
Approximation Algorithms for Clustering Problems
with Lower Bounds and Outliers∗

Sara Ahmadian1 and Chaitanya Swamy†2

1 Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON, Canada
sahmadian@math.uwaterloo.ca

2 Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON, Canada
sahmadian@math.uwaterloo.ca

Abstract
We consider clustering problems with non-uniform lower bounds and outliers, and obtain the
first approximation guarantees for these problems. We have a set F of facilities with lower
bounds {Li}i∈F and a set D of clients located in a common metric space {c(i, j)}i,j∈F∪D, and
bounds k, m. A feasible solution is a pair

(
S ⊆ F , σ : D 7→ S ∪ {out}

)
, where σ specifies the

client assignments, such that |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. In the
lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, the objective is to minimize∑

i∈S maxj∈σ−1(i) c(i, j), and in the lower-bounded k-supplier with outliers (LBkSupO) problem,
the objective is to minimize maxi∈S maxj∈σ−1(i) c(i, j).

We obtain an approximation factor of 12.365 for LBkSRO, which improves to 3.83 for the
non-outlier version (i.e., m = 0). These also constitute the first approximation bounds for the
min-sum-of-radii objective when we consider lower bounds and outliers separately. We apply
the primal-dual method to the relaxation where we Lagrangify the |S| ≤ k constraint. The
chief technical contribution and novelty of our algorithm is that, departing from the standard
paradigm used for such constrained problems, we obtain an O(1)-approximation despite the fact
that we do not obtain a Lagrangian-multiplier-preserving algorithm for the Lagrangian relaxation.
We believe that our ideas have broader applicability to other clustering problems with outliers
as well.

We obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier
version. These are the first approximation results for k-supplier with non-uniform lower bounds.
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1 Introduction

Clustering is an ubiquitous problem arising in applications in various fields such as data
mining, machine learning, image processing, and bioinformatics. Many of these problems
involve finding a set S of at most k “cluster centers”, and an assignment σ mapping an
underlying set D of data points located in some metric space {c(i, j)} to S, to minimize
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some objective function; examples include the k-center (minimize maxj∈D c(σ(j), j)) [20,
21], k-median (minimize

∑
j∈D c(σ(j), j)) [9, 22, 25, 6], and min-sum-of-radii (minimize∑

i∈S maxj:σ(j)=i c(i, j)) [15, 11] problems. Viewed from this perspective, clustering problems
can often be viewed as facility-location problems, wherein an underlying set of clients that
require service need to be assigned to facilities that provide service in a cost-effective fashion.
Both clustering and facility-location problems have been extensively studied in the Computer
Science and Operations Research literature; see, e.g., [27, 29] in addition to the above
references.

We consider clustering problems with (non-uniform) lower-bound requirements on the
cluster sizes, and where a bounded number of points may be designated as outliers and
left unclustered. One motivation for considering lower bounds comes from an anonymity
consideration. In order to achieve data privacy, [28] proposed an anonymization problem
where we seek to perturb (in a specific way) some of (the attributes of) the data points and
then cluster them so that every cluster has at least L identical perturbed data points, thus
making it difficult to identify the original data from the clustering. As noted in [2, 1], this
anonymization problem can be abstracted as a lower-bounded clustering problem where the
clustering objective captures the cost of perturbing data. Another motivation comes from a
facility-location perspective, where (as in the case of lower-bounded facility location), the
lower bounds model that it is infeasible or unprofitable to use services unless they satisfy a
certain minimum demand (see, e.g., [26]). Allowing outliers enables one to handle a common
woe in clustering problems, namely that data points that are quite dissimilar from any
other data point can often disproportionately (and undesirably) degrade the quality of any
clustering of the entire data set; instead, the outlier-version allows one to designate such
data points as outliers and focus on the data points of interest.

Formally, adopting the facility-location terminology, our setup is as follows. We have a
set F of facilities with lower bounds {Li}i∈F and a set D of clients located in a common
metric space {c(i, j)}i,j∈F∪D, and bounds k, m. A feasible solution chooses a set S ⊆ F of at
most k facilities, and assigns each client j to a facility σ(j) ∈ S, or designates j as an outlier
by setting σ(j) = out so that |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. We consider
two clustering objectives: minimize

∑
i∈S maxj:σ(j)=i c(i, j), which yields the lower-bounded

min-sum-of-radii with outliers (LBkSRO) problem, and minimize maxi∈S maxj:σ(j)=i c(i, j),
which yields the lower-bounded k-supplier with outliers (LBkSupO) problem. We refer to
the non-outlier versions of the above problems (i.e., where m = 0) as LBkSR and LBkSup
respectively.

