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Abstract
We study the composition question for bounded-error randomized query complexity: Is R(f ◦g) =
Ω(R(f)R(g))? We show that inserting a simple function h, whose query complexity is only
Θ(logR(g)), in between f and g allows us to prove R(f ◦ h ◦ g) = Ω(R(f)R(h)R(g)).

We prove this using a new lower bound measure for randomized query complexity we call
randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable
properties, such as a perfect composition theorem, RS(f ◦ g) ≥ RS(f) RS(g), and a composition
theorem with randomized query complexity, R(f ◦ g) = Ω(R(f) RS(g)). It is also a quadratically
tight lower bound for total functions and can be quadratically superior to the partition bound,
the best known general lower bound for randomized query complexity.

Using this technique we also show implications for lifting theorems in communication complex-
ity. We show that a general lifting theorem from zero-error randomized query to communication
complexity implies a similar result for bounded-error algorithms for all total functions.
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1 Introduction

1.1 Composition theorems
A basic structural question that can be asked in any model of computation is whether there
can be savings in complexity when computing the same function on several independent
inputs. We say a direct sum theorem holds in a model of computation if solving a problem
on n independent inputs requires roughly n times the resources needed to solve one instance.
A direct sum theorem is known to hold for deterministic and randomized query complexity
[9], and two-player refereed games [17], is known to fail for circuit size [16], and remains open
for deterministic communication complexity [11].

More generally, instead of merely outputting the n answers, we could compute another
function of these n answers. If f is an n-bit Boolean function and g is an m-bit Boolean
function, we define the composed function f ◦ g to be an nm-bit Boolean function such that
f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)), where each xi is an m-bit string. The composition
question now asks if there can be significant savings in computing f ◦ g compared to simply
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60:2 Randomized Query Complexity of Sabotaged and Composed Functions

running the best algorithm for f and using the best algorithm for g to evaluate the input
bits needed to compute f . If we let f be the identity function on n bits that just outputs all
its inputs, we recover the direct sum problem.

Composition theorems are harder to prove and are known for only a handful of models,
such as deterministic and quantum query complexity. Proving this for randomized query
complexity remains a major open problem. More precisely, if D(f), R(f), and Q(f) denote
the deterministic, randomized, and quantum query complexities of f , then we know for all
partial Boolean functions f and g, D(f ◦g) = D(f)D(g) [18, 15] and Q(f ◦g) = Θ(Q(f)Q(g))
[14, 12]. (Such theorems often fail for functions with non-Boolean output, and hence we only
consider functions with Boolean output in this paper.) In contrast, in the randomized setting
we have only the upper bound R(f ◦ g) = O(R(f)R(g) logR(f)).

I Open Problem 1. Does it hold that R(f ◦ g) = Ω(R(f)R(g)) for all Boolean f and g?

In this paper we prove something close to a composition theorem for randomized query
complexity. While we cannot rule out the possibility of synergistic savings in computing
f ◦ g, we show that a composition theorem does hold if we insert a small gadget in between
f and g to obfuscate the output of g. Our gadget is “small” in the sense that its randomized
(and even deterministic) query complexity is Θ(logR(g)). Specifically we choose the index
function, which on an input of size k+2k interprets the first k bits as an address into the next
2k bits and outputs the bit stored at that address. The index function’s query complexity is
k + 1 and we choose k = Θ(logR(g)) in our construction.

I Theorem 1. Let f and g be partial Boolean functions and let Ind be the index function with
R(Ind) = Θ(logR(g)). Then R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) = Ω(R(f)R(g) logR(g)).

Theorem 1 can be used instead of a true composition theorem in many applications. For
example, recently a composition theorem for randomized query complexity was needed in
the special case when f is the And function [2, 5] or when g is the AND function [1]. Our
composition theorem would suffice for both applications.

We prove Theorem 1 by introducing a new lower bound technique for randomized query
complexity. This is not surprising since the composition theorems for deterministic and
quantum query complexities are also proved using powerful lower bound techniques for these
models, namely the adversary argument and the general adversary bound [7] respectively.

1.2 Sabotage complexity
To describe the new lower bound technique, consider the problem of computing a Boolean
function f on an input x ∈ {0, 1}n in the query model. In this model we have access to an
oracle, which when queried with an index i ∈ [n] responds with xi ∈ {0, 1}. Now imagine
a saboteur damages the oracle making some of the input bits unreadable; for these input
bits the oracle simply responds with a ∗. We can now view the oracle as storing a string
p ∈ {0, 1, ∗}n as opposed to a string x ∈ {0, 1}n. Although it is not possible to determine
the true input x from the oracle string p, it may still be possible to compute f(x) if all input
strings consistent with p evaluate to the same f value. On the other hand, it is not possible
to compute f(x) if p is consistent with a 0-input and a 1-input to f , and we call such a string
p ∈ {0, 1, ∗}n a sabotaged input. For example, let f be the Or function that computes the
logical Or of its bits. Then p = 00∗0 is a sabotaged input since it is consistent with the
0-input 0000 and the 1-input 0010. However, p = 01∗0 is not a sabotaged input since it is
only consistent with 1-inputs to f .
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Now consider a new problem in which the input is promised to be sabotaged (with respect
to a function f) and our job is to find the location of a ∗. Intuitively, any algorithm that
solves the original problem f when run on a sabotaged input must discover at least one ∗,
since otherwise it would answer the same on 0- and 1-inputs consistent with the sabotaged
input. This can be formalized and leads to a lower bound measure for several models of
computation, including deterministic, randomized, and quantum query complexity.

