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Abstract
Considerable effort has been devoted to the development of streaming algorithms for analyzing
massive graphs. Unfortunately, many results have been negative, establishing that a wide variety
of problems require Ω(n2) space to solve. One of the few bright spots has been the development
of semi-streaming algorithms for a handful of graph problems – these algorithms use space O(n ·
polylog(n)).

In the annotated data streaming model of Chakrabarti et al. [7], a computationally limited
client wants to compute some property of a massive input, but lacks the resources to store even
a small fraction of the input, and hence cannot perform the desired computation locally. The
client therefore accesses a powerful but untrusted service provider, who not only performs the
requested computation, but also proves that the answer is correct.

We consider the notion of semi-streaming algorithms for annotated graph streams (semi-
streaming annotation schemes for short). These are protocols in which both the client’s space
usage and the length of the proof are O(n ·polylog(n)). We give evidence that semi-streaming an-
notation schemes represent a more robust solution concept than does the standard semi-streaming
model. On the positive side, we give semi-streaming annotation schemes for two dynamic graph
problems that are intractable in the standard model: (exactly) counting triangles, and (exactly)
computing maximum matchings. The former scheme answers a question of Cormode [22]. On
the negative side, we identify for the first time two natural graph problems (connectivity and
bipartiteness in a certain edge update model) that can be solved in the standard semi-streaming
model, but cannot be solved by annotation schemes of “sub-semi-streaming” cost. That is, these
problems are as hard in the annotations model as they are in the standard model.
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1 Introduction

The rise of cloud computing has motivated substantial interest in protocols for verifiable data
stream computation. These protocols allow a computationally weak client (or verifier), who
lacks the resources to locally store a massive input, to outsource the storage and processing of
that input to a powerful but untrusted service provider (or prover). Such protocols provide
a guarantee that the answer returned by the prover is correct, while allowing the verifier to
make only a single streaming pass over the input.
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Several recent works have introduced closely related models capturing the above scenario
[18, 7, 8, 19, 6, 20, 12, 13, 11]. Collectively, these works have begun to reveal a rich
theory, leveraging algebraic techniques developed in the classical theory of interactive proofs
[23, 29, 4, 16] to obtain efficient verification protocols for a variety of problems that require
linear space in the standard streaming model (sans prover).

The primary point of difference among the various models of verifiable stream computation
that have been proposed is the amount of interaction that is permitted between the verifier
and prover. The annotated data streaming model of Chakrabarti et al. [7] (subsequently
studied in [12, 19, 6, 11]) is non-interactive, requiring the correctness proof to consist of just a
single message from the prover to the verifier, while other models, such as the Arthur–Merlin
streaming protocols of Gur and Raz [18, 6] and the streaming interactive proofs of Cormode
et al. [13, 8] permit the prover and verifier to exchange two or more messages. Our focus in
this paper is on the annotated data streaming model of Chakrabarti et al. – owing to their
non-interactive nature, protocols in this model possess a number of desirable properties not
shared by their interactive counterparts, such as reusability (see Section 2 for details). We
are concerned with protocols for problems on graph streams, described below.

Graph Streams. The ubiquity of massive relational data sets (derived, e.g., from the Internet
and social networks) has led to detailed studies of data streaming algorithms for analyzing
graphs. In this setting, the data stream consists of a sequence of edges, defining a graph
G on n nodes, and the goal is to compute various properties of G (is G connected? How
many triangles does G contain?). Unfortunately, many results on graph streaming have been
negative: essentially any graph problem of the slightest practical interest requires Ω(n) space
to solve in the standard streaming model, and many require Ω(n2) space even to approximate.
Due to their prohibitive cost in the standard streaming model, many basic graph problems
are ripe for outsourcing.

One of the few success stories in the study of graph streams has been the identification of
the semi-streaming model as something of a “sweet spot” for streaming algorithms[26, 24].
The semi-streaming model is characterized by an O(n ·polylogn) space restriction, i.e., space
proportional to the number of nodes rather than the number of edges. For dense graphs
this represents considerably less space than that required to store the entire graph. It has
long been known that problems like connectivity and bipartiteness possess semi-streaming
algorithms when the stream consists only of edge insertions, with no deletions. Recently,
semi-streaming algorithms have been provided for these and other problems even for dynamic
graph streams, which contain edge deletions as well as insertions [1, 2, 14]. We direct the
interested reader toward the recent survey of McGregor [25] on graph stream algorithms.

In this work, we consider the notion of semi-streaming annotation schemes for graph
problems. Here, the term “scheme” refers to a protocol in the annotated data streaming
model. A scheme’s total cost is defined to be the sum of the verifier’s space usage (referred
to as the space cost of the scheme) and the length of the proof (referred to as the scheme’s
help cost). A scheme is said to be semi-streaming if its total cost is O(n · polylogn).

We give evidence that semi-streaming annotation schemes represent a substantially
more robust solution concept (i.e., a “sweeter spot”) for graph problems than does the
standard semi-streaming model. First, we give novel semi-streaming annotation schemes for
two challenging dynamic graph problems, counting triangles and maximum matching, that
require Ω(n2) space in the standard streaming model. The total cost of these schemes is
provably optimal up to a logarithmic factor. Second, we show that two canonical problems
that do possess semi-streaming algorithms in the standard streaming model (connectivity
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Table 1 Comparison of our new scheme for Triangles to prior work.