Our contributions. We obtain the first results for clustering problems with non-uniform
lower bounds and outliers. We develop various techniques for tackling these problems using
which we obtain constant-factor approximation guarantees for LBkSRO and LBkSupO. Note
that we need to ensure that none of the hard constraints involved here – at most k clusters,
non-uniform lower bounds, and at most m outliers – are violated, which is somewhat
challenging.

We obtain an approximation factor of 12.365 for LBkSRO (Theorem 7, Section 2.2), which
improves to 3.83 for the non-outlier version LBkSR (Theorem 6, Section 2.1). These also
constitute the first approximation results for the min-sum-of-radii objective when we consider:
(a) lower bounds (even uniform bounds) but no outliers (LBkSR); and (b) outliers but no
lower bounds. Previously, an O(1)-approximation was known only in the setting where there
are no lower bounds and no outliers (i.e., Li = 0 for all i, m = 0) [11].

For the k-supplier objective (Section 3), we obtain an approximation factor of 5 for
LBkSupO (Theorem 16), and 3 for LBkSup (Theorem 15). These are the first approximation
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results for the k-supplier problem with non-uniform lower bounds. Previously, [1] obtained
approximation factors of 4 and 2 respectively for LBkSupO and LBkSup for the special case of
uniform lower bounds and when F = D (often called the k-center version). Complementing
our approximation bounds, we prove a factor-3 hardness of approximation for LBkSup
(Theorem 17), which shows that our approximation factor of 3 is optimal for LBkSup.

Our techniques. Our main technical contribution is an O(1)-approximation algorithm for
LBkSRO (Section 2.2). Whereas for the non-outlier version LBkSR (Section 2.1), one can
follow an approach similar to that in [11] for the min-sum-of-radii problem without lower
bounds or outliers, the presence of outliers creates substantial difficulties whose resolution
requires various novel ingredients. As in [11], we view LBkSRO as a k-ball-selection (k-BS)
problem of picking k suitable balls (see Section 2) and consider its LP-relaxation (P2). Let
OPT denote its optimal value. Following the Jain-Vazirani (JV) template for k-median [22],
we move to the version where we may pick any number of balls but incur a fixed cost of
z for each ball we pick. The dual LP (D2) has αj dual variables for the clients, which
“pay” for (i, r) pairs (where (i, r) denotes the ball {j ∈ D : c(i, j) ≤ r}). For LBkSR (where
m = 0), as observed in [11], it is easy to adapt the JV primal-dual algorithm for facility
location to handle this fixed-cost version of k-BS: we raise the αjs of uncovered clients
until all clients are covered by some fully-paid (i, r) pair (see PDAlg). This yields a so-
called Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm: if F is the primal
solution constructed, then 3

∑
j αj can pay for cost(F ) + 3|F |z; hence, by varying z, one can

find two solutions F1, F2 for nearby values of z, and combine them to extract a low-cost
k-BS-solution.

The presence of outliers in LBkSRO significantly complicates things. The natural adapta-
tion of the primal-dual algorithm is to now stop when at least |D| −m clients are covered by
fully-paid (i, r) pairs. But now, the dual objective involves a −m ·γ term, where γ = maxj αj ,
which potentially cancels the dual contribution of (some) clients that pay for the last fully-
paid (i, r) pair, say f . Consequently, we do not obtain an LMP-approximation: if F is
the primal solution we construct, we can only say that (roughly) 3(

∑
j αj − m · γ) pays

for cost(F \ f) + 3|F \ f |z (see Theorem 8 (ii)). In particular, this means that even if the
primal-dual algorithm returns a solution with k pairs, its cost need not be bounded, an artifact
that never arises in LBkSR (or k-median). This in turn means that by combining the two
solutions F1, F2 found for z1, z2 ≈ z1, we only obtain a solution of cost O(OPT + z1) (see
Theorem 10).

Dealing with the case where z1 = Ω(OPT ) is technically the most involved portion of our
algorithm (Section 2.2.2). We argue that in this case the solutions F1, F2 (may be assumed
to) have a very specific structure: |F1| = k + 1, and every F2-ball intersects at most one
F1-ball, and vice versa. We utilize this structure to show that either we can find a good
solution in a suitable neighborhood of F1 and F2, or F2 itself must be a good solution.