As it stands the problem of finding a ∗ in a sabotaged input has multiple valid outputs,
as the location of any star in the input is a valid output. For convenience we define a decision
version of this problem by imaging there are two saboteurs, one of whom has sabotaged our
input. The first saboteur, Asterix, replaces input bits with an asterisk (∗) and the second,
Obelix, uses an obelisk (†). Promised that the input has been sabotaged exclusively by one
of Asterix or Obelix, our job is to identify the saboteur. This is now a decision problem since
there are only two valid outputs. We call this decision problem fsab, the sabotage problem
associated with f .

We now define lower bound measures for various models using fsab. For example, we
can define the deterministic sabotage complexity of f as DS(f) := D(fsab) and in fact,
DS(f) = D(f) as we show in the full version of this paper. We could define the randomized
sabotage complexity of f as R(fsab), but instead we define it as RS(f) := R0(fsab), where R0
denotes zero-error randomized query complexity, since R(fsab) and R0(fsab) are equal up to
constant factors. Besides lower bounding R(f), RS(f) has the following desirable properties:
1. (Perfect composition) For all f and g, RS(f ◦ g) ≥ RS(f) RS(g) (Theorem 15)
2. (Composition with R) For all f and g, R(f ◦ g) = Ω(R(f) RS(g)) (Theorem 17)
3. (Quadratically tight) For all total f , R(f) = O(RS(f)2 log RS(f)) (Theorem 28)
4. (Superior to prt(f)) There exists a total f with RS(f) ≥ prt(f)2−o(1) (Theorem 26)
Here prt(f) denotes the partition bound [8, 10], which subsumes most other lower bound
techniques such as approximate polynomial degree and randomized certificate complexity. In
fact, we are unaware of any total function f for which RS(f) = o(R(f)), leaving open the
intriguing possibility that this lower bound technique is tight.

1.3 Lifting theorems
Using randomized sabotage complexity we are also able to show a relationship between
lifting theorems in communication complexity. A lifting theorem relates the query complexity
of a function f with the communication complexity of a related function created from f .
Recently, Göös, Pitassi, and Watson [6] showed that there is a communication problem G

with communication complexity Θ(logn) such that for any function f on n bits, Dcc(f ◦G) =
Ω(D(f) logn), where Dcc denotes deterministic communication complexity.

Analogous lifting theorems are known for some complexity measures, but no such theorem
is known for either zero-error randomized or bounded-error randomized query complexity.
Our second result shows that a lifting theorem for zero-error randomized query complexity
implies one for bounded-error randomized query complexity for total functions. We use Rcc

0
and Rcc to denote zero-error and bounded-error communication complexity respectively.

I Theorem 2. Let G be the communication gadget from [6] with Dcc(G) = Θ(logn). If it
holds that for all n-bit (possibly partial) functions f , Rcc

0 (f ◦G) = Ω(R0(f)/ polylogn), then
it holds that for all n-bit total Boolean functions f , Rcc(f ◦G) = Ω(R(f)/ polylogn).

Proving a lifting theorem for bounded-error randomized query complexity remains an
important open problem, and would imply super-quadratic separations between randomized
and quantum communication complexity [1], and a nearly quadratic separation between
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randomized communication complexity and partition number [2]. Our result shows that it is
sufficient to prove a lifting theorem for zero-error randomized protocols instead.

2 Preliminaries

We now define some basic notions in query complexity. Note that all the functions in this
paper have Boolean output. In the model of query complexity, we wish to compute an n-bit
Boolean function f on an input x given query access to the bits of x. The function f may
be total, i.e., f : {0, 1}n → {0, 1}, or partial, which means it is defined only on a subset of
{0, 1}n, which we denote by Dom(f). The goal is to output f(x) using as few queries to
the bits of x as possible. The number of queries used by the best possible deterministic
algorithm (over worst-case choice of x) is denoted D(f).

A randomized algorithm is a probability distribution over deterministic algorithms. The
worst-case cost of a randomized algorithm is the worst-case number of queries made by the
algorithm on any input x. The expected cost of the algorithm is the expected number of
queries made by the algorithm maximized over all inputs x. A randomized algorithm has
error at most ε if it outputs f(x) on every x with probability at least 1− ε.

We use Rε(f) to denote the worst-case cost of the best randomized algorithm that
computes f with error ε. Similarly, we use Rε to denote the expected cost of the best
randomized algorithm that computes f with error ε. When ε is unspecified it is taken to be
ε = 1/3. Thus R(f) denotes the bounded-error randomized query complexity of f . Finally,
we also define zero-error randomized query complexity, which is R0(f), which we also denote
by R0(f) to be consistent with the literature. For precise definitions of these measures as
well as the definition of quantum query complexity Q(f), see [3]. We also need two simple
properties of randomized algorithms, which we prove in the full version of this paper.

I Lemma 3. If A is a randomized algorithm that uses T expected queries and finds a
certificate with probability 1 − ε, then repeating A when it fails turns it into a zero-error
algorithm that uses at most T/(1− ε) expected queries.

I Lemma 4. Let f be a partial function and A be an ε-error randomized algorithm for f
that uses at most T expected queries. For x, y ∈ Dom(f) if f(x) 6= f(y) then when A is run
on x, it must query an entry on which x differs from y with probability at least 1− 2ε.