Reference Triangles Scheme Costs (help cost, space cost) Total Cost Achieved
[7] (n2 log n, log n) O(n2 log n)
[7] (x log n, y log n) for any x · y ≥ n3 O(n3/2 log n)

Theorem 1 (n log n, n log n) O(n log n)

and bipartiteness in a certain edge update model) are just as hard in the annotations model.
Formally, we show that any scheme for these problems with space cost O(n1−δ) requires
a proof of length Ω(n1+δ) for any δ > 0. Thus, for these problems, giving a streaming
algorithm access to an untrusted prover does not allow for a significant reduction in cost
relative to what is achievable without a prover. This gives further evidence for the robustness
of semi-streaming annotation schemes as a solution concept: while several fundamental
problems that cannot be solved by standard semi-streaming algorithms can be solved by
semi-streaming annotation schemes, there are problems that do have semi-streaming solutions
in the standard model that cannot be solved by schemes of sub-semi-streaming cost.

1.1 Summary of Contributions and Techniques
Throughout this informal overview, n will denote the number of nodes in the graph defined
by the data stream, and m the number of edges. To avoid boundary cases in the statement
of our lower bounds, we assume that the help cost of any scheme is always at least 1 bit.

1.1.1 New Semi-Streaming Annotation Schemes
Prior work has given semi-streaming annotation schemes for two graph problems that
require Ω(n2) space in the standard semi-streaming model: bipartite perfect matching
[7], and shortest s-t path in graphs of polylogarithmic diameter [12]. As discussed above,
we give semi-streaming schemes for two more challenging problems: maximum matching
(MaxMatching) and counting triangles (Triangles). Both schemes apply to dynamic
graph streams. We begin by describing our result for Triangles.

I Theorem 1 (Informal Version of Theorem 4). There is a scheme for Triangleswith total
cost O(n logn). Every scheme requires the product of the space and help costs to be Ω(n2),
and hence has total cost Ω(n).

Theorem 1 affirmatively answers a question of Cormode [22], resolves the Merlin-Arthur
communication complexity of the problem up to a logarithmic factor, and improves over the
best previous bound of O(n3/2 logn), due to [7] (see Table 1 for a comparison).

As is the case for essentially all non-trivial protocols for verifiable stream computation,
the scheme of Theorem 1 uses algebraic techniques related to the famous sum-check protocol
of Lund et al. [23] from the classical theory of interactive proofs. Yet, our scheme deviates
in a significant way from all earlier annotated data stream and interactive proof protocols
[15, 8, 7, 29]. Roughly speaking, in previous protocols, the verifier’s updates to her memory
state were commutative, in the sense that reordering the stream tokens would not change the
final state reached by the verifier. However, our new verifier is inherently non-commutative:
her update to her state at time i depends on her actual state at time i, and reordering the
stream tokens can change the final state reached by the verifier. The full version of the paper
contains further discussion of this point.

ICALP 2016
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Table 2 Comparison of our new scheme for MaxMatching to prior work.

Reference MaxMatching Scheme Costs (help cost, space cost) Total Cost Achieved
[12] (m log n, log n) O(m log n)

Theorem 5 (n log n, n log n) O(n log n)

I Theorem 2 (Informal Version of Theorem 5). There is a scheme for MaxMatching with
total cost O(n logn). Every scheme for MaxMatching requires the product of the space
and help costs to be Ω(n2), and hence has total cost Ω(n).

Our scheme combines the Tutte-Berge formula with algebraic techniques to allow the
prover to establish matching upper and lower bounds on the size of a maximum matching in
the input graph. Schemes for maximum matching had previously been studied by Cormode
et al. [12], but this prior work only gave schemes with help cost proportional to the number
of edges, which is Ω(n2) in dense graphs (like us, Cormode et al. exploited the Tutte-Berge
formula, but did not do so in a way that achieved help cost sublinear in the input size). Prior
work had also given a scheme achieving optimal tradeoffs between help and space costs for
bipartite perfect matching [7, Theorem 7.5] – our scheme for MaxMatching can be seen as
a broad generalization of [7, Theorem 7.5].

1.1.2 New Lower Bounds
On the other hand, we identify, for the first time, natural graph problems that possess
standard semi-streaming algorithms, but in a formal sense are just as hard in the annotations
model as they are in the standard streaming model. The problems that we consider are
connectivity and bipartiteness in a certain edge update model that we call the XOR update
model. In this update model, the stream 〈e1, . . . , em〉 is a sequence of edges from [n]× [n],
which define a graph G = (V,E) via: e ∈ E ⇐⇒ |{i : ei = e}| = 1 mod 2. Intuitively,
each stream update ei is interpreted as changing the status of edge ei: if it is currently
in the graph, then the update causes ei to be deleted; otherwise ei is inserted. Our lower
bound holds for schemes for connectivity and bipartiteness in the XOR update model, even
under the promise that e1, . . . , em−n are all unique (hence, all but the last n stream updates
correspond to edge insertions), and the last n updates are all incident to a single node.