We remark that the above difficulties (i.e., the inability to pay for the last “facility” and the
ensuing complications) also arise in the k-median problem with outliers. We believe that our
ideas also have implications for this problem and should yield a much-improved approximation
ratio for this problem. (The current guarantee is a large (unspecified) constant [12].)

For the k-supplier problem, LBkSupO, we leverage the notion of skeletons and pre-skeletons
defined by [14] in the context of capacitated k-supplier with outliers, wherein facilities have
capacities instead of lower bounds limiting the number of clients that can be assigned to
them. Roughly speaking, a skeleton F ⊆ F ensures there is a low-cost solution (F, σ). A
pre-skeleton satisfies some of the properties of a skeleton. We show that if F is a pre-skeleton,
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then either F is a skeleton or F ∪ {i} is a pre-skeleton for some facility i. This allows one to
find a sequence of facility-sets such that at least one of them is a skeleton. For a given set F ,
one can check if F admits a low-cost assignment σ, so this yields an O(1)-approximation
algorithm.

Related work. There is a vast literature on clustering and facility-location (FL) problems
(see, e.g., [27, 29]); we limit ourselves to work that is relevant to LBkSRO and LBkSupO.

The only prior work on clustering problems to incorporate both lower bounds and outliers
is by Aggarwal et al. [1]. They obtain approximation ratios of 4 and 2 respectively for
LBkSupO and LBkSup with uniform lower bounds, which they consider as a means of
achieving anonymity. They also consider an alternate cellular clustering (CellC) objective
and devise an O(1)-approximation algorithm for lower-bounded CellC with uniform lower
bounds, and mention that this can be extended to an O(1)-approximation for lower-bounded
CellC with outliers.

More work has been directed towards clustering problems involving outliers or lower
bounds (but not both). Charikar et al. [10] consider (among other problems) the outlier-
versions of the uncapacitated FL, k-supplier and k-median problems. They devise constant-
factor approximations for the first two problems, and a bicriteria approximation for the
k-median problem with outliers. They also proved a factor-3 approximation hardness result
for k-supplier with outliers. This nicely complements our factor-3 hardness result for k-
supplier with lower bounds but no outliers. Chen [12] obtained the first true approximation
for k-median with outliers via a sophisticated combination of the primal-dual algorithm
for k-median and local search that yields a large (unspecified) O(1)-approximation. Cygan
and Kociumaka [14] consider the capacitated k-supplier with outliers problem, and devise a
25-approximation algorithm. We leverage some of their ideas in developing our algorithm for
LBkSupO.

Lower-bounded clustering and FL problems remain largely unexplored and ill-understood.
Besides LBkSup (which has also been studied in Euclidean spaces [16]) another such FL
problem that has been studied is lower-bounded facility location (LBFL) [23, 19], wherein we
seek to open facilities (which have lower bounds) and assign each client j to an open facility
σ(j) so as to minimize

∑
j∈D c(σ(j), j). Svitkina [30] obtained the first true approximation

for LBFL, achieving an O(1)-approximation; the O(1)-factor was subsequently improved
by [3]. Both results apply to LBFL with uniform lower bounds, and can be adapted to yield
O(1)-approximations to the k-median variant (where we may open at most k facilities).

Doddi et al. [15] introduced the min-sum-of-diameters objective, which is closely related
to the min-sum-of-radii objective (the former is at most twice the latter). Charikar and
Panigrahi [11] devised the first (and current-best) O(1)-approximation algorithms for these
problems, obtaining approximation ratios of 3.53 and 7.06 for the radii and diameter problems
respectively. Various other results are known for specific metric spaces and when F = D,
such as Euclidean spaces [18, 7] and metrics with bounded aspect ratios [17, 5].

The k-supplier and k-center (i.e., k-supplier with F = D) objectives have a rich history
of study. Hochbaum and Shmoys [20, 21] obtained optimal approximation ratios of 3 and 2
for these problems respectively. Capacitated versions of k-center and k-supplier have also
been studied: [24] devised a 6-approximation for uniform capacities, [13] obtained the first
O(1)-approximation for non-uniform capacities, and this O(1)-factor was improved to 9 in [4].