3 Sabotage complexity

Given a (partial or total) n-bit Boolean function f , let Pf ⊆ {0, 1, ∗}n be the set of all partial
assignments of f that are consistent with both a 0-input and a 1-input; that is, for each
p ∈ Pf , there exist x, y ∈ Dom(f) such that f(x) 6= f(y) and xi = yi = pi whenever pi 6= ∗.
Let P †f ⊆ {0, 1, †}n be the same as Pf , except using the symbol † instead of ∗. Observe that
Pf and P †f are disjoint. Let Qf = Pf ∪ P †f ⊆ {0, 1, ∗, †}n. We then define fsab as follows.

I Definition 5. Let f be an n-bit partial function. We define fsab : Qf → {0, 1} as
fsab(q) = 0 if q ∈ Pf and fsab(q) = 1 if q ∈ P †f .

See Section 1.2 for more discussion and motivation for this definition. Now that we have
defined fsab, we can define sabotage complexity for various models.

I Definition 6. Let f be a partial function. Then DS(f) := D(fsab) and RS(f) := R0(fsab).
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We will primarily focus on RS(f) in this work. To justify defining RS(f) as R0(fsab)
instead of R(fsab), we now show these definitions are equivalent up to constant factors.

I Theorem 7. Let f be a partial function. Then R0(fsab) ≥ Rε(fsab) ≥ (1− 2ε)R0(fsab).

Proof. The first inequality follows trivially. For the second, let x ∈ Qf be any valid input to
fsab. Let x′ be the input x with asterisks replaced with obelisks and vice versa. Then since
fsab(x) 6= fsab(x′), by Lemma 4 any ε-error randomized algorithm that solves fsab must find
a position on which x and x′ differ with probability at least 1− 2ε. The positions at which
they differ are either asterisks or obelisks. Since x was an arbitrary input, the algorithm must
always find an asterisk or obelisk with probability at least 1− 2ε. Since finding an asterisk
or obelisk is a certificate for fsab, by Lemma 3, we get a zero-error algorithm for fsab that
uses Rε(fsab)/(1− 2ε) expected queries. Thus R0(fsab) ≤ Rε(fsab)/(1− 2ε), as desired. J

Finally, we prove that RS(f) is indeed a lower bound on R(f), i.e., R(f) = Ω(RS(f)).

I Theorem 8. Let f be an n-bit partial function. Then Rε(f) ≥ Rε(f) ≥ (1− 2ε) RS(f).

Proof. Let A be a randomized algorithm for f that uses Rε(f) randomized queries and
outputs the correct answer on every input in Dom(f) with probability at least 1− ε. Now fix
a sabotaged input x, and let p be the probability that A finds a ∗ or † when run on x. Let q
be the probability that A outputs 0 if it doesn’t find a ∗ or † when run on x. Let x0 and x1
be inputs consistent with x such that f(x0) = 0 and f(x1) = 1. Then A outputs 0 on x1 with
probability at least q(1− p), and A outputs 1 on x0 with probability at least (1− q)(1− p).
These are both errors, so we have q(1− p) ≤ ε and (1− q)(1− p) ≤ ε. Summing them gives
1− p ≤ 2ε, or p ≥ 1− 2ε.

This means A finds a ∗ entry within Rε(f) expected queries with probability at least
1− 2ε. By Lemma 3, we get 1

1−2εRε(f) ≥ RS(f), or Rε(f) ≥ (1− 2ε) RS(f). J

We also define a variant of RS where the number of asterisks (or obelisks) is exactly one.
Specifically, let U ⊆ {0, 1, ∗, †}n be the set of all partial assignments with exactly one ∗ or †.

I Definition 9. Let f be a partial function. We define fusab as the restriction of fsab to U ,
the set of strings with only one asterisk or obelisk. I.e., fusab has domain Qf ∩ U , but is
equal to fsab on its domain. We then define RS1(f) := R0(fusab). If Qf ∩ U is empty, we
define RS1(f) := 0.

The measure RS1 will play a key role in our lifting result in Section 6. Since fusab is a
restriction of fsab to a promise, it is clear that its zero-error randomized query complexity is
smaller, so RS1(f) ≤ RS(f). Another interesting property is the following theorem, which
says RS1(f) equals RS(f) for total functions. In other words, when f is total, we may assume
without loss of generality that its sabotaged version has only one asterisk or obelisk.

I Theorem 10. If f is a total function, then RS1(f) = RS(f).

Proof. We showed that RS(f) ≥ RS1(f). To show RS1(f) ≥ RS(f), we argue that any
zero-error algorithm A for fusab also solves fsab. The main observation is that any input to
fsab can be completed to an input to fusab by replacing some asterisks or obelisks with 0s
and 1s. To see this, let x be an input to fsab. Without loss of generality, x ∈ Pf . Then there
are two strings y, z ∈ Dom(f) that are consistent with x, satisfying f(y) = 0 and f(z) = 1.

The strings y and z disagree on some set of bits B, and x has a ∗ or † on all of B.
Consider starting with y and flipping the bits of B one by one, until we reach the string z.
At the beginning, we have f(y) = 0, and at the end, we reach f(z) = 1. This means that at
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some point in the middle, we must have flipped a bit that flipped the string from a 0-input
to a 1-input. Let w0 and w1 be the inputs where this happens. They differ in only one bit.
If we replace that bit with ∗ or †, we get a partial assignment w consistent with both, so
w ∈ Pf . Moreover, w is consistent with x. This means we have completed an arbitrary input
to fsab to an input to fusab, as claimed.