I Theorem 3 (Informal Version of Corollary 7). Consider any scheme for Connectivity
or Bipartiteness in the XOR update model with help cost ca and and space cost cv. Then
(ca + n) · cv ≥ n2, even under the promise that the first m− n stream updates are all unique,
and the last n stream updates are all incident to a single node. In particular, the total cost
of any annotation scheme for these problems is Ω(n).

Both connectivity and bipartiteness in the XOR update model possess standard semi-
streaming algorithms [1].1 Hence, Theorem 3 implies that the total cost of any annotation
scheme is at most a polylogarithmic factor smaller than the problems’ space complexity in
the standard streaming model. Like all prior work establishing lower bounds on the cost of

1 The algorithms of [1] are described in the turnstile update model, in which each stream update explicitly
specifies whether to insert or delete a (copy of) an edge. However, these algorithms are easily modified
to apply to the XOR update model as well. In brief, these algorithms have L0-sampling algorithms at
their core. Existing L0-samplers are in turn built on top of sparse recovery algorithms (see, e.g., [10]),
and many sparse recovery algorithms can be implemented in the XOR update model directly (see, e.g.,
[17]).
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protocols for verifiable stream computation, our lower bounds are established using notions
of Merlin-Arthur communication complexity [7, 12, 19, 8, 18].

Prior to this work, only one other problem was known to be as hard (up to logarithmic
factors) in the annotations model as in the standard streaming model [6, Corollary 3.3]. The
problem considered in [6, Corollary 3.3] was an “exponentially sparse” variant of the classic
index problem, in which the data stream consists of a vector x ∈ {0, 1}n promised to have
Hamming weight O(logn), followed by an index i ∈ [n], and the goal is to output the value
xi. Connectivity and bipartiteness are arguably more natural problems, and are qualitatively
different, as we now explain.

On an informal level, the reason the exponentially sparse index problem is hard in the
annotations model is that any “useful” annotation must at least specify a single index into the
vector x, which requires logn bits of annotation. And since x is exponentially sparse, logn
is actually equal (up to a constant factor) to the space complexity of a standard streaming
algorithm for the problem. In our view, Bipartiteness and Connectivity are hard in
the annotations for a different reason – roughly speaking, any useful annotation for these
problems must at least specify, for each node u, the side of the bipartition or the connected
component in which u resides.

Overview of the Proof. Our proof of Theorem 3 works by specifying a reduction from the
index problem on inputs of length n2, for which a lower bound of Ω(n2) on the product of
the help and space costs of any annotation scheme was established in [7], to Connectivity
and Bipartiteness on graphs with n nodes and Θ(n2) edges.

Notice that in the standard (sans prover) streaming model, the index problem on n2

variables is strictly harder than connectivity and bipartiteness problems on graphs with
n nodes, as the former requires Ω(n2) space, while the latter two problems require only
O(n · polylog(n)) space. Yet Theorem 3 establishes that in the annotations model, all three
problems are of essentially equivalent difficulty (in particular, schemes of total cost Õ(n) are
necessary and sufficient to solve all three problems). To establish such a result, it is necessary
to use a reduction that is specifically tailored to the annotations model, in the sense that the
reduction must not apply in the standard streaming model (since index and Connectivity
are not of equivalent difficulty in the standard setting). Namely, in our reduction from index
to connectivity, the prover helps the verifier transform an instance of the index problem
into a Connectivity instance. This “help” consists of Θ(n) bits, and this is why our lower
bound is of the form (ca +n) · cv ≥ n2. This is in contrast to prior lower bounds, which, with
the exception of [6, Corollary 3.3], were of the form ca · cv = Ω(C) for some quantity C.

1.2 Other Related Work
As discussed above, several recent papers [11, 8, 13, 19, 20, 18, 6, 7, 12] have all studied
annotated data streams and closely related models for verifiable stream computation. Refine-
ments and implementations [11, 31] have demonstrated genuine practicality for many of the
protocols developed in this line of work. Protocols for verifiable stream computation have
also been studied in the cryptography community [9, 27]. These works only require security
against cheating provers that run in polynomial time, whereas we require security to hold even
against computationally unbounded provers. In exchange for the weaker security guarantee,
these protocols may achieve properties that are unattainable in our information-theoretic
setting. For example, some of these protocols achieve a stronger form of reusability than we
do (see Section 2 for our definition of reusability) – they remain secure for many uses even if
the prover learns all of the verifier’s accept/reject decisions. The work of Chung et al. [9]

ICALP 2016
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uses fully homomorphic encryption (FHE), which remains far from practical at this time.
Papamanthou et al. [27] avoid the use of FHE, but handle only much simpler queries (e.g.,
point queries and range search) than the graph problems we consider here.