Finally, our algorithm for LBkSRO leverages the template based on Lagrangian relaxation
and the primal-dual method to emerge from the work of [22, 8] for the k-median problem.
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2 Minimizing sum of radii with lower bounds and outliers

Recall that in the lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, we have
a facility-set F and client-set D located in a metric space {c(i, j)}i,j∈F∪D, lower bounds
{Li}i∈F , and bounds k and m. A feasible solution is a pair

(
S ⊆ F , σ : D 7→ S ∪ {out}

)
,

where σ(j) ∈ S indicates that j is assigned to facility σ(j), and σ(j) = out designates j as
an outlier, such that |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. The cost
cost(S, σ) of such a solution is

∑
i∈S ri, where ri := maxj∈σ−1(i) c(i, j) denotes the radius

of facility i; the goal is to find a solution of minimum cost. We use LBkSR to denote the
non-outlier version where m = 0.

It will be convenient to consider a relaxation of LBkSRO that we call the k-ball-selection
(k-BS) problem, which focuses on selecting at most k balls centered at facilities of minimum
total radius. More precisely, let B(i, r) := {j ∈ D : c(i, j) ≤ r} denote the ball of clients
centered at i with radius r. Let cmax = maxi∈F,j∈D c(i, j). Let Li := {(i, r) : |B(i, r)| ≥
Li}, and L :=

⋃
i∈F Li. The goal in k-BS is to find a set F ⊆ L with |F | ≤ k and∣∣D \⋃(i,r)∈F B(i, r)
∣∣ ≤ m so that cost(F ) :=

∑
(i,r)∈F r is minimized. (When formulating

the LP-relaxation of the k-BS-problem, we equivalently view L as containing only pairs
of the form (i, c(i, j)) for some client j, which makes L finite.) It is easy to see that any
LBkSRO-solution yields a k-BS-solution of no greater cost. The key advantage of working
with k-BS is that we do not explicitly consider the lower bounds (they are folded into the Lis)
and we do not require the balls B(i, r) for (i, r) ∈ F to be disjoint. While a k-BS-solution
F need not directly translate to a feasible LBkSRO-solution, one can show that it does
yield a feasible LBkSRO-solution of cost at most 2 · cost(F ). We prove a stronger version
of this statement in Lemma 1. In the following two sections, we utilize this relaxation to
devise the first constant-factor approximation algorithms for for LBkSR and LBkSRO. To
our knowledge, our algorithm is also the first O(1)-approximation algorithm for the outlier
version of the min-sum-of-radii problem without lower bounds.

We consider an LP-relaxation for the k-BS-problem, and to round a fractional k-BS-
solution to a good integral solution, we need to preclude radii that are much larger than those
used by an optimal solution. We therefore “guess” the t facilities in the optimal solution
with the largest radii, and their radii, where t ≥ 1 is some constant. That is, we enumerate
over all O

(
(|F|+ |D|)2t) choices FO = {(i1, r1), . . . , (it, rt)} of t (i, r) pairs from L. For each

such selection, we set D′ = D \
⋃

(i,r)∈FO B(i, r), L′ = {(i, r) ∈ L : r ≤ minp=1,...,t rp} and
k′ = k− |FO|, and run our k-BS-algorithm on the modified k-BS-instance (F ,D′, c,L′, k′,m)
to obtain a k-BS-solution F . We translate F ∪ FO to an LBkSRO-solution, and return
the best of these solutions. The following lemma, and the procedure described therein, is
repeatedly used to bound the cost of translating F ∪ FO to a feasible LBkSRO-solution.
We call pairs (i, r), (i′, r′) ∈ F × R≥0 non-intersecting, if c(i, i′) > r + r′, and intersecting
otherwise. Note that B(i, r) ∩B(i′, r′) = ∅ if (i, r) and (i′, r′) are non-intersecting. For a set
P ⊆ F × R≥0 of pairs, define µ(P ) := {i ∈ F : ∃r s.t. (i, r) ∈ P}.

I Lemma 1. Let FO ⊆ L, and D′,L′, k′ be as defined above. Let F ⊆ L be a k-BS-solution
for the k-BS-instance (F ,D′, c,L′, k′,m). Suppose for each i ∈ µ(F ), we have a radius
r′i ≤ maxr:(i,r)∈F r such that the pairs in U :=

⋃
i∈µ(F )(i, r′i) are non-intersecting and U ⊆ L′.

Then there exists a feasible LBkSRO-solution (S, σ) with cost(S, σ) ≤ cost(F ) +
∑

(i,r)∈FO 2r.