Now, the algorithm A must find an asterisk or obelisk in any input to fusab. But
since each input to fsab can be viewed as an input to fusab with added asterisks and
obelisks, the algorithm A also finds an asterisk or obelisk in any input to fsab. Thus
RS(f) = R0(fsab) ≤ R0(fusab) = RS1(f). J

4 Direct Sum and Composition Theorems

In this section, we establish some composition theorems for RS. To do so, we first need to
establish direct sum theorems for the problem fsab. In fact, our direct sum theorems hold
more generally for zero-error randomized query complexity of partial functions (and even
relations). We will require Yao’s minimax theorem [19]:

I Theorem 11 (Yao). Let f be a partial function. There is a distribution µ over inputs in
Dom(f) such that all zero-error algorithms for f use at least R0(f) expected queries on µ.

4.1 Direct Sum Theorems
We start by defining the m-fold direct sum of a function f , which is simply the function that
accepts m inputs to f and outputs f evaluated on all of them.

I Definition 12. Let f : Dom(f) → Z, where Dom(f) ⊆ Xn be a partial function with
input and output alphabets X and Z. The m-fold direct sum of f is the partial function
f⊕m : Dom(f)m → Zm such that for all xi ∈ Dom(f),

f(x1, x2, . . . , xm) = (f(x1), f(x2), . . . , f(xm)). (1)

We can now prove a direct sum theorem for zero-error randomized query complexity. We
prove these results for partial functions, although they also hold for relations.

I Theorem 13 (Direct sum). For any n-bit partial function f and any positive integer m, we
have R0(f⊕m) = mR0(f). Moreover, if µ is the hard distribution for f given by Theorem 11,
then µ⊗m is a hard distribution for f⊕m.

Proof. The upper bound follows from running the R0(f) algorithm on each of the m inputs
to f . By linearity of expectation, this solves all m inputs after mR0(f) expected queries.

We now prove the lower bound. Let A be a zero-error randomized algorithm for f⊕m
that uses T expected queries when run on inputs from µ⊗m. We convert A into an algorithm
B for f that uses T/m expected queries when run on inputs from µ.

Given an input x ∼ µ, the algorithm B generates m− 1 additional “fake” inputs from
µ. B then shuffles these together with x, and runs A on the result. The input to A is then
distributed according to µ⊗m, so A uses T queries (in expectation) to solve all m inputs. B
then reads the solution to the true input x.

Note that most of the queries A makes are to fake inputs, so they don’t count as real
queries. The only real queries B has to make happen when A queries x. But since x is
shuffled with the other (indistinguishable) inputs, the expected number of queries A makes
to x is the same as the expected number of queries A makes to each fake input; this must
equal T/m. Thus B makes T/m queries to x (in expectation) before solving it.
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Since B is a zero-error randomized algorithm for f that uses T/m expected queries on
inputs from µ, we must have T/m ≥ R0(f) by Theorem 11. Thus T ≥ mR0(f). J

For our applications, however, we will need a strengthened version of this theorem, which
we call a threshold direct sum theorem for R0.

I Theorem 14 (Threshold direct sum). Given an input to f⊕m sampled from µ⊗m, we
consider solving only some of the m inputs to f . We say an input x to f is solved if a
z-certificate was queried that proves f(x) = z. Then any randomized algorithm that takes an
expected T queries and solves an expected k of the m inputs when run on inputs from µ⊗m

must satisfy T ≥ kR0(f).

Proof. Let A be such an algorithm. We convert A into an algorithm B for solving f on
inputs from µ. The algorithm B is very similar to the algorithm in the proof of Theorem 13:
on input x ∼ µ, it generates m− 1 additional inputs from µ, shuffles them, and feeds them
into A. The algorithm A uses an expected T queries, but since x is shuffled with the fake
inputs, it gets queried only T/m times in expectation. Moreover, the algorithm A solves an
expected k of the m inputs, so the expected number of times it solves x is k/m. This means
B solves x with probability k/m.

Moreover, when B solves x, it also finds a certificate. So by Lemma 3, we get a zero-
error algorithm with expected query complexity (T/m)/(k/m) = T/k. We conclude that
T/k ≥ R0(f), so T ≥ kR0(f), as desired. J

4.2 Composition Theorems
Using the direct sum and threshold direct sum theorems we have established, we can now
prove composition theorems for randomized sabotage complexity. We start with the behavior
of RS itself under composition.

I Theorem 15. Let f and g be partial functions. Then RS(f ◦ g) ≥ RS(f) RS(g).

Proof. Let A be any algorithm for (f ◦ g)sab, and let T be the expected query complexity of
A (maximized over all inputs). We turn A into an algorithm B for fsab.

B takes a sabotaged input x for f . It then runs A on a sabotaged input to f ◦g constructed
as follows. Each 0 bit of x is replaced with a 0-input to g, each 1 bit of x is replaced with a
1-input to g, and each ∗ or † of x is replaced with a sabotaged input to g. The sabotaged
inputs are generated from µ, the hard distribution for gsab obtained from Theorem 11. The
0-inputs are generated by first generating a sabotaged input, and then selecting a 0-input
consistent with that sabotaged input. The 1-inputs are generated analogously.

This is implemented in the following way. On input x, the algorithm B generates n
sabotaged inputs from µ (the hard distribution for gsab), where n is the length of the string x.
Call these inputs y1, y2, . . . , yn. B then runs the algorithm A on this collection of n strings,
pretending that it’s an input to f ◦ g, with the following caveat: whenever A tries to query
a ∗ or † in an input yi, B instead queries xi. If xi is 0, B selects an input from f−1(0)
consistent with yi, and replaces yi with this input. It then returns to A an answer consistent
with the new yi. If xi is 1, B selects a consistent input from f−1(1) instead. If xi is a ∗ or †,
B returns a ∗ or † respectively.

