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Abstract
The k-center problem is a canonical and long-studied facility location and clustering problem with
many applications in both its symmetric and asymmetric forms. Both versions of the problem
have tight approximation factors on worst case instances: a 2-approximation for symmetric k-
center and an O(log*(k))-approximation for the asymmetric version. Therefore to improve on
these ratios, one must go beyond the worst case.

In this work, we take this approach and provide strong positive results both for the asymmetric
and symmetric k-center problems under a very natural input stability (promise) condition called
alpha-perturbation resilience [Bilu Linial, 2012], which states that the optimal solution does not
change under any alpha-factor perturbation to the input distances. We show that by assuming
2-perturbation resilience, the exact solution for the asymmetric k-center problem can be found
in polynomial time. To our knowledge, this is the first problem that is hard to approximate
to any constant factor in the worst case, yet can be optimally solved in polynomial time under
perturbation resilience for a constant value of alpha. Furthermore, we prove our result is tight
by showing symmetric k-center under (2-epsilon)-perturbation resilience is hard unless NP=RP.
This is the first tight result for any problem under perturbation resilience, i.e., this is the first
time the exact value of alpha for which the problem switches from being NP-hard to efficiently
computable has been found.

Our results illustrate a surprising relationship between symmetric and asymmetric k-center
instances under perturbation resilience. Unlike approximation ratio, for which symmetric k-
center is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under resilience
to 2-perturbations.
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1 Introduction

Overview: Traditionally, the theory of algorithms has focused on the analysis of worst-
case instances. While this approach has led to many elegant algorithms and strong lower
bounds, it tends to be overly pessimistic of an algorithm’s performance on the most typical
instances of a problem. A recent line of work in the algorithms community, the so called
beyond worst case analysis of algorithms, considers the question of designing algorithms for
instances that satisfy some natural structural properties and has given rise to strong positive
results [4, 5, 6, 18, 20, 21, 24]. One of the most appealing properties that has been proposed
in this space is the stability of the solution to small changes in the input. Bilu and Linial [10]
formalized this property in the notion of α-perturbation resilience, which states that the
optimal solution does not change under any α-factor perturbation to the input distances.

A large body of work has sought to exploit the power of perturbation resilience in
problems such as center-based clustering [5, 8, 10, 22], finding Nash equilibria in game
theoretic problems [7], and the traveling salesman problem [23]. These works are focused
on providing positive results for exactly solving the corresponding optimization problem
under perturbation resilient instances, for example, 1 +

√
2-perturbation resilience for center

based clustering, and O(
√

logn log logn)-perturbation resilience for max-cut. In this paper
we continue this line of work and provide a tight result for the canonical and long-studied k-
center clustering problem, thereby completely quantifying the power of perturbation resilience
for this problem. We show that α = 2 is the moment where the problem switches from
NP-hard to efficiently computable – specifically, we show that by assuming 2-perturbation
resilience, the exact solution for the k-center problem can be found in polynomial time; we
also show that k-center under (2− ε)-perturbation resilience cannot be solved in polynomial
time unless NP = RP . Our results apply to both symmetric and asymmetric k-center,
illustrating a surprising relationship between symmetric and asymmetric k-center instances
under perturbation resilience. Unlike approximation ratio, for which symmetric k-center
is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under
resilience to 2-perturbations. Overall, this is the first tight result quantifying the power of
perturbation resilience for a canonical combinatorial optimization problem.

The k-center problem is a canonical and long-studied clustering problem with many
applications to facility location, data clustering, image classification, and information re-
trieval [11, 12, 13, 14, 16, 25]. For example, it can be used to solve the problem of placing
k fire stations spaced throughout a city to minimize the maximum time for a fire truck to
reach any location, given the pairwise travel times between important locations in the city.
In the symmetric k-center problem the distances are assumed to be symmetric, while in the
asymmetric k-center problem they are not; however in both cases they satisfy the triangle
inequality. Formally, given a set of n points S, a distance function d : S ×S → R+ satisfying
the triangle inequality (and symmetry in the symmetric case), and an integer k, our goal is
to find k centers {c1, . . . , ck} to minimize maxp∈S mini d(ci, p).

Both forms of k-center admit tight approximation bounds. For symmetric k-center,
several 2- approximation algorithms have been found starting in the mid 1980s (e.g., [16, 19]).
This is the best possible approximation factor by a simple reduction from set cover. On
the other hand, the asymmetric k-center problem is a prototypical problem where the best
known approximation is superconstant and is matched by a lower bound. For the asymmetric
k-center problem, an O(log∗(n))-approximation algorithm was found by Vishwanathan [25],
and later improved to O(log∗(k)) by Archer [1]. This approximation ratio was shown to be



M.-F. Balcan, N. Haghtalab, and C. White 68:3

asymptotically tight by the work of Chuzhoy et al. [14], which built upon a sequence of papers
establishing the hardness of approximating d-uniform hypergraph covering (culminating in
[15]).