2.1 Approximation algorithm for LBkSR
We now present our algorithm for the non-outlier version, LBkSR, which introduces many of
the ideas underlying our algorithm for LBkSRO (Section 2.2). Let O∗ be the cost of an optimal
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solution to the given LBkSR instance. For each selection (i1, r1), . . . , (it, rt) of t pairs, we do
the following. We set D′ = D \

⋃t
p=1 B(ip, rp), L′ = {(i, r) ∈ L : r ≤ R∗ := minp=1,...,t rp},

k′ = k − t, and consider the k-BS-problem of picking a min-cost set of at most k′ pairs from
L′ whose corresponding balls cover D′ (but our algorithm k-BSAlg will return pairs from L).
Consider the following natural LP-relaxation (P1) of this problem, and its dual (D1).

min
∑

(i,r)∈L′
r · yi,r (P1)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′ (1)

y ≥ 0.

max
∑
j∈D′

αj − k′ · z (D1)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

(2)
α, z ≥ 0.

Let OPT denote the common optimal value of (P1) and (D1). As in the JV-algorithm for
k-median, we Lagrangify constraint (1) and consider the unconstrained problem where we do
not bound the number of pairs we may pick, but we incur a fixed cost z for each pair (i, r)
that we pick (in addition to r). It is easy to adapt the JV primal-dual algorithm for facility
location [22] to devise a simple Lagrangian-multiplier-preserving (LMP) 3-approximation
algorithm for this problem (see PDAlg and Theorem 3). We use this LMP algorithm within
a binary-search procedure for z to obtain two solutions F1 and F2 with |F2| ≤ k′ < |F1|,
and show that these can be “combined” to extract a k-BS-solution F of cost at most
3.83 ·OPT +O(R∗). This combination step is more involved than in k-median. The main
idea here is to use the F2 solution as a guide to merge some F1-pairs. We cluster the F1
pairs around the F2-pairs and setup a covering-knapsack problem whose solution determines
for each F2-pair (i, r), whether to “merge” the F1-pairs clustered around (i, r) or select all
these F1-pairs (see step B2). Finally, we add back the pairs (i1, r1), . . . (it, rt) selected earlier
and apply Lemma 1 to obtain an LBkSR-solution. As required by Lemma 1, to aid in this
translation, our k-BS-algorithm returns, along with F , a suitable radius rad(i) for every
facility i ∈ µ(F ). This yields a (3.83 + ε)-approximation algorithm (Theorem 6).

While our approach is similar to the one in [11] for the min-sum-of-radii problem without
lower bounds (although our combination step is notably simpler), an important distinction
that arises is the following. In the absence of lower bounds, the ball-selection problem k-BS
is equivalent to the min-sum-of-radii problem, but (as noted earlier) this is no longer the case
when we have lower bounds since in k-BS we do not insist that the balls we pick be disjoint.
Moving from overlapping balls in a k-BS-solution to an LBkSR-solution incurs, in general,
a factor-2 blowup in the cost, but we avoid this blowup by exploiting the structure of the
k-BS-solution obtained and carefully merging in the pairs (i1, r1), . . . , (it, rt) (see Lemma 1).
It is interesting that our approximation factor is quite close to the approximation factor (of
3.53) achieved in [11] for the min-sum-of-radii problem without lower bounds.

We now describe our algorithm in detail and analyze it. We describe a slightly simpler
(6.183 + ε)-approximation algorithm below (Theorem 2). We sketch the ideas behind the
improved approximation ratio at the end of this section and defer the details to the full
version.
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I Algorithm 1.
Input: An LBkSR-instance I =

(
F ,D, {Li}, {c(i, j)}, k

)
, parameter ε > 0.

Output: A feasible solution (S, σ).
A1. Let t = min

{
k,
⌈

1
ε

⌉}
. For each set FO ⊆ L with |FO| ≤ t, do the following.

A1.1. Set D′ = D\
⋃

(i,r)∈FO B(i, r), L′ = {(i′, r′) ∈ L : r ≤ R∗ = min(i,r)∈FO r}, k′ = k−|FO|.
A1.2. If (P1) is infeasible, then reject this guess and move to the next set FO. If D′ 6= ∅, run
k-BSAlg(D′,L′, k′, ε) to obtain

(
F, {rad(i)}i∈F

)
; else set (F, rad) = (∅, ∅).