Now, by Theorem 14, if A makes T expected queries, the expected number of ∗ or †
entries it finds among y1, y2, . . . , yn is at most T/RS(g). It follows that the expected number
of queries B makes to x is at most T/RS(g). Thus we have RS(f) ≤ T/RS(g), which gives
T ≥ RS(f) RS(g). J
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Using this we can lower bound the randomized query complexity of composed functions.
We use fn to denote the function f composed with itself n times, i.e., f1 = f and f i+1 = f ◦f i.

I Corollary 16. Let f : {0, 1}n → {0, 1} be a partial function. Then R(fn) ≥ RS(f)n/3.

This follows straightforwardly from observing that R(fn) = R1/3(fn) ≥ (1− 2/3) RS(fn)
(using Theorem 8) and RS(fn) ≥ RS(f)n (using Theorem 15).

We can also prove a composition theorem for randomized query complexity in terms of
randomized sabotage complexity. In particular this yields a composition theorem for R(f ◦ g)
when R(g) = Θ(RS(g)).

I Theorem 17. Let f and g be partial functions. Then Rε(f ◦ g) ≥ Rε(f) RS(g).

Proof. The proof follows a similar argument to the proof of Theorem 15. Let A be a
randomized algorithm for f ◦ g that uses T expected queries and makes error ε. We turn
A into an algorithm B for f by having B generate inputs from µ, the hard distribution for
gsab, and feeding them to A, as before. The only difference is that this time, the input x to
B is not a sabotaged input. This means it has no ∗ or † entries, so all the sabotaged inputs
that B generates turn into 0- or 1-inputs if A tries to query a ∗ or † in them.

Since A uses T queries, by Theorem 14, it finds at most T/RS(g) asterisks or obelisks
(in expectation). Therefore, B makes at most T/RS(g) expected queries to x. Since B is
correct whenever A is correct, its error probability is at most ε. Thus Rε(f) ≤ T/RS(g), and
thus T ≥ Rε(f) RS(g). J

Setting ε to 0 yields the following corollary.

I Corollary 18. Let f and g be partial functions. Then R0(f ◦ g) ≥ R0(f) RS(g).

For the more commonly used R(f ◦ g), we obtain the following composition result.

I Corollary 19. Let f and g be partial functions. Then R(f ◦ g) ≥ R(f) RS(g)/10.

This follows from R(f ◦ g) ≥ R1/3(f ◦ g) ≥ R1/3(f) RS(g) ≥ R(f) RS(g)/10, where we
used R1/3(f) ≥ R(f)/10, which can be shown by error reduction and Markov’s inequality.

Finally, we can also show an upper bound composition result for randomized sabotage
complexity. We defer the proof to the full version of this paper.

I Theorem 20. Let f and g be partial functions. Then RS(f ◦ g) ≤ RS(f)R0(g). We also
have RS(f ◦ g) = O(RS(f)R(g) log RS(f)).

5 Composition with the index function

To prove the composition result, we require the strong direct product theorem for randomized
query complexity that was established by Drucker [4].

I Theorem 21 (Drucker). Let f be a partial Boolean function, and let k be a positive integer.
Then any randomized algorithm for f⊕k that uses at most γ3kR(f)/11 queries has success
probability at most (1/2 + γ)k, for any γ ∈ (0, 1/4).

The first step to proving the main result that R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) is to
show that R(Ind ◦ g) equals RS(Ind ◦ g) up to constants if the index gadget is large enough.

I Theorem 22. Let f be a partial Boolean function, and let m = Ω(R(f)1.1). Then
RS(Indm ◦ f) = Ω(R(f) logm) = Ω(R(Indm)R(f)).

Moreover, if f⊕cind is the defined as the index function on c+ 2c bits composed with f in
only the first c bits, we have RS1(f⊕cind) = Ω(cR(f)) when c = 1.1 logR(f) + Ω(1).
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Proof. Consider what the inputs to (Indm ◦ f)sab look like. We can split an input to Indm
into a small index section and a large array section. To sabotage an input to Indm, it suffices
to sabotage the array element that the index points to (using only a single star). It follows
that to sabotage an input to Indm ◦ f , it suffices to sabotage the input to f at the array
element that the index points to. In other words, the only stars in the input will be in one
array cell, whose index is the output of the first logm copies of f .

We now convert an RS(Indm ◦ f) algorithm into a randomized algorithm for f logm. First,
using Markov’s inequality, we get a 2 RS(Indm ◦ f) query randomized algorithm that finds a
∗ or † with probability 1/2 if the input is sabotaged. Next, consider running this algorithm
on a non-sabotaged input. It makes 2 RS(Indm ◦ f) queries. With probability 1/2, one of
these queries will be in the array cell whose index is the true answer to f logm evaluated on
the first n logm bits. We can then consider a new algorithm A that runs the above algorithm
for 2 RS(Indm ◦ f) queries, then picks one of the 2 RS(Indm ◦ f) queries at random, and if
that query is in an array cell, it outputs the index of that cell. Then A uses 2 RS(Indm ◦ f)
queries and evaluates f logm with probability at least RS(Indm ◦ f)−1/4.