Perturbation resilience has a natural interpretation for both symmetirc and asymmetric
k-center: it can be viewed as a stability condition in the presence of uncertainties involved
in measurements. For example, small fluctuations in the travel time between a fire station
and locations in the city, which are caused by different levels of traffic at different times
of day, should not drastically affect the optimal placement of fire stations. Furthermore,
perturbation resilience can be viewed as a condition on an instance under which the optimal
solution satisfies a form of privacy. For instance, if the actions of no individuals (such as how
they drive to work, or the amount of network traffic they are using in a network application)
can affect the overall state of the problem drastically then the individual’s actions cannot be
detected by looking at the optimal solution.

There is a large body of work on instances satisfying perturbation resilience and other
natural notions of stability on problems ranging from clustering to data privacy to social
networks to topic modeling [2, 3, 17, 18, 20, 21, 24]. For discussion of related work, see the
full version of the paper.

Our Results: In this work we consider both symmetric and asymmetric k-center under
perturbation resilience and give tight results for both forms. In addition, we consider more
robust and weaker variants of perturbation resilience, and give strong results for these
problems as well. A summary of our results and techniques used to achieve them are as
follows:
1. Efficient algorithm for symmetric and asymmetric k-center under 2-perturbation resilience.

This directly improves over the result of Balcan and Liang [8] for symmetric k-center
under 1 +

√
2-perturbation resilience. We show that any α-approximation algorithm

returns the optimal solution for an α-perturbation resilient instance, thus showing there
exists an optimal algorithm for symmetric k-center under 2-perturbation resilience. For
the asymmetric result, we first construct a “symmetrized set” by only considering points
that demonstrate a rough symmetry. Then we prove strong structural results about the
symmetrized set which motivates a novel algorithm for detecting clusters locally.

2. Hardness of symmetric k-center under (2− ε)-perturbation resilience. This shows that
our perturbation-resilience results are tight for both symmetric and asymmetric k-center.
For this hardness result, we use a reduction from a variant of perfect dominating set. To
show that this variant is itself hard, we construct a chain of parsimonious reductions
(reductions which conserve the number of solutions) from 3-dimensional matching to
perfect dominating set.

3. Efficient algorithms for symmetric and asymmetric k-center under (3, ε)-perturbation
resilience. A clustering instance satisfies (α, ε)-perturbation resilience if ≤ εn points
switch clusters under any α-perturbation. We assume the optimal clusters are of size
> 2εn (the problem is NP-hard without this assumption). We show that if any single
point p is close to an optimal cluster other than its own, then k − 1 centers achieve the
optimal score under a carefully constructed 3-perturbation. Any other point we add to
the set of centers must create a clustering that is ε-close to OPT , and we show all of these
sets cannot simultaneously be consistent with one another, thus causing a contradiction.
A key concept in our analysis is defining the notion of a cluster-capturing center, which
allows us to reason about which points can capture a cluster when its center is removed.

4. Efficient algorithm for any center-based clustering objective under weak center proximity.
Weak center proximity asks that each point be closer to its own center than to any point
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from any other cluster, but note that it allows a cluster center to be closer to points from
different clusters than to its own. Thus it is not at all obvious whether efficient optimal
clustering is possible in such a setting. We present a novel linkage-based algorithm that
is able to do so. It works by iteratively running single linkage as a subroutine until all
clusters are balanced, and then removing all but the very last link.

The novelty of our results are manifold. First, our work is the first to provide a tight
perturbation resilience result, thereby painting the complete picture for k-center under
perturbation resilience. Second, this is the first result where a problem is not approximable
to any constant in the worst-case, but can be optimally solved under resilience to small
constant perturbations. Third, we are the first to consider an asymmetric problem under
stability. Our results here illustrate a stark contrast between worst-case analysis and analysis
of algorithms under stability. Unlike approximation ratio, for which symmetric k-center
is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under the
same constant level of resilience.

2 Preliminaries

We define a clustering instance as (S, d), where S is a set of n points and d : S × S →
R≥0 is a distance function. In the k-center problem, the goal is to find a set of points
~p = {p1, . . . , pk} ⊆ S called centers such that the maximum distance from any point to its
closest center is minimized. More formally, in the k-center problem, given a Voronoi partition
P = {P1, . . . , Pk} induced by a set of centers ~p = {p1, . . . , pk} (where for all 1 ≤ i ≤ k,
pi ∈ Pi), we refer to P as a clusering, and define its cost by Φ(P) = maxi∈[k] maxv∈Pi

d(pi, v).
We indicate by OPT the clustering {C1, . . . , Ck} with minimum cost, we denote the optimal
centers {c1, . . . , ck}, and we denote the optimal cost Φ(OPT ) by r∗, the maximum cluster
radius.