2 Models of Streaming Computation

Our presentation of data streaming models closely follows Chakrabarti et al. [6]. Recall that
a (standard) data stream algorithm computes a function f of an input sequence x ∈ Um,
where m is the number of stream updates, and U is some data universe. The algorithm has
only sequential access to x, uses a limited amount of space, and has access to a random
string. The function f may or may not be Boolean. An annotated data stream algorithm, or
a scheme, is a pair A = (h, V ), consisting of a help function h : Um × {0, 1}∗ → {0, 1}∗ used
by a prover and a data stream algorithm run by a verifier, V . The prover provides h(x) as
annotation to be read by the verifier. We think of h as being decomposed into (h1, . . . , hm),
where the function hi : Um → {0, 1}∗ specifies the annotation supplied after the arrival of
the ith token xi. That is, h acts on x to create an annotated stream xh defined as follows:

xh := (x1, h1(x), x2, h2(x), . . . , xm, hm(x)) .

Note that this is a stream over U ∪ {0, 1}, of length m +
∑
i |hi(x)|. The streaming

verifier, who has access to a (private) random string r, then processes this annotated stream,
eventually giving an output outV (xh, r).

We say a scheme is online if each function hi depends only on (x1, . . . , xi). The scheme
A = (h, V ) is said to be δs-sound and δc-complete for the function F if the following hold:
1. For all x ∈ Um, we have Prr[outV (xh, r) 6= F (x)] ≤ δc.
2. For all x ∈ Um, h′ = (h′1, h′2, . . . , h′m) ∈ ({0, 1}∗)m, we have Prr[outV (xh′ , r) 6∈ {F (x)} ∪
{⊥}] ≤ δs.

An output of “⊥” indicates that the verifier rejects the prover’s claims in trying to convince
the verifier to output a particular value for F (x). We define err(A) to be the minimum value
of max{δs, δc} such that the above conditions are satisfied. We define the annotation length
hc(A) = maxx

∑
i |hi(x)|, the total size of the prover’s communications, and the verification

space cost vc(A) to be the space used by the verifier. We say that A is an online (ca, cv)
scheme if hc(A) = O(ca), vc(A) = O(cv), and err(A) ≤ 1

3 (the constant 1/3 is arbitrary and
chosen by convention).

Chakrabarti et al. [7] also define the notion of a prescient scheme, which is the same as
an online scheme, except the annotation at any time i is allowed to depend on data which
the verifier has not seen yet. Prescient schemes have the undesirable property that the prover
may need to “see into the future” to convince the verifier to produce the correct output.
Note that even though our Triangles and MaxMatching protocols are online, they are
optimal up to logarithmic factors even among prescient schemes (see Theorems 4 and 5).

While the annotated data streams model allows the prover to interleave the annotation
with the stream, in all of the schemes we present in this paper, all of the annotation comes at
the end of the stream. This property avoids any need for fine-grained coordination between
the annotation and the stream, and permits the prover to send the annotation as a single
email attachment, or post it to a website. We clarify that the lower bounds for Connectivity
and Bipartiteness that we establish in Section 4 apply to any online scheme, even those
which interleave the annotation with the stream.

The schemes we present in this work permit a natural form of reusability: if the verifier
wants to compute a function f on a given dataset x, the verifier can receive f(x) (with
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a correctness proof), and check the validity of the proof using a “secret state” that she
computed while observing the stream x. Further updates to the stream x can then occur,
yielding a (longer) stream x′, and the verifier can update her secret in a streaming fashion.
The verifier may then receive the answer f(x′) (with a correctness proof) on the updated
dataset, and check its correctness using the updated secret state. The probability that the
verifier gets fooled into outputting an incorrect answer on even a single query grows only
linearly with the number of times the prover sends the verifier an answer. Such reusability
is not possible with interactive solutions [13, 8, 20], which require the verifier to reveal
information about r over the course of the protocol.

3 Upper Bounds

Graph Streams in the Strict Turnstile Model. The annotation schemes of this section
apply to graph streams in the strict turnstile update model. In this model, a data
stream σ consists of a sequence of undirected edges, accompanied by (signed) multipli-
cities: 〈(e1,∆1), . . . , (em,∆m)〉. Each edge ei ∈ [n] × [n], and each ∆i ∈ Z. An update
(ei,∆i) with ∆i > 0 is interpreted as an insertion of ∆i copies of edge ei into graph G. If
∆i < 0, the update is interpreted as a deletion of ∆i copies of edge ei. It is assumed that at
the end of the stream, no edge has been deleted more times than it has been inserted (all of
our protocols work even if this property does not hold at intermediate time steps, as long as
the property holds after the final stream update has been processed).2 When analyzing the
time costs of our schemes, we assume that any addition or multiplication in a finite field of
size poly(n) takes one unit of time.