A1.3. Apply the procedure in Lemma 1 taking r′i = rad(i) for all i ∈ µ(F ) to obtain (S, σ).

A1. Among all the solutions (S, σ) found in step A1, return the one with smallest cost.

I Algorithm k-BSAlg(D′,L′, k′, ε).
Output: F ⊆ L with |F | ≤ k′, a radius rad(i) for all i ∈ µ(F ).
B1. Binary search for z.

B1.1. Set z1 = 0 and z2 = 2k′cmax. For p = 1, 2, let (Fp, {radp(i)}, αp) ← PDAlg(D′,L′, zp),
and let kp = |Fp|. If k1 ≤ k′, stop and return

(
F1, {rad1(i)}

)
. We prove in Theorem 3 that

k2 ≤ k′; if k2 = k′, stop and return
(
F2, {rad2(i)}

)
.

B1.2. Repeat the following until z2 − z1 ≤ δz = εOPT
3n , where n = |F| + |D|. Set z = z1+z2

2 .
Let (F, {rad(i)}, α)← PDAlg(D′,L′, z). If |F | = k′, stop and return

(
F, {rad(i)}

)
; if |F | > k′,

update z1 ← z and (F1, rad1, α
1) ← (F, rad, α), else update z2 ← z and (F2, rad2, α

2) ←
(F, rad, α).

B2. Combining F1 and F2. Let π : F1 7→ F2 be any map such that (i′, r′) and π(i′, r′) intersect
∀(i′, r′) ∈ F1. (This exists since every j ∈ D′ is covered by B(i, r) for some (i, r) ∈ F2.) Define
star Si,r = π−1(i, r) for all (i, r) ∈ F2 (see Fig. 1). Solve the following covering-knapsack LP.

min
∑

(i,r)∈F2

(
xi,r(2r +

∑
(i′,r′)∈Si,r

2r′) + (1− xi,r)
∑

(i′,r′)∈Si,r
r′
)

(C-P)

s.t.
∑

(i,r)∈F2

(
xi,r + |Si,r|(1− xi,r)

)
≤ k′, 0 ≤ xi,r ≤ 1 ∀(i, r) ∈ F2.

Let x∗ be an extreme-point optimal solution to (C-P). The variable x(i,r) has the following
interpretation. If x∗i,r = 0, then we select all pairs in Si,r. Otherwise, if Si,r 6= ∅, we pick a pair
in (i′, r′) ∈ Si,r, and include (i′, 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′) in our solution. Notice
that by expanding the radius of i′ to 2r+ r′+ max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′, we cover all the clients
in
⋃

(i′′,r′′)∈Si,r
B(i′′, r′′). Let F ′ be the resulting set of pairs.

B3. If cost(F2) ≤ cost(F ), return (F2, rad2), else return
(
F ′, {rad1(i)}i∈µ(F ′)

)
.

I Algorithm PDAlg(D′,L′, z).
Output: F ⊆ L, radius rad(i) for all i ∈ µ(F ), dual solution α.
P1. Dual-ascent phase. Start with αj = 0 for all j ∈ D′, D′ as the set of active clients, and the

set T of tight pairs initialized to ∅. We repeat the following until all clients become inactive: we
raise the αjs of all active clients uniformly until constraint (2) becomes tight for some (i, r); we
add (i, r) to T and mark all active clients in B(i, r) as inactive.

P2. Pruning phase. Let TI be a maximal subset of non-intersecting pairs in T picked by a
greedy algorithm that scans pairs in T in non-increasing order of radius. Note that for each
i ∈ µ(TI), there is exactly one pair (i, r) ∈ TI . We set rad(i) = r, and ri = max {c(i, j) :
j ∈ B(i′, r′), (i′, r′) ∈ T, r′ ≤ r, (i′, r′) intersects (i, r) ((i′, r′) could be (i, r))}. Let F =
{(i, ri)}i∈µ(TI ). Return F , {rad(i)}i∈µ(TI ), and α.
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Figure 1 An example of stars formed by F1 and F2 where F1 = {u1, u2, . . . , u11} and F2 =
{v1, v2, . . . , v6} depicted by squares and circles, respectively.

Analysis. We prove the following result.

I Theorem 2. For any ε > 0, Algorithm 1 returns a feasible LBkSR-solution of cost at most(
6.1821 +O(ε)

)
O∗ in time nO(1/ε).