We study the k-center clustering of instance (S, d) under two types of distance functions,
symmetric and asymmetric. A symmetric distance function is a metric. An asymmetric
distance function satisfies all the properties of a metric space, except for symmetry. That is,
it may be the case that for some p, q ∈ S, d(p, q) 6= d(q, p). Note that the k-center objective
function for asymmetric instances is the same as the symmetric case, the maximum distance
from the center to the points, where the order now matters.

We consider perturbation resilience, a notion of stability introduced by Bilu & Linial [10].
Perturbation resilience implies that the optimal clustering does not change under small
perturbations of the distance measure. Formally, d′ is called an α-perturbation of distance
function d, if for all p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ αd(p, q).1 Perturbation resilience is defined
formally as follows.

I Definition 1. A clustering instance (S, d) satisfies α-perturbation resilience for k-center, if
for any α-perturbation d′ of d, the optimal k-center clustering under d′ is unique and equal
to OPT .

Note that the optimal centers may change, but the Voronoi partition C1, . . . , Ck induced
by them must stay the same. We do not assume that d′ satisfies the triangle inequality.2 We

1 WLOG, we only consider perturbations in which the distances increases because we can scale the
distances to simulate decreasing distances.

2 This is well-justified, as the data may be gathered from heuristics or an average of measurements.
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also consider a more robust variant of α-perturbation resilience, called (α, ε)-perturbation
resilience, that allows a small change in the optimal clustering when distances are perturbed.
To this end, we say that two clusterings C and C′ are ε-close, if only an ε-fraction of the
input points are clustered differently in the two clusterings, i.e., minσ

∑k
i=1 |Ci \ C ′σ(i)| ≤ εn,

where σ is a permutation on [k]. Formally,

I Definition 2. A clustering instance (S, d) satisfies (α, ε)-perturbation resilience for k-center,
if for any α-perturbation d′ of d, any optimal k-center clustering C′ under d′ is ε-close to
OPT .

We use ε-far to denote two clusters which are not ε-close. We also discuss the strictly stronger
notion of approximation stability [6], which requires any α-approximation (not just a Voronoi
partition) to be ε-close to OPT . This is formally defined in Section 3.3. In Section 5, we
define center-based objectives [8], a more general class of clustering functions which includes
objective functions such as k-center, k-median, and k-means. Throughout this work, we use
Br(c) to denote a ball of radius r centered at point r. Also for a point p and a set D, d(p,D)
denotes the distance from p to the farthest point in D.

3 2-perturbation resilience

In this section, we provide efficient algorithms for finding OPT for symmetric and asymmetric
instances of k-center under 2-perturbation resilience. Our result directly improves on the
result of Balcan and Liang for symmetric k-center under (1 +

√
2)-perturbation resilience [8].

We also show that it is NP-hard to recover OPT even in the symmetric k-center instance
under (2− ε)-approximation stability. As an immediate consequence, our results are tight for
both perturbation resilience and approximation stability, for symmetric and asymmetric k-
center instances. This is the first problem for which the exact value of perturbation resilience
is found (α = 2), where the problem switches from efficiently computable to NP-hard.

In the remainder of this section, first we show that any α-approximation algorithm returns
the optimal solution for α-perturbation resilient instances. An immediate consequence is an
algorithm for symmetric k-center under 2-perturbation resilience. Then we provide a novel
algorithm for asymmetric k-center under 2-perturbation resilience.

3.1 Approximation algorithms under perturbation resilience
The following lemma allows us to reason about a specific type of α-perturbation we construct.
This lemma will be important throughout the analysis in this section and in Section 4.

I Lemma 3. For all α ≥ 1, given an α-perturbation d′ of d with the following property: for
all p, q, if d(p, q) ≥ r∗ then d′(p, q) ≥ αr∗. Then the optimal cost under d′ is αr∗.

Proof. Clearly the optimal cost under d′ cannot be greater than αr∗, since d′ is an α-
perturbation. Suppose there exists a set of centers c′1, . . . , c′k under d′ that achieves a cost
< αr∗. Then for all i and all p ∈ C ′i, d′(c′i, p) < αr∗. But then by assumption, d(c′i, p) < r∗.
This implies that c′1, . . . , c′k achieve an optimal cost < r∗ under d, which is a contradiction. J

The following theorem will imply that any α-approximation algorithm for k-center will
return the optimal solution on clustering instances that are α-perturbation resilient.

I Theorem 4. Given a clustering instance (S, d) satisfying α-perturbation resilience for
asymmetric k-center. Given a set C of k centers which is an α-approximation, i.e., ∀p ∈ S,
∃c ∈ C s.t. d(c, p) ≤ αr∗. Then the Voronoi partition induced by C is the optimal clustering.