3.1 A Semi-Streaming Scheme for Counting Triangles
In the Trianglesproblem, the goal is to determine the number of unordered triples of
distinct vertices (u, v, z) such that edges (u, v), (v, z), and (z, u) all appear in G. More
generally, if these edges appear with respective multiplicities M1, M2, and M3, we view triple
(u, v, z) as contributing M1 ·M2 ·M3 triangles to the total count.3 Computing the number of
triangles is a well-studied problem [3] and there has been considerable interest in designing
algorithms in a variety of models including the data stream model [5, 28], MapReduce [30],
and the quantum query model [21]. One motivation is the study of social networks where
important statistics such as the clustering coefficient and transitivity coefficient are based
on the number of triangles. Understanding the complexity of counting triangles captures
the ability of a model to perform a non-trivial correlation within large graphs. Chakrabarti
et al. [7] gave two annotated data streaming protocols for this problem. The first protocol
had help cost O(n2 logn), and space cost O(logn). The second protocol achieved help cost
O(x logn) and space cost O(y logn) for any x, y such that x ·y ≥ n3. In particular, by setting
x = y = n3/2, the second protocol of Chakrabarti et al. ensured that both help cost and
space cost equaled O

(
n3/2 logn

)
. Cormode [22] asked whether it is possible to achieve an

annotated data streaming protocol in which both the help cost and space cost are Õ(n). We

2 We do not consider edges with negative weights at the end of the stream because it is unclear what is
the most meaningful way to define problems like Triangles and MaxMatching in this setting. See
Footnotes 3 and 4.

3 The Trianglesscheme of Theorem 3.1 gives meaningful results even if the Mi’s may be negative: a
triangle with an odd (even) number of edges of negative multiplicity contributes a negative (positive)
number to the total triangle count.

ICALP 2016
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answer this question in the affirmative.

I Theorem 4 (Formal Statement of Theorem 1). Assume there is an a priori upper bound
B ≤ poly(n) on the multiplicity of any edge in G. There is an online scheme for Triangles
with space and help costs O(n logn). Every scheme (online or prescient) requires the product
of the space and help costs to be Ω(n2), and hence total cost Ω(n), even for B = 1, and even
if G is promised to have exactly 0 or 1 triangles.

Discussion. Before proving Theorem 4, it is instructive to consider a simple interactive
streaming verification protocol for Triangles(described in detail in the full version of the
paper). At a high level, the interactive protocol applies the sum-check protocol of Lund
et al. [23] to a suitably defined multivariate polynomial h. The space and communication
costs of this protocol are comparable to that of Theorem 4; the advantage of Theorem 4 over
this simple interactive solution is that Theorem 4 gives a protocol that is non-interactive,
and comes with the associated reusability benefits described in Section 2. Theorem 4 below
effectively removes the interaction from the simple interactive protocol as follows. We identify
a univariate polynomial g(Z) of degree O(n) such that the number of triangles in G equals∑
z∈[n] g(Z). Moreover, we show that the verifier can evaluate g(r) for any point r ∈ F in

space O(n log |F|) with a single streaming pass over the input. It follows that applying the
sum-check protocol to g yields a scheme with costs claimed in Theorem 4. The polynomial g
that we identify is defined as a sum of m constituent polynomials, one per stream update.

Proof of Theorem 4. The lower bound was proved in [7, Theorem 7.1]. Details of the
upper bound follow. Let Gi denote the graph defined by the first i stream updates
〈(e1,∆1), . . . , (ei,∆i)〉, and let Ei : [n]× [n]→ Z denote the function that outputs the multi-
plicity of the edge (u, v) in graph Gi−1. On edge update ei = (ui, vi), notice that the number
of triangles that ei completes in Ei is precisely ∆i ·

∑
z∈[n] Ei(ui, z)Ei(vi, z). Thus, the total

number of triangles in the graph G = Gm is precisely
∑
i≤m ∆i

∑
z∈[n] Ei(ui, z)Ei(vi, z). Let

F denote a field of prime order 6(B ·n)3 ≤ |F| ≤ 12(B ·n)3, and let Ẽi(X,Y ) denote the unique
polynomial over F of degree at most n in each variable X,Y such that Ẽi(u, v) = Ei(u, v)
for all (u, v) ∈ [n]× [n]. Then the number of triangles in G equals∑
i≤m

∆i

∑
z∈[n]

Ei(ui, z)Ei(vi, z) =
∑
i≤m

∆i

∑
z∈[n]

Ẽi(ui, z)Ẽi(vi, z)=
∑
z∈[n]

∑
i≤m

∆i·Ẽi(ui, z)Ẽi(vi, z).

(1)

In turn, the right hand side of Equation (1) can be written as
∑
z∈[n] g(z), where g denotes

the univariate polynomial defined via: g(Z) =
∑
i≤m ∆i · Ẽi(ui, Z)Ẽi(vi, Z). Notice g(Z) is

a univariate polynomial of degree at most 2n. Our scheme proceeds as follows.

Prover’s computation. At the end of the stream, the prover sends a univariate polynomial
s(Z) of degree at most 2n, where s(Z) is claimed to equal g(Z). Notice that since s(Z) has
degree at most 2n, s(Z) can be specified by sending its values on all inputs in {0, . . . , 2n} –
this requires help cost O(n log |F|) = O(n logn).

Verifier’s computation. At the start of the stream, the verifier picks a random field element
r ∈ F, and keeps the value of r secret from the prover. We will show below that the verifier
can evaluate g(r) with a single streaming pass over the input, using space O(n logn). The
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verifier checks whether s(r) = g(r). If this check fails, the verifier halts and rejects. If the
check passes, the verifier outputs

∑
z∈[n] s(z) as the correct answer.