We first prove that PDAlg is an LMP 3-approximation algorithm, i.e., its output (F, α)
satisfies cost(F ) + 3|F |z ≤ 3

∑
j∈D′ αj . (Theorem 3). Utilizing this, we analyze k-BSAlg, in

particular, the output of the combination step B2, and argue that k-BSAlg returns a feasible
solution of cost at most

(
6.183 +O(ε)

)
·OPT +O(R∗) (Theorem 5). For the right choice of

FO, combining this with Lemma 1 yields Theorem 2.

I Theorem 3. Suppose PDAlg(D′,L′, z) returns (F, {rad(i)}, α). Then
(i) the balls corresponding to F cover D′;
(ii) cost(F ) + 3|F |z ≤ 3

∑
j∈D′ αj ≤ 3(OPT + k′z);

(iii)
{

(i, rad(i))
}
i∈µ(F ) ⊆ L

′, is a set of non-intersecting pairs, rad(i) ≤ ri ≤ 3R∗ ∀i ∈ µ(F );
(iv) if |F | ≥ k′ then cost(F ) ≤ 3 ·OPT ; if |F | > k′, then z ≤ OPT . (Hence, k2 ≤ k′ in step

B1.1.)

Let
(
F, {rad(i)}

)
= k-BSAlg(D′,L′, k′, ε). If k-BSAlg terminates in step B1, then cost(F ) ≤

3 · OPT due to part (ii) of Theorem 3, so assume otherwise. Let a, b ≥ 0 be such that
ak1 + bk2 = k′, a+ b = 1. Let C1 = cost(F1) and C2 = cost(F2). Recall that (F1, rad1, α

1)
and (F2, rad2, α

2) are the outputs of PDAlg for z1 and z2 respectively.

I Claim 4. We have aC1 + bC2 ≤ (3 + ε)OPT .

I Theorem 5. k-BSAlg(D′,L′, k′, ε) returns a feasible solution
(
F, {rad(i)}

)
with cost(F ) ≤(

6.183 + O(ε)
)
· OPT + O(R∗) where

{
(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of non-intersecting

pairs.

Proof. The radii {rad(i)}i∈µ(F ) are simply radii obtained from some execution of PDAlg, so{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ and comprises non-intersecting pairs. If k-BSAlg terminates in step
B1, we have a better bound on cost(F ). If not, and we return F2, the cost incurred is C2.

Otherwise, we return the solution F ′ found in step B2. Since (C-P) has only one
constraint in addition to the bound constraints 0 ≤ xi,r ≤ 1, the extreme-point optimal
solution x∗ has at most one fractional component, and if it has a fractional component, then∑

(i,r)∈F2

(
x∗i,r + |Si,r|(1 − x∗i,r)

)
= k′. For any (i, r) ∈ F2 with x∗i,r ∈ {0, 1}, the number

of pairs we include is exactly x∗i,r + |Si,r|(1 − x∗i,r), and the total cost of these pairs is at
most the contribution to the objective function of (C-P) from the x∗i,r and (1− x∗i,r) terms.
If x∗ has a fractional component (i′, r′) ∈ F2, then x∗i′,r′ + |Si′,r′ |(1 − x∗i′,r′) is a positive
integer. Since we include at most one pair for (i′, r′), this implies that |F ′| ≤ k′. The cost
of the pair we include is at most 15R∗, since all (i, r) ∈ F1 ∪ F2 satisfy r ≤ 3R∗. Therefore,
cost(F ′) ≤ OPTC-P + 15R∗. Also, OPTC-P ≤ 2bC2 + (2b+ a)C1 = 2bC2 + (1 + b)C1, since
setting xi,r = b for all (i, r) ∈ F2 yields a feasible solution to (C-P) of this cost.
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So when we terminate in step B3, we return a solution F with cost(F ) ≤ min{C2, 2bC2 +
(1 + b)C1 + 15R∗}. We show that min{C2, 2bC2 + (1 + b)C1} ≤ 2.0607(aC1 + bC2) for all
a, b ≥ 0 with a+ b = 1. Combining this with Claim 4 yields the bound in the theorem. J