ICALP 2016
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Proof. For a point p ∈ S, let c(p) := argminc∈Cd(c, p), the closest center in C to p. The
idea is to construct an α-perturbation in which C is the optimal solution by increasing all
distances except between p and c(p), for all p. Then the theorem will follow by using the
definition of perturbation resilience.

By assumption, ∀p ∈ S, d(c(p), p) ≤ αr∗. Create a perturbation d′ as follows. Increase
all distances by a factor of α, except for all p ∈ S, set d′(c(p), p) = min(αd(c(p), p), αr∗)
(recall in Definition 1, the perturbation need not satisfy the triangle inequality). Then no
distances were increased by more than a factor of α. And since we had that d(c(p), p) ≤ αr∗,
no distances decrease either. Therefore, d′ is an α-perturbation of d. By Lemma 3, the
optimal cost for d′ is αr∗. Also, C achieves cost ≤ αr∗ by construction, so C is an optimal
set of centers under d′. Then by α-perturbation resilience, the Voronoi partition induced by
C under d′ is the optimal clustering.

Finally, we show the Voronoi partition of C under d is the same as the Voronoi partition of
C under d′. Given p ∈ S whose closest point in C is c(p) under d, then under d′, all distances
from p to C \ {c(p)} increased by exactly α, and d(p, c(p)) increased by ≤ α. Therefore, the
closest point in C to p under d′ is still c(p). J

An immediate consequence is that we have exact algorithms for symmetric k-center under
2-perturbation resilience, and asymmetric k-center under O(log∗(k))-perturbation resilience.
Now we show it is possible to substantially improve the latter result.

3.2 Asymmetric k-center algorithm

One of the challenges involved in dealing with asymmetric k-center instances is the fact that
even though for all p ∈ Ci, d(ci, p) ≤ r∗, d(p, ci) might be arbitrarily large. Such points for
which d(p, ci)� r∗ pose a challenge to the structure of the clusters, as they can be very close
to points or even centers of other clusters. To deal with this challenge, we first define a set of
“good” points, A, such that A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}. Intuitively speaking,
these points behave similarly to a set of points with symmetric distances up to a distance r∗.
To explore this, we define a desirable property of A with respect to the optimal clustering.

I Definition 5. A is said to respect the structure of OPT if (1) ci ∈ A for all i ∈ [k], and
(2) for all p ∈ S \A, if A(p) := arg minq∈A d(q, p) ∈ Ci, then p ∈ Ci.

For all i, define C ′i = Ci ∩A (which is in fact the optimal clustering of A, although we
do not need to prove this). Satisfying Definition 5 implies that if we can optimally cluster
A, then we can optimally cluster the entire instance (formalized in Theorem 8). Thus our
goal is to show that A does indeed respect the structure of OPT , and to show how to return
C ′1, . . . , C

′
k.

Intuitively, A is similar to a symmetric 2-perturbation resilient clustering instance.
However, some structure is no longer there, for instance, a point p may be at distance ≤ 2r∗
from every point in a different cluster, which is not true for 2-perturbation resilient instances.
This implies we cannot simply run a 2-approximation algorithm on the set A, as we did in
the previous section. However, we show that the remaining structural properties are sufficient
to optimally cluster A. To this end, we define two properties and show how they lead to an
algorithm that returns C ′1, . . . , C ′k, and help us prove that A respects the structure of OPT .

The first of these properties requires each point to be closer to its center than any point
in another cluster. That is, Property (1): For all p ∈ C ′i and q ∈ C ′j , i 6= j, d(ci, p) < d(q, p).
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The second property requires that any point within distance r∗ of a cluster center belongs to
that cluster. That is, Property (2): For all i 6= j and q ∈ Cj, d(q, ci) > r∗.3

Let us illustrate how these properties allow us to optimally cluster A.4 Consider a ball of
radius r∗ around a center ci. By Property 2, such a ball exactly captures C ′i. Furthermore,
by Property 1, any point in this ball is closer to the center than to points outside of the
ball. Is this true for a ball of radius r∗ around a general point p? Not necessarily. If this
ball contains a point q ∈ C ′j from a different cluster, then q will be closer to a point outside
the ball than to p (namely, cj , which is guaranteed to be outside of the ball by Property 2).
This allows us to determine that the center of such a ball must not be an optimal center.

This structure motivates our Algorithm 1 for asymmetric k-center under 2-perturbation
resilience. At a high level, we start by constructing the set A (which can be done easily in
polynomial time). Then we create the set of all balls of radius r∗ around all points in A (if r∗
is not known, we can use a guess-and-check wrapper). Next, we prune this set by throwing
out any ball that contains a point farther from its center than to a point outside the ball.
We also throw out any ball that is a subset of another one. Our claim is that the remaining
balls are exactly C ′1, . . . , C ′k. Finally, we add the points in S \A to their closest point in A.