We now explain how the verifier can evaluate g(r) with a single streaming pass over the
input. The high-level idea is as follows. g(r) is defined as a sum of m terms, where the
ith term equals ∆i · Ẽi(ui, r)Ẽi(vi, r). For each u ∈ [n], we will show how the verifier can
incrementally maintain the quantity Ẽi(u, r) at all times i. The verifier will maintain all n
of these quantities, resulting in a total space cost of O(n log |F|) = O(n logn). With these
quantities in hand, it is straightforward for the verifier to incrementally maintain the sum∑
j≤i ∆j · Ẽj(uj , r)Ẽj(vj , r) at all times i: upon the ith stream update, the verifier simply

adds ∆i · Ẽi(ui, r) · Ẽi(vi, r) to the running sum.
To maintain the quantity Ẽi(u, r), we begin by writing the bivariate polynomial Ẽi(X,Y )

in a convenient form. Given a pair (u, v) ∈ [n]× [n], let δ̃(u,v) denote the following (Lagrange)

polynomial: δ̃(u,v)(X,Y ) =
(∏

1≤u′≤n:u′ 6=u
(X−u′)∏

1≤u′≤n:u′ 6=u
(u−u′)

)(∏
1≤v′≤n:v′ 6=v

(Y−v′)∏
1≤v′≤n:v′ 6=v

(v−v′)

)
. Notice that δ̃(u,v)

evaluates to 1 on input (u, v), and evaluates to 0 on all other inputs (x, y) ∈ [n]× [n]. Thus,
we may write Ẽi(X,Y ) =

∑
j≤i δ̃(uj ,vj)(X,Y ). In particular, for each node u ∈ [n],

Ẽi(u, r) = Ẽi−1(u, r) + δ̃(ui,vi)(u, r) + δ̃(vi,ui)(u, r).

Thus, the verifier can incrementally maintain the quantity Ẽi(u, r) in a streaming manner
using space O(log |F|): while processing the ith stream update, the verifier simply adds
δ̃(ui,vi)(u, r) + δ̃(vi,ui)(u, r) to the running sum tracking Ẽi(u, r).

Completeness. It is evident that if the prover sends the true polynomial g(Z), then the
verifier’s check will pass, and the verifier will output the correct number of triangles.

Soundness. If the prover sends a polynomial s(Z) 6= g(Z), then with probability at least
1−2n/|F| ≥ 1−1/(3n2) over the verifier’s random choice of r ∈ F, it will hold that s(r) 6= g(r).
Hence, with probability at least 1− 1/(3n2) ≥ 2/3, the verifier’s check will fail. J

Several remarks regarding Theorem 4 are in order.

Verifier Time. The verifier in the protocol of Theorem 4 can process each stream update
in constant time as follows. On stream update ei = (ui, vi), the verifier must add
δ̃(ui,vi)(u, r)+ δ̃(vi,ui)(u, r) to each of the Ẽi(u, r) values. However, it is straightforward to
check that δ̃(ui,vi)(u, r) = 0 for all u 6= ui, so the verifier need only update two quantities
at time i: Ẽi(ui, r) and Ẽi(vi, r). We explain how both of these updates can be computed

in constant time. It can be seen that δ̃(ui,vi)(ui, r) =
∏

1≤v′≤n:v′ 6=vi
(r−v′)∏

1≤v′≤n:v′ 6=vi
(vi−v′)

. The right

hand side of this equation can be computed in O(1) time if the verifier maintains a
pre-computed lookup table consisting of O(n) field elements. Specifically, for each v ∈ [n],
it suffices for the verifier to maintain the quantities q1(v) :=

∏
1≤v′≤n:v′ 6=v(r − v′) and

q2(v) =
(∏

1≤v′≤n:v′ 6=v(v − v′)
)−1

. All O(n) of these quantities can be computed in
pre-processing in total time O(n logn), where the logn term is due to the time required to
compute a multiplicative inverse in the field F. Indeed, q1(1) and q2(1) can be computed
naively in O(n) time, and then for any v > 1, q1(v) and q2(v) can be computed in O(logn)
time from q1(v−1) and q2(v−1) via the identities q1(v) = q1(v−1) · (r−v)−1 · (r−v+ 1)
and q2(v) = q2(v − 1) · (v − 1)−1 · (v − 1− n).
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Table 3 Statement of Time Costs For Our TrianglesScheme (Theorem 4).

Verifier Pre-Processing Verifier Time Per Verifier Time to Prover Total
Time Stream Update Process Proof Time

O(n log n) O(1) O(n) O(m · n)

Finally, the verifier can process the proof in time O(n). Recall that the proof consists of
the values s(x) for x ∈ {0, . . . , 2n}, and the verifier simply needs to compute