Proof. Proof of Theorem 2 It suffices to show that when the selection FO = {(i1, r1), . . . (it, rt)}
in step A1 corresponds to the t facilities in an optimal solution with largest radii, we
obtain the desired approximation bound. In this case, we have R∗ ≤ O∗

t ≤ εO∗ and
OPT ≤ O∗ −

∑t
p=1 rp. Combining Theorem 5 and Lemma 1 then yields the theorem. J

Improved approximation ratio. The improved approximation ratio comes from a better
way of combining F1 and F2 in step B2. We observe that the dual solutions α1 and α2 are
component-wise close to each other (we can control the closeness by controlling δz). Thus, we
may essentially assume that if T1,I , T2,I denote the tight pairs yielding F1, F2 respectively,
then every pair in T1,I intersects some pair in T2,I , because we can augment T2,I to include
non-intersecting pairs of T1,I . This yields dividends when we combine solutions as in step B2,
because we can now ensure that if π(i′, r′) = (i, r), then the pairs of T2,I and T1,I yielding
(i, r) and (i′, r′) respectively intersect, which yields an improved bound on ci,i′ . This yields an
improved approximation of 3.83 for the combination step, and hence for the entire algorithm.

I Theorem 6. For any ε > 0, our algorithm returns a feasible LBkSR-solution of cost at
most (3.83 +O(ε))O∗ in time nO(1/ε).

2.2 Approximation algorithm for LBkSRO
We now build upon the ideas in Section 2.1 to devise an O(1)-approximation algorithm for the
outlier version LBkSR. The high-level approach is similar to the one in Section 2.1. We again
“guess” the t (i, r) pairs FO corresponding to the facilities with largest radii in an optimal
solution, and consider the modified k-BS-instance (D′,L′, k′,m) (where D′,L′, k′ are defined
as before). If the LP-relaxation below, (P2), for the k-BS-problem is infeasible, we move on to
the next guess. Otherwise, we design a primal-dual algorithm for the Lagrangian relaxation
of the k-BS-problem where we are allowed to pick any number of pairs from L′ (leaving at
most m uncovered clients) incurring a fixed cost of z for each pair picked, utilize this to
obtain two solutions F1 and F2, and combine these to extract a low-cost solution. However,
the presence of outliers introduces various difficulties both in the primal-dual algorithm and
in the combination step. Consider the following LP-relaxation of the k-BS-problem and its
dual.

min
∑

(i,r)∈L′
r · yi,r (P2)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r + wj ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′,
∑
j∈D′

wj ≤ m

y,w ≥ 0.

max
∑
j∈D′

αj − k′ · z −m · γ (D2)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

(3)
αj ≤ γ ∀j ∈ D′

α, z, γ ≥ 0.

Let OPT denote the optimal value of (P2). The natural modification of the earlier primal-
dual algorithm PDAlg is to now stop the dual-ascent process when the number of active
clients is at most m and set γ = maxj∈D′ αj . This introduces the significant complication
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that one may not be able to pay for the r + z-cost of non-intersecting tight pairs selected in
the pruning phase by the dual objective value

∑
j∈D′ αj−m ·γ, since clients with αj = γ may

be needed to pay for the r + z-cost of the last tight pair f = (if , rf ) but their contribution
gets canceled by the −m · γ term. This issue affects us in various guises. First, we no longer
obtain an LMP-approximation for the unconstrained problem since we have to account for
the (r + z)-cost of f separately. Second, unlike Claim 4, given solutions F1 and F2 obtained
via binary search for z1, z2 ≈ z1 respectively with |F2| ≤ k′ ≤ |F1|, we now only obtain a
fractional k-BS-solution of cost O(OPT + z1). While one can modify the covering-knapsack-
LP based procedure in step B2 of k-BSAlg to combine F1, F2, this only yields a good solution
when z1 = O(OPT). The chief technical difficulty is that z1 may however be much larger
than OPT . Overcoming this obstacle requires various novel ideas and is the key technical
contribution of our algorithm. We design a second combination procedure that is guaranteed
to return a good solution when z1 = Ω(OPT ). This requires establishing certain structural
properties for F1 and F2, using which we argue that one can find a good solution in the
neighborhood of F1 and F2.

We now detail the changes to the primal-dual algorithm and k-BSAlg in Section 2.1, and
analyze them to prove the following theorem.

I Theorem 7. There exists a
(
12.365 + O(ε)

)
-approximation algorithm for LBkSRO that

runs in time nO(1/ε) for any ε > 0.

Modified primal-dual algorithm PDAlgo(D′,L′, z). This is quite similar to PDAlg (and we
again return pairs from L). We stop the dual-ascent process when there are at most m active
clients. We set γ = maxj∈D′