Next, Theorem 21 implies that for any γ ∈ (0, 1/4), either A’s success probability is
smaller than (1/2 + γ)logm, or else A uses at least γ3(logm)R(f)/11 queries. This means
either RS(Indm ◦ f)−1/4 ≤ (1/2 + γ)logm or 2 RS(Indm ◦ f) ≥ γ3(logm)R(f)/11, which
means

RS(Indm ◦ f) = Ω
(
γ3 min

{(
2

1 + 2γ

)logm
, R(f) logm

})
. (2)

Now, we have(
2

1 + 2γ

)logm
= mlog(2/(1+2γ)) = m1−log(1+2γ) ≥ m1−2(log e)γ ≥ m1−3γ . (3)

If m ≥ (R(f) logR(f))(1−3γ)−1 , the above is at least R(f) logR(f) = Ω(R(f) logm), which
means RS(Indm ◦ f) = Ω(γ3R(f) logm).

Note that (1− 3γ)−1 ≤ 1 + 12γ for all γ ≤ 1/4. Setting r = 13γ, we get

m = Ω(R(f)1+r)⇒ RS(Indm ◦ f) = Ω(r3R(f) logm) (4)

for all r satisfying r = O(1) and r = Ω(log logR(f)/ logR(f)). Setting r = 0.1 gives
the desired result. The lower bound on RS1(f⊕ind) follows similarly once we observe that
sabotaging the array cell indexed by the outputs to the c copies of f introduces only one
asterisk or obelisk, so the above argument lower bounds RS1 and not only RS. J

Finally, we can prove Theorem 1, more precisely stated as follows.

I Theorem 23. Let f and g be (possibly partial) functions, and let m = Ω(R(g)1.1). Then
R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm) = Ω(R(f)R(Indm)R(g)).

Proof. By Corollary 19, we have R(f ◦ Indm ◦ g) ≥ R(f) RS(Indm ◦ g)/10. Combining with
Theorem 22 gives R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm), as desired. J

6 Lifting theorem

To establish the connection between lifting theorems, we start with the following lemma,
which gives a sabotage lower bound in the communication complexity setting.
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I Lemma 24. Let f be a (possibly partial) Boolean function on n bits, and let Gb be the
index gadget on {0, 1}b × {0, 1}2b , with b = O(logn). Then

Rcc(f ◦Gb) = Ω
(
Rcc

0 (fusab ◦G′b)
logn log logn

)
, (5)

where G′b is the index gadget mapping {0, 1}b × {0, 1, ∗, †}2b to {0, 1, ∗, †}.

Proof. We’ll use a randomized protocol A for f ◦Gb to construct a zero-error protocol B for
fusab ◦G′b. Note the given input to fusab ◦G′b must have a unique copy of G′b that evaluates
to ∗ or †, with all other copies evaluating to 0 or 1. The goal of B is to find this copy and
determine if it evaluates to ∗ or †. This will evaluate fusab ◦G′b with zero error.

Note that if we replace all ∗ and † symbols in Bob’s input with 0 or 1, we’d get a valid
input to to f ◦Gb, which we can evaluate using A. Moreover, there is a single special ∗ or †
in Bob’s input that governs the value of this input to f ◦Gb. Without loss of generality, we
assume that if the special symbol is replaced by 0, the function f ◦Gb evaluates to 0, and if
it is replaced by 1, it evaluates to 1.

We can now binary search to find this special symbol. There are at most n2b asterisks and
obelisks in Bob’s input. We can set the left half to 0 and the right half to 1, and evaluate the
resulting input using A. If the answer is 0, the special symbol is on the left half; otherwise,
it is on the right half. We can proceed to binary search in this way, until we’ve zoomed in on
one gadget that must contain the special symbol. This requires narrowing down the search
space from n possible gadgets to 1, which requires logn rounds. Each round requires a call
to A, times a O(log logn) factor for amplification. We can therefore find the right gadget
with bounded error, using O(Rcc(f ◦Gb) logn log logn) bits of communication.

Once we’ve found the right gadget, we can certify its validity by having Alice send the
right index to Bob, using b bits of communication. Since we found a certificate with constant
probability, we can use Lemma 3 to turn this into a zero-error algorithm. Thus

Rcc
0 (fusab ◦G′b) = O(b+Rcc(f ◦Gb) logn log logn). (6)

Since b = O(logn), we get Rcc
0 (fusab ◦G′b) = O(Rcc(f ◦Gb) logn log logn). J

Equipped with this lemma we can prove the connection between lifting theorems (Theo-
rem 2), stated more precisely as follows.

I Theorem 25. Suppose that for all partial Boolean functions f on n bits, we have

Rcc
0 (f ◦Gb) = Ω̃(R0(f)) (7)

with b = O(logn). Then for all partial functions Boolean functions, we also have

Rcc(f ◦G2b) = Ω̃(R(f)). (8)

The loss in the Ω̃ for the R result is only logn log log2 n worse than the loss in the R0
hypothesis.

Proof. First, we note that for any function f and positive integer c,

Rcc(f ◦G2b) = Ω
(
Rcc(f⊕cind ◦G2b)

c log c

)
. (9)

To see this, note that we can solve f⊕cind ◦ G2b by solving the c copies of f ◦ G2b and then
examining the appropriate cell of the array. This uses cRcc(f ◦G2b) bits of communication,
times O(log c) since we must amplify the randomized protocol to an error of O(1/c).
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Figure 1 Lower bounds on R(f).

