the form 10n1 or 01n0 with n > 1.

Proof. Suppose that x contains a factor of the form u = 10n1 with n > 1 (the other situation
is symmetric). The cases n = 2, 3, 4, 5 can be checked by computer, so let us suppose n ≥ 6.

Suppose first n even, and write n = 2m. Since u = 10m−1 · 0m · 01, any extension of u to
the right will produce a 3-anti-power of length 3m. If n is odd, n = 2m+ 1, then we can
write u = 10m−1 · 0m · 001, so that any extension of u to the right will produce a 3-anti-power
of length 3m. J

I Corollary 12. Let x be an infinite word avoiding 3-anti-powers. Then x is ultimately
periodic.

Actually, from Proposition 11, we have that an infinite word avoiding 3-anti-powers can
only be of the form x = (01)ω, x = 01ω, or x = 0n10ω for some n > 0, up to exchanging
letters.

I Proposition 13. There exist aperiodic words avoiding 4-anti-powers.

Proof. We exhibit an example of an aperiodic word avoiding 4-anti-powers. Let (αi)i≥1 be
an increasing sequence of positive integers with αi+1 ≥ 5αi for each i ≥ 1. Let x ∈ {0, 1}N

ICALP 2016
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be defined by xn = 1 if n = αi for some i ≥ 1, and xn = 0 otherwise. Clearly x is aperiodic.
Moreover, given m ≥ 0 and n ∈ N, if |xm+1xm+2 · · ·xm+n|1 ≥ 2, then for some i ≥ 1

m+ 1 ≤ αi < 5αi ≤ αi+1 ≤ m+ n

and hence n > 4αi ≥ 4(m+ 1) whence m+ 1 < n/4. We claim that x avoids 4-anti-powers.
In fact, suppose to the contrary that for some m ≥ 0 and n ∈ N we have xm+1 · · ·xm+n,

xm+n+1 · · ·xm+2n, xm+2n+1 · · ·xm+3n, and xm+3n+1 · · ·xm+4n are pairwise distinct. Then at
least three of the four blocks must contain an occurrence of 1. Thus |xm+n+1 · · ·xm+4n|1 ≥ 2
from which it follows that m+ n+ 1 < 3n/4 and hence m+ 1 < 0, a contradiction. J

The word in the previous proposition is not recurrent. It is natural to ask whether there
exist recurrent words avoiding 4-anti-powers. We do not know the answer. However, we can
state the following result.

I Proposition 14. There exist aperiodic recurrent words avoiding 6-anti-powers.

Proof. We exhibit an example of an aperiodic recurrent word avoiding 6-anti-powers. Let
w0 = 0 and wn = wn−113|wn−1|wn−1 for every n > 0. Let w be the infinite word obtained
as the limit of the sequence of words (wn)n≥1. Then clearly w is recurrent. Without loss
of generality, we can assume that each occurrence of wn in w is preceded and followed by
13|wn|, since w avoids 6-anti-powers if 1∞w does.

Let v = v1v2 · · · v6 be a non-empty factor of w of length 6k. Let n be the largest integer
such that |wn| = 5n < 2k. By the hypothesis on n, no vi can intersect two occurrences of wn.

Suppose first that for some i, vi is contained as a factor in wn. By the hypothesis on n,
neither vi−1vi nor vivi+1 is contained in wn. Since wn is preceded and followed by 13|wn|,
either vi−3 and vi−2 (if i ≥ 4) or vi+2 and vi+3 (if i < 4) are both equal to 1k, so that v
cannot be an anti-power.

If instead no vi is contained as a factor in wn, then one of the following cases must
hold:
(i) There is an occurrence of wn intersecting vi and the next occurrence of wn intersects

vi+1. In this case, either vi−3 and vi−2 or vi+3 and vi+4 are both equal to 1k.
(ii) There is an occurrence of wn intersecting vi and the next occurrence of wn intersects

vi+2, so that vi+1 = 1k. In this case, either vi−2 or vi+4 must be equal to 1k.
(iii) There are two consecutive blocks vi, vi+1 both equal to 1k.
In all cases, v cannot be an anti-power. J

5 Conclusions and open problems

We proved that every infinite word contains powers of any order or anti-powers of any order,
that is, the existence of powers or anti-powers is an unavoidable regularity. This result can
also be stated in the following finite version.

I Theorem 15. For every integers k > 1 and r > 1 there exists N = N(k, r) such that every
word of length N contains a k-power or an r-anti-power. Furthermore, for k > 2, one has
k2 − 2 ≤ N(k, k) ≤ k5 + k3.

The upper bound follows from the proof of Theorem 4. For the lower bound, it is easy
to prove that the word (0k−11)k−20k−210k−2 of length k2 − 3 avoids both k-powers and
k-anti-powers, for any k > 2.

In the case of binary alphabet, it can be verified that N(2, 2) = 2, N(3, 2) = 3, N(2, 3) = 4,
N(3, 3) = 9, N(4, 3) = 12, N(3, 4) > 16, N(4, 4) > 16. We do not know how these numbers
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grow. Moreover, the bounds on N(k, r) given in Theorem 15 can probably be improved by a
deeper analysis of the function N(k, r).

Concerning the avoidability of anti-powers, we proved that there exist words avoiding 4
anti-powers and that there exist recurrent words avoiding 6-anti-powers. A natural problem
is therefore that of determining what is the least k such that there exists a recurrent word
avoiding k-anti-powers.

Another possible direction of investigation is related to the possible lengths of anti-
powers appearing in a word. For an aperiodic uniformly recurrent word x, define ap(x, k) =
min(AP (x, k)), i.e., the minimum length m for which the prefix of x of length km is a
k-anti-power. The first values of this function for the Thue-Morse word are displayed in
Table 1 (where the value of ap(x, k) is the ratio between the length of the k-anti-power prefix
and the order k). We wonder whether it is possible to link the behavior of the function
ap(x, k) to the combinatorics of the word x, at least for special classes of words. For example,
the values reported in Table 1 suggest that for the Thue-Morse word the function ap(x, k)
grows linearly in k.
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