Algorithm 1 Asymmetric k-center algorithm under 2-PR
Input: Asymmetric k-center instance (S, d), distance r∗ (or try all possible candidates).
1. Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}
2. ∀c ∈ A, construct Gc = Br∗(c) (the ball of radius r∗ around c).
3. ∀Gc, if ∃p ∈ Gc, q /∈ Gc s.t. d(q, p) < d(c, p), then throw out Gc.
4. ∀p, q s.t. Gp ⊆ Gq, throw out Gp.
5. ∀p /∈ A, add p to Gq, where q = arg mins∈A d(s, p).
Output: Output the sets G1, . . . , Gk.

I Lemma 6. Properties 1 & 2 hold for asymmetric k-center instances under 2-perturbation
resilience.

Proof sketch. For Property 2, assume that there exists ci and q ∈ Cj , i 6= j, such that
d(q, ci) ≤ r∗. We construct a 2-perturbation in which q becomes the center for Ci. Increase
all distances by a factor of 2, except for the distances from q to Ci, which we increase until
they reach 2r∗. By Lemma 3, this 2-perturbation achieves a cost of 2r∗. However, q is
distance 2r∗ to Ci, so it must replace ci as an optimal center. Then q and cj are no longer
in the same cluster, causing a contradiction.

The first property was shown to hold for symmetric instances by Awasthi et al. and the
same proof can be used for asymmetric instances. This proof appears in the full version. J

I Lemma 7. A respects the structure of OPT .

We defer this proof to the full version of the paper.

3 Property (1) first appeared in the work of Awasthi et al. [5], for symmetric clustering instances. A
weaker variation of Property (2) was introduced by Balcan and Liang [8], which showed that in 1 +

√
2-

perturbation resilient instances for any cluster Ci with radius ri, Bri (ci) = Ci. Our Property (2) shows
that this is true for a universal radius, r∗, even for 2-perturbation resilient instances, and even for
asymmetric instances.

4 Other algorithms work, such as single linkage with dynamic programming at the end to find the
minimum cost pruning of k clusters. However, our algorithm is able to recognize optimal clusters locally
(without a complete view of the point set).
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I Theorem 8. Algorithm 1 returns the exact solution for asymmetric k-center under 2-
perturbation resilience.

Proof. First we must show that after step 4, the remaining sets are exactly C ′1, . . . , C ′k =
C1 ∩A, . . . , Ck ∩A. We prove this in three steps: the sets Gci

correspond to C ′i, these sets
are not thrown out in steps 3 and 4, and all other sets are thrown out in steps 3 and 4.
Because of Lemma 6, we can use Properties 1 and 2.

For all i, Gci
= C ′i: From Lemma 7, all centers are in A, so Gci

will be created in step
2. For all p ∈ Ci, d(ci, p) ≤ r∗. For all q /∈ C ′i, then by Property 2, d(q, ci) > r∗ (and since
ci, q ∈ A, d(ci, q) > r∗ as well). For all i, Gci

is not thrown out in step 3: Given s ∈ Gci
and

t /∈ Gci . Then s ∈ C ′i and t ∈ C ′j for j 6= i. If d(t, s) < d(ci, s), then we get a contradiction
from Property 1. For all non-centers p, Gp is thrown out in step 3 or 4: From the previous
paragraph, Gci

= C ′i. If Gp ⊆ Gci
, then Gp will be thrown out in step 4 (if Gp = Gci

, it does
not matter which set we keep, so WLOG say that we keep Gci). Then if Gp is not thrown out
in step 4, ∃s ∈ Gp ∩ C ′j , j 6= i. If s = cj , then d(p, cj) ≤ r∗ and we get a contradiction from
Property 2. So, we can assume s is a non-center (and that cj /∈ Gp). But d(cj , s) < d(p, s)
from Property 1, and therefore Gp will be thrown out in step 3. Thus, the remaining sets
after step 4 are exactly C ′1, . . . , C ′k.

Finally, by Lemma 7, for each p ∈ Ci \A, A(p) ∈ Ci, so p will be added to Gci
. Therefore,

the final output is C1, . . . , Ck. J

3.3 Hardness for k-center under (2 − ε)-approximation stability
In this section, we consider approximation stability, introduced by Balcan et al. [6], which
is strictly stronger than perturbation resilience. We show that if symmetric k-center under
(2− ε)-approximation stability can be solved in polynomial time, then NP = RP , even under
the condition that the optimal clusters are all ≥ n

2k . Because approximation stability is
stronger than perturbation resilience, this result implies k-center under (2− ε)-perturbation
resilience is hard as well. Similarly, symmetric k-center is a special case of asymmetric
k-center, so we get the same hardness results for asymmetric k-center. This proves that
Theorem 8 is tight.

Approximation stability requires constant approximations to the optimal cost to differ
from OPT by at most an ε-fraction of the points.