Next, we apply Lemma 24 on Rcc(f⊕cind ◦G2b) to get

Rcc(f ◦G2b) = Ω
(
Rcc(f⊕cind ◦G2b)

c log c

)
= Ω

(
Rcc

0 ((f⊕cind)usab ◦G′2b)
c log c logn log logn

)
. (10)

From here we want to use the assumed lifting theorem for R0. However, there is a technicality:
the gadget G′2b is not the standard index gadget, and the function (f⊕cind)usab does not have
Boolean alphabet. To remedy this, we use two bits to represent each of the symbols {0, 1, ∗, †}.
Using this representation, we define a new function (f⊕cind)bin

usab on twice as many bits.
We now compare (f⊕cind)bin

usab ◦Gb to (f⊕cind)usab ◦G′2b. Note that the former uses two pointers
of size b to index two bits, while the latter uses one pointer of size 2b to index one symbol in
{0, 1, ∗, †} (which is equivalent to two bits). It’s not hard to see that the former function
is equivalent to the latter function restricted to a promise. This means the communication
complexity of the former is smaller, so

Rcc(f ◦G2b) = Ω
(
Rcc

0 ((f⊕cind)usab ◦G′2b)
c log c logn log logn

)
= Ω

(
Rcc

0 ((f⊕cind)bin
usab ◦Gb)

c log c logn log logn

)
. (11)

We’re ready to use the assumed lifting theorem for R0. To be more precise, let’s suppose a
lifting result that states Rcc

0 (f ◦Gb) = Ω(bR0(f)/ logk n) for some integer k. Applying this
to the above gives

Rcc(f ◦G2b) = Ω
(
Rcc

0 ((f⊕cind)bin
usab ◦Gb)

c log c logn log logn

)
= Ω

(
bR0((f⊕cind)bin

usab)
c log c logk+1 n log logn

)
. (12)

We note that

R0((f⊕cind)bin
usab) = Ω(R0((f⊕cind)usab)) = Ω(RS1(f⊕cind)). (13)

Setting c = 1.1 logR(f) + Ω(1), we have RS1(f⊕cind) = Ω(cR(f)) by Theorem 22. Thus

Rcc(f ◦G2b) = Ω
(

bcR(f)
c log c logk+1 n log logn

)
= Ω

(
bR(f)

logk+1 n log log2 n

)
. (14)

This gives the desired lifting theorem for R, with parameters at most logn log log2 n worse
than the assumed R0 lifting theorem. J

7 Comparison with other lower bound methods

In this section we compare RS(f) with other lower bound techniques for bounded-error
randomized query complexity. Figure 1 shows the two most powerful lower bound techniques
for R(f), the partition bound (prt(f)) and quantum query complexity (Q(f)), which subsume
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all other general lower bound techniques. The partition bound and quantum query complexity
are incomparable, since there are functions for which the partition bound is larger, e.g.,
the Or function, and functions for which quantum query complexity is larger [2]. Another
common lower bound measure, approximate polynomial degree (d̃eg) is smaller than both.

Randomized sabotage complexity (RS) can be much larger than the partition bound
and quantum query complexity as we show in this section. We also show that randomized
sabotage complexity is always as large as randomized certificate complexity (RC), which
itself is larger than block sensitivity, another common lower bound technique. Lastly, we
also show that R0(f) = O(RS(f)2 log RS(f)), showing that RS is a quadratically tight lower
bound, even for zero-error randomized query complexity.

7.1 Partition bound and quantum query complexity
We start by showing the superiority of randomized sabotage complexity against the two best
lower bounds for R(f). Informally, what we show is that any separation between R(f) and a
lower bound measure like Q(f), prt(f), or d̃eg(f) readily gives a similar separation between
RS(f) and the same measure.

I Theorem 26. There exist total functions f and g such that RS(f) ≥ prt(f)2−o(1) and
RS(g) = Ω̃(Q(g)2.5). There also exists a total function h with RS(h) ≥ d̃eg(h)4−o(1).

Proof. These separations were shown with R(f) in place of RS(f) in [1] and [2]. To get a
lower bound on RS, we can simply compose Ind with these functions and apply Theorem 22.
This increases RS to be the same as R (up to logarithmic factors), but it does not increase
prt, d̃eg, or Q more than logarithmically, so the desired separations follow. J

As it turns out, we didn’t even need to compose Ind with these functions. It suffices
to observe that they all use the cheat sheet construction, and that an argument similar to
the proof of Theorem 22 implies that RS(fCS) = Ω̃(R(f)) for all f (where fCS denotes the
cheat sheet version of f , as defined in [1]). In particular, cheat sheets can never be used to
separate RS from R (by more than logarithmic factors).

7.2 Randomized certificate complexity
Randomized certificate complexity, RC(f), is a lower bound for R(f) first studied in [?]. We
can show that for any partial function f , randomized sabotage complexity upper bounds
randomized certificate complexity.

I Theorem 27. Let f be a partial function. Then RS(f) ≥ RC(f)/4.

We defer the definition of RC(f) and the proof of this theorem to the full version of the
paper.

7.3 Zero-error randomized query complexity
I Theorem 28. Let f be a total function. Then R0(f) = O(RS(f)2 log RS(f)) or alternately,
RS(f) = Ω(

√
R0(f)/ logR0(f)).