∑
1≤x≤n s(x)

as well as s(r). The first quantity can trivially be computed in time O(n), and the second
can be computed in time O(n) as well using standard techniques (see, e.g., [11]).
Prover Time. The honest prover in the protocol of Theorem 4 can be implemented to
run in time O(m · n). Indeed, the honest prover needs to evaluate g(x) for O(n) points
x ∈ F, and we have explained above how g(x) can be computed in O(m) time (in fact,
in O(1) time per stream update). This is comparable to the naive triangle counting
algorithm that, for each edge and node combination, tests whether the two edges incident
on the edge and node exist in the graph.
The time costs for both the prover and verifier are summarized in Table 3.
MA communication. Theorem 4 implies that the (online) MA communication complexity
of counting triangles is O(n logn) (see Section 4.1 for the definition of the (online) MA
communication model). This essentially matches an Ω(n) lower bound on the (even
non-online) MA communication complexity of the problem, proved by Chakrabarti et
al. [7] via a standard reduction to set-disjointness, and answers a question of Cormode
[22].
Extensions: Counting Structures Other Than Triangles. Let H be a graph on k vertices.
It is possible to extend the protocol of Theorem 4 to count the number of occurrences of
H as a subgraph of G. The protocol requires k − 2 rounds, and its help and space costs
are O(k3n logn) and O(kn logn). Details are deferred to the full version.

3.2 A Semi-Streaming Scheme for Maximum Matching
We give a semi-streaming scheme for the MaxMatching problem in general graphs.4 Due
to space constraints, the proof of Theorem 5 is deferred to the full version.

I Theorem 5 (Formal Version of Theorem 2). Assume there is an a priori upper bound B ≤
poly(n) on the multiplicity of any edge in G. There is an online scheme for MaxMatching
of total cost O(B · n logn). Every scheme for MaxMatching (online or prescient) requires
the product of the space and help costs to be Ω(n2), and hence total cost Ω(n), even for B = 1.

4 Lower Bounds for Connectivity and Bipartiteness

In this section, we establish our lower bounds on the cost of online schemes for Connectivity
and Bipartiteness in the XOR update models. Like almost all previous lower bounds for
data stream computations, our lower bounds use reductions from problems in communication
complexity. To model the prover in a scheme, the appropriate communication setting is
Merlin-Arthur communication, which we now introduce.

4 It is possible to modify our scheme to give meaningful answers on graphs with edges of negative
multiplicity. Specifically, the modified scheme can treat edges of negative multiplicity as having strictly
positive multiplicity. We omit the details for brevity.
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4.1 Merlin-Arthur Communication
Consider a communication game involving three parties, named Alice, Bob, and Merlin. Alice
holds an input x ∈ X , Bob and input y ∈ Y , and Merlin is omniscient (he sees both x and y)
but untrusted. Alice and Bob’s goal is to compute f(x, y) for some agreed upon function
f : X × Y → {0, 1}. In an MA communication protocol P , Merlin first broadcasts a message
mM to both Alice and Bob. Alice and Bob then engage in a randomized communication
protocol, before outputting a single bit. To clarify, Merlin does not learn the randomness
that Alice and Bob use until after sending the message mM (x, y). For each input (x, y), the
protocol P defines a game between Merlin, Alice, and Bob, in which Merlin’s goal is to make
Alice and Bob output 1. We define ValP(x, y) to be Merlin’s probability of winning with
optimal play. Given a Boolean function f , we say that P computes f if, for all (x, y) we have
(1) f(x, y)=0=⇒ValP(x, y)≤1/3, and (2) f(x, y) = 1=⇒ValP(x, y)≥2/3. We refer to the
Property (1) as soundness and Property (2) as completeness.

The help cost, or hc(P), of P is max(x,y) |mM (x, y)|, i.e., the maximum length of Merlin’s
message in bits. The verification cost, or vc(P), of P is the maximum number of bits that
Alice and Bob exchange, where the maximum is taken over all inputs (x, y), all possible
Merlin messages mM , and all choices of Alice and Bob’s randomness. The total cost of P is
the sum of the help and verification costs of P.

In an online MA (OMA) communication protocol, neither Merlin nor Bob can talk to
Alice. Given any online scheme for a function f , we naturally obtain an OMA protocol P for
the communication problem in which Alice holds a prefix of a stream, Bob holds a suffix,
and the goal is to evaluate f on the concatenated stream x ◦ y. Hence, if we establish lower
bounds on the help and verification costs of any OMA protocol for f , an equivalent lower
bound on the help and space costs of any online scheme for f follows.

In this section, we establish lower bounds on the help and verification costs of any
OMA protocol for the Disconnectivity and Bipartiteness problems in the XOR update
model. More precisely, we consider the communication problems Disconnectivitycc and
Bipartitenesscc in which Alice holds the first m− n tuples in a graph stream in the XOR
update model, Bob holds the length n tuples, and the output function evaluates to 1 if and
only if the resulting graph is disconnected or bipartite, respectively.5

4.2 The Lower Bound
I Theorem 6. Consider any OMA protocol P for Disconnectivityccor Bipartitenesscc.
Then it holds that (hc(P) + n) · vc(P) = Ω(n2). This holds even under the promise that the
first m− n stream updates (i.e., Alice’s input) are all unique, and the last n stream updates
(i.e., Bob’s input) are all incident to a single node. In particular, the total cost of P is Ω(n).