I Definition 9. A clustering instance (S, d) satisfies (α, ε)-approximation stability for k-
center, if for any partition C′ with objective value r′ (not necessarily a Voronoi partition), if
r′ ≤ αr∗, then C′ is ε-close to OPT .

It is not hard to see that (α, ε)-approximation stability implies (α, ε)-perturbation resili-
ence, as the optimal clustering under any α-perturbation costs at most αr∗ under the original
distance function, d. So, a violating instance of (α, ε)-perturbation resilience induces a
partition which costs ≤ αr∗ and is ε-far from OPT , and therefore is not (α, ε)-approximation
stable.

I Theorem 10. There is no polytime algorithm for finding the optimal k-center clustering
under (2− ε)-approximation stability, even when assuming all optimal clusters are size ≥ n

2k ,
unless NP = RP .

We show a reduction from a special case of Dominating Set which we call Unambiguous-
Balanced-Perfect Dominating Set. A reduction from Perfect Dominating Set (Dominating Set
with the additional constraint that for all dominating sets of size ≤ k, each vertex is hit by
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exactly one dominator) to the problem of clustering under (2− ε)-center proximity was shown
in [9] (α-center proximity is the property that for all p ∈ Ci and j 6= i, αd(ci, p) < d(cj , p),
and it follows from α-perturbation resilience). Our contribution is to show that Perfect
Dominating Set remains hard under two additional conditions. First, in the case of a yes
instance, each dominator must hit at least n

2k vertices (which translates to clusters having
size at least n

2k as well). Second, we are promised that there is at most one dominating
set of size ≤ k (which is required for establishing approximation stability for the resulting
clustering instance).

4 Robust perturbation resilience

In this section, we consider (α, ε)-perturbation resilience. We show that under (3, ε)-
perturbation resilience, there is an algorithm that recovers OPT for symmetric k-center, and
an algorithm that returns a solution that is ε-close to OPT for asymmetric k-center. For
both of these results, we assume a lower bound on the size of the optimal clusters, |Ci| > 2εn
for all i ∈ [k]. We show the lower bound on cluster sizes is necessary; in its absence, the
problem becomes NP-hard for all values of α ≥ 1 and ε > 0. The theorems in this section
require a careful reasoning about sets of centers under different perturbations that cannot all
simultaneously be valid.

4.1 Symmetric k-center
We show that for any (3, ε)-perturbation resilient k-center instance such that |Ci| > 2εn for
all i ∈ [k], OPT can be found by simply thresholding the input graph using distance r∗ and
outputting the connected components. A nice feature of our result is that the Single Linkage
algorithm, a fast algorithm widely used in practice, is sufficient to optimally cluster these
instances.

I Theorem 11. Given a (3, ε)-perturbation resilient k-center instance (S, d) where all optimal
clusters are > max(2εn, 3). Then the optimal clusters in OPT are exactly the connected
components of the threshold graph Gr∗ of the input distances.

Proof idea. Since each optimal cluster center is distance r∗ from all points in its cluster, it
suffices to show that any two points in different clusters are at least r∗ apart from each other.
Assume on the contrary that there exist p ∈ Ci and q ∈ Cj , i 6= j, such that d(p, q) ≤ r∗.
First we find a set of k + 2 points and a 3-perturbation d′, such that every size k subset of
the points are optimal centers under d′. Then we show how this leads to a contradiction
under (3, ε)-perturbation resilience.

From our assumption, p is distance ≤ 3r∗ from every point in Ci ∪ Cj (by the triangle
inequality). Under a 3-perturbation in which all distances are blown up by a factor of 3
except d(p, Ci ∪Cj), then replacing ci and cj with p would still give us a set of k − 1 centers
that achieve the optimal score. But, would this contradict (3, ε)-perturbation resilience?
Indeed, not! Perturbation resilience requires exactly k distinct centers.5 The key challenge is
to pick a final “dummy” center to guarantee that the Voronoi partition is ε-far from OPT .
The dummy center might “accidentally” be the closest center for almost all points in Ci or
Cj . Even worse, it might be the case that the new center sets off a chain reaction in which it

5 This distinction is well-motivated; if for some application, the best k-center solution is to put two
centers at the same location, then we could achieve the exact same solution with k − 1 centers. That
implies we should have been running k′-center for k′ = k − 1 instead of k.
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becomes center to a cluster Cx, and cx becomes center to Cj , which would also result in a
partition that is not ε-far from OPT .