Proof. Let A be the RS(f) algorithm. The idea is to run A on an input to x for long enough
that we can ensure it queries a bit in every sensitive block of x; this will mean A found a
certificate for x. That will allow us to turn the algorithm into a zero-error algorithm for f .
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Let x be any input and let b be a block of x. If we replace the bits of x specified by b
with stars, then we can find a ∗ with probability 1/2 by running A for 2 RS(f) queries by
Markov’s inequality. This means that if we run A on x for 2 RS(f) queries, it has at least
1/2 probability of querying a bit in any given block of x. Repeating this k times, we get a
2kRS(f) query algorithm that queries a bit in any given block of x with probability at least
1− 2−k.

Now, by [13], the number of sensitive blocks in x is at most RC(f)bs(f) for a total function
f . Our probability of querying a bit in all of these blocks is at least 1− 2−k RC(f)bs(f) by
the union bound. When k ≥ 1 + bs(f) log2 RC(f), this is at least 1/2. Since a bit from
every block is a certificate, by Lemma 3, we can turn this into a zero-error randomized
algorithm with expected query complexity at most 4(1 + bs(f) log2 RC(f)) RS(f), which
gives R0(f) = O(RS(f) bs(f) log RC(f)). Since bs(f) ≤ RC(f) ≤ RS(f) by Theorem 27, we
have R0(f) = O(RS(f)2 log RS(f)), or RS(f) = Ω(

√
R0(f)/ logR0(f)). J

References

1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query com-
plexity using cheat sheets. To appear in Proceedings of STOC 2016. arXiv preprint
arXiv:1511.01937, 2015.

2 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations be-
tween communication (or query) complexity and partitions. To appear in Proceedings of
CCC 2016. arXiv preprints arXiv:1512.00661 and arXiv:1512.01210, 2015.

3 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

4 Andrew Drucker. Improved direct product theorems for randomized query complexity.
Computational Complexity, 21(2):197–244, 2012. doi:10.1007/s00037-012-0043-7.

5 Mika Göös, T.S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communica-
tion vs. partition number. Electronic Colloquium on Computational Complexity (ECCC)
TR15-169, 2015.

6 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 1077–1088, Oct 2015. doi:10.1109/FOCS.2015.70.

7 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger.
In Proceedings of the 39th ACM Symposium on Theory of Computing (STOC 2007), pages
526–535, 2007. doi:10.1145/1250790.1250867.

8 Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 2010 IEEE 25th Annual Conference
on Computational Complexity, CCC’10, pages 247–258, 2010. doi:10.1109/CCC.2010.31.

9 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for determin-
istic and randomized decision tree complexity. Information Processing Letters, 110(20):893–
897, 2010. doi:10.1016/j.ipl.2010.07.020.

10 Rahul Jain, Troy Lee, and Nisheeth K. Vishnoi. A quadratically tight partition
bound for classical communication complexity and query complexity. arXiv preprint
arXiv:1401.4512, 2014.

11 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Computational Complexity, 5(3-4):191–
204, 1995. doi:10.1007/BF01206317.

ICALP 2016

http://arxiv.org/abs/arXiv:1511.01937
http://arxiv.org/abs/arXiv:1512.00661
http://arxiv.org/abs/arXiv:1512.01210
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1007/s00037-012-0043-7
http://eccc.hpi-web.de/report/2015/169/
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1145/1250790.1250867
http://dx.doi.org/10.1109/CCC.2010.31
http://dx.doi.org/10.1016/j.ipl.2010.07.020
http://arxiv.org/abs/arXiv:1401.4512
http://dx.doi.org/10.1007/BF01206317


60:14 Randomized Query Complexity of Sabotaged and Composed Functions

12 Shelby Kimmel. Quantum adversary (upper) bound. In Automata, Languages, and
Programming, volume 7391 of Lecture Notes in Computer Science, pages 557–568, 2012.
doi:10.1007/978-3-642-31594-7_47.

13 Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Electronic Colloquium
on Computational Complexity (ECCC) TR13-168, 2013.

14 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the 52nd IEEE Symposium on
Foundations of Computer Science (FOCS 2011), pages 344–353, 2011. arXiv:1011.3020,
doi:10.1109/FOCS.2011.75.

15 Ashley Montanaro. A composition theorem for decision tree complexity. Chicago Journal
of Theoretical Computer Science, 2014(6), July 2014. doi:10.4086/cjtcs.2014.006.

16 Denis Pankratov. Direct sum questions in classical communication complexity. Master’s
thesis, University of Chicago, 2012.

17 Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, 1998.
doi:10.1137/S0097539795280895.

18 Avishay Tal. Properties and applications of Boolean function composition. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, ITCS’13, pages
441–454, 2013. doi:10.1145/2422436.2422485.

19 A. Yao. Probabilistic computations: Toward a unified measure of complexity. Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science (FOCS), pages 222–227,
1977. doi:10.1109/SFCS.1977.24.

http://dx.doi.org/10.1007/978-3-642-31594-7_47
http://eccc.hpi-web.de/report/2013/168/
http://arxiv.org/abs/1011.3020
http://dx.doi.org/10.1109/FOCS.2011.75
http://dx.doi.org/10.4086/cjtcs.2014.006
http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1145/2422436.2422485
http://dx.doi.org/10.1109/SFCS.1977.24

	Introduction
	Composition theorems
	Sabotage complexity
	Lifting theorems

	Preliminaries
	Sabotage complexity
	Direct Sum and Composition Theorems
	Direct Sum Theorems
	Composition Theorems

	Composition with the index function
	Lifting theorem
	Comparison with other lower bound methods
	Partition bound and quantum query complexity
	Randomized certificate complexity
	Zero-error randomized query complexity