Proof. We prove the lower bound Disconnectivityccproblem. The proof for Bipartite-
nessccis similar, and is deferred to the full version of the paper. Let P denote any OMA
protocol for Disconnectivityccthat works on graphs with n+ 1 nodes, under the promise

5 The reason that we consider Disconnectivitycc rather than Connectivitycc is the asymmetric way
that inputs in F −1(0) and F −1(1) in the definition of OMA communication complexity. Recall that
the OMA communication problem for a decision problem F requires only that if F (x) = 1 then there
is some prover that will cause the verifier to accept with high probability, and if F (x) = 0 then there
is no such prover. (By contrast, our definition of a scheme for a function F requires there to be a
convincing proof of the value of F (x) for all values F (x).) Hence, the OMA communication complexities
of Disconnectivitycc and Connectivitycc may not be equal, and indeed our lower bound argument
applies only to Disconnectivitycc.
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described in the theorem hypothesis. As discussed in the outline of Section 1.1.2, our proof
will use a reduction from the index problem on

(
n
2
)
inputs. In this problem, Alice’s input

consists of a bitstring x of length
(
n
2
)
, Bob’s input is an index i∗ ∈ [

(
n
2
)
], and the goal is

to output xi∗ . It was established in [7] that any OMA protocol Q for index on
(
n
2
)
inputs

requires hc(Q) · vc(Q) = Ω(n2). We show how to use P to construct a protocol Q for index
on
(
n
2
)
inputs with hc(Q) = n+ hc(P) and vc(Q) = vc(P). It will then follow from the lower

bound for index that (hc(P) + n) · vc(P) ≥ n2.

Description of Q. In Q, Alice interprets her input x ∈ {0, 1}(
n
2) as an undirected graph G1

with n nodes as follows. She associates each index i ∈
(
n
2
)
with a unique edge (ui, vi) out of

the set of all
(
n
2
)
possible edges that could appear in G1. Alice also adds to G1 a special node

v∗, and connects v∗ to every other node in G1. Denote the resulting graph on n+ 1 nodes
by G2. Notice that G2 is always connected, as every node is connected to v∗ by design.

Likewise, Bob interprets his input i∗ ∈ [
(
n
2
)
] as an edge (ui∗ , vi∗). Clearly, determining

whether xi∗ = 1 is equivalent to determining whether edge (ui∗ , vi∗) appears in Alice’s graph
G2. Merlin sends Bob a list L claimed to equal all edges incident to node ui∗ in G2. This
requires only n bits of “help”, since there are only n nodes to which ui∗ might be adjacent.
Bob treats L as his input to the Disconnectivityccproblem.

Alice, Bob, and Merlin now run the Disconnectivitycc protocol P (with Alice’s input
equal to G2 and Bob’s input equal to L). Bob outputs 1 iff the protocol P outputs 1, and L
contains the edge (ui∗ , vi∗).

Costs of Q. The help cost of Q is equal to n+ hc(P), since the honest Merlin sends Bob
the list L, and then behaves as he would in the protocol P . The verification cost of Q is just
vc(Q), since the only message Alice sends to Bob is the message she would send in P.

Completeness and Soundness of Q. Let G3 denote the graph obtained from G2 by XORing
all the edges in the list L. Let I(ui∗) denote the set of edges incident to ui∗ in G3. We
claim that G3 is disconnected if and only if L is equal to I(ui∗). For the first direction,
suppose that L is equal to I(ui∗). Then by XORing the edges in G3 with the edges in L,
every edge incident to node ui∗ is deleted from the graph. Hence, ui∗ is an isolated vertex in
G3, implying that G3 is disconnected. For the second direction, suppose that L is not equal
to I(ui∗). Let (ui∗ , v) denote an edge in L \ I(ui∗). Then (ui∗ , v) is in G3. Moreover, v is
adjacent to node v∗, as are all nodes in G3 other than ui∗ . Hence G3 is connected.

To finish the proof of completeness of Q, note that if xi∗ = 1, then the edge (ui∗ , vi∗) is in
G3. If Merlin sends L = I(ui∗), then G3 will be disconnected, and by the the completeness
of P , Merlin can convince Bob that G3 is disconnected with probability at least 2/3. In this
event, Bob will output 1, because (ui∗ , vi∗) will be in the list L.

To finish the proof of soundness of Q, note that if xi∗ = 0, then the edge (ui∗ , vi∗) is
not in G3. Hence, if Merlin sends L = I(ui∗), then Bob will reject automatically, because
(ui∗ , vi∗) will not be in the list L. On the other hand, if Merlin sends a list L that is not
equal to I(ui∗), then G3 will be connected. By the the soundness of P, Merlin can convince
Bob that G3 is disconnected with probability at most 1/3. Hence, Bob will output 1 in Q
with probability at most 1/3, completing the proof for Disconnectivitycc. J

Because any online scheme for Connectivity or Bipartiteness can be simulated by an
OMA communication protocol, we obtain the following corollary.
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I Corollary 7 (Formal Version of Theorem 3). Consider any online scheme for Connectivity
or Bipartiteness in the XOR update model with help cost ca and and space cost cv. Then
(ca + n) · cv ≥ n2, even under the promise that the first m− n stream updates are all unique,
and the last n stream updates are all incident to a single node. In particular, the total cost
of any annotation scheme is Ω(n).
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