To deal with the chain reactions, we crucially introduce the notion of a cluster capturing
center (CCC). cx is a CCC for Cy, if for all but εn points p ∈ Cy, d(cx, p) ≤ r∗ and for all
i 6= x, y, d(cx, p) < d(ci, p). Intuitively, a CCC exists if and only if cx is a valid center for
Cy when cy is taken out of the set of optimal centers (i.e., a chain reaction will occur). We
argue that if a CCC does not exist then every dummy center we pick must be close to either
Ci or Cj , since there are no chain reactions. If there does exist a CCC cx for Cy, then we
cannot reason about what happens to the dummy centers under our d′. However, we can
define a new d′′ by increasing all distances except d(cx, Cy), which allows us to take cy out of
the set of optimal centers, and then any dummy center must be close to Cx or Cy. There are
no chain reactions because we already know cx is the best center for Cy among the original
optimal centers. Thus, whether or not there exists a CCC, we can find k + 2 points close to
the entire dataset by picking points from both Ci and Cj (resp. Cx and Cy).

Because of the assumption that all clusters are size > 2εn, for every 3-perturbation there
must be a bijection between clusters and centers, where the center is closest to the majority
of points in the corresponding cluster. We show that all size k subsets of the k + 2 points
cannot simultaneously admit bijections that are consistent with one another.

Note that Theorem 10 implies (2− δ, ε)- perturbation resilient k-center is hard for δ > 0,
even when the optimal clusters are large. Therefore, the value of α we achieve is within one
of optimal. J

4.2 Lower bound on cluster sizes
Before moving to the asymmetric case, we show that the lower bound on the cluster sizes in
Theorem 11 is necessary. Without this lower bound, clustering becomes hard, even assuming
(α, ε)-perturbation resilience for any α and ε. This reduction follows from k-center (the
details appear in the full version).

I Theorem 12. For all α ≥ 1 and ε > 0, finding the optimal solution for k-center under
(α, ε)-perturbation resilience is NP-hard.

4.3 Asymmetric k-center
In the asymmetric case, we consider the definition of the symmetric set A from Section 3,
A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}. We might first ask whether A respects the
structure of OPT , as it did under 2-perturbation resilience. Namely, whether Condition 1:
all centers are in A, and Condition 2: arg minq∈A d(q, p) ∈ Ci =⇒ p ∈ Ci hold. This is not
the case for either condition. We explore to what degree these conditions are violated.

We call a center ci “bad” if it is not in the set A, i.e., ∃q /∈ Ci and d(q, ci) ≤ r∗. When
a bad center ci exists, we can take it out of the set of optimal centers, and we can pick
an arbitrary dummy center which must be close to Ci or a CCC for Ci. In our symmetric
argument, we arrived at a contradiction by showing that two dummy centers which capture
the same cluster, must be close by the triangle inequality. This logic breaks down for
asymmetric distances. In the full version of the paper, we show an example of an instance
with a bad center that satisfies (α, ε)-perturbation resilience. However, it turns out that no
instance can have more than 6 bad centers under (3, ε)-perturbation resilience, assuming all
optimal clusters have size > 2εn. So Condition 1 is satisfied for all but a constant number of
centers. However, Condition 2 may not be satisfied for up to εn points. Therefore, even if
we fully cluster A, we will only get ε-close to OPT .
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Although up to 6 clusters may have no intersection with A, each point that does belong
to A is distance r∗ from its center and distance 2r∗ from its entire cluster. This motivates
the following algorithm. First, we run a symmetric k-center 2-approximation algorithm on
A, for k − 6 ≤ k′ ≤ k. For instance, iteratively pick an unmarked point, and mark all points
distance 2r∗ away from it [19]. This gives us a 2-approximation for the centers in A, and thus
a 3-approximation for S minus the clusters with no centers in A. Then we brute force search
for the remaining ≤ 6 centers to find a 3-approximation for S. Under (3, ε)-perturbation
resilience, this 3-approximation must be ε-close to OPT . We formally state the algorithm
and theorem below, and we defer the proof to the full version of this paper. The main
technical challenge is in proving that no instance can have more than 6 bad centers.

Algorithm 2 (3, ε)-Perturbation Resilient Asymmetric k-center
Input: Asymmetric k-center instance (S, d), r∗ (or try all possible candidates).
1. Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}.
2. Create the threshold graph G with vertices A, and threshold distance r∗. Define a new

symmetric k-center instance with A, using the lengths of the paths in the threshold graph.
3. Run a symmetric k-center 2-approximation algorithm on the symmetrized instance. Start

with k′ = k − 6, and increase k′ by 1 until the algorithm returns a solution with radius
≤ 2r∗.

4. Brute force over all size k − x subsets of C and all size x subsets of S for x ≤ 6, to find a
set of size k which is 3r∗ from all points in S. Denote this set by C ′.

Output: Output the Voronoi tiling G1, . . . , Gk using C ′ as the centers.

I Theorem 13. Algorithm 2 runs in polytime and outputs a clustering that is ε-close to
OPT , for (3, ε)-perturbation resilient asymmetric k-center instances s.t. all optimal clusters
are size > 2εn.

5 Weak center proximity

In this section, we consider any center-based objective, not just k-center. A clustering
objective function is center-based if the solution can be defined by choosing a set of centers
{c1, c2, . . . , ck} ⊆ S, and partitioning S into k clusters OPT = {C1, C2, . . . , Ck} by assigning
each point to its closest center. Furthermore:
1. The objective value of a given clustering is a weighted sum or maximum of the individual

cluster scores.
2. Given a proposed single cluster, its score can be computed in polynomial time.
k-median, k-means, and k-center are all center-based objectives.

Here, we show a novel algorithm that finds the optimal clustering in instances that satisfy
two simple properties: each point is closer to its center than to any point in a different
cluster, and we can recognize optimal clusters as soon as they are formed. Formally, we
define these properties as:
1. Weak Center Proximity: For all p ∈ Ci and q ∈ Cj , d(ci, p) < d(p, q).
2. Cluster Verifiability: There exists a polytime computable function f : 2S → R that for

B ⊆ S, if there is i ∈ [k] such that B ⊂ Ci, then f(B) < 0, and if B ⊇ Ci, then f(B) ≥ 0.

Examples of cluster verifiable instances include any instance where all the optimal clusters
are the same size (f(B) = |B| − n

k ), or where all the optimal clusters have the same
k-median/k-means cost (f(B) = Φ(B)− Φ(OPT )).
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For any center-based objective, weak center proximity is a consequence of 2-perturbation
resilience (i.e., Lemma 6), so, our algorithm relies on a much weaker assumption than
α-perturbation resilience for α ≥ 2, when instances are cluster verifiable.

All existing algorithms and analysis for α-perturbation resilience require that for all
p ∈ Ci and q ∈ Cj , d(ci, p) < d(ci, q). It is not at all obvious how one can even proceed
without such a property, as in its absence, clusters can ‘overlap’. That is, for a cluster with
center ci and radius r, we can not assume that Br(ci) only includes points from Ci. Our
challenge is then in showing that even in absence of this property, there is still enough
structure imposed by the weak center proximity and cluster verifiability to find the optimal
clustering efficiently.

Our Algorithm 3 is a novel linkage based procedure. Given a clustering instance (S, d),
we will start with a graph G = (S,E) where E = ∅. In each round, we do single linkage
on the components in G, except we do not merge two components if both are supersets of
optimal clusters (indicated by f(B) ≥ 0). Put the single linkage edges from this round in a
set A. This will continue until every component is a superset of an optimal cluster. Then we
throw away the set A except for the very last edge that was added. We will prove this last
edge is never between two points from different clusters, so we add that single edge to E and
then recur. Here, we present a proof sketch of our main theorem. The details can be found
in the full version.

Algorithm 3 Clustering under weak center proximity and cluster verifiability
Input: Clustering instance (S, d), function f , and k ≤ |S|.
Set G = (S,E) and E = ∅. While there are more than k components in G, repeat (1) and
(2):
1. Set A = ∅. While there exists a component B in G′ = (S,E ∪ A) such that f(B) < 0,

add (p, q) to A, where d(p, q) is minimized such that p and q are in different components
in G′ and at least one of these components B has f(B) < 0.

2. Take the last edge e that was added to A, and put e ∈ E.
Output: Output the components of G.

I Theorem 14. Given a center-based clustering instance satisfying weak center proximity
and cluster verifiability, Algorithm 3 outputs OPT in polynomial time.

Proof Sketch. It suffices to show that step (b) never adds an edge between two points from
different clusters. We proceed by induction. Assume it is true up to iteration t of the first
while loop. Now assume towards contradiction that in round t, the last edge added to A is
between two points p ∈ Ci and q ∈ Cj , i 6= j. WLOG, for the component in G′ that includes
p, called P ′, we have f(P ′) < 0, otherwise the merge would not have happened. Furthermore,
ci ∈ P ′ by weak center proximity. Then f(P ′) < 0 implies that Ci \ P ′ is nonempty, so
call it P . The component(s) in G corresponding to P are strict subsets of Ci, therefore,
f(P ) < 0. So they must merge to another component, and by weak center proximity, the
closest component is P ′, but this contradicts our assumption that (p, q) was the last edge
added to A. J

6 Conclusions

Our work pushes the understanding of (promise) stability conditions farther in three ways.
We are the first to design computationally efficient algorithms to find the optimal clustering
under α-perturbation resilience with a constant value of α for a problem that is hard to
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approximate to any constant factor in the worst case, thereby demonstrating the power of
perturbation resilience. Furthermore, we demonstrate the limits of this power by showing the
first tight results in this space for both perturbation resilience and approximation stability.
Finally, we show a surprising relation between symmetric and asymmetric instances, in that
they are equivalent under resilience to 2-perturbations, which is in stark contrast to their
widely differing tight approximation factors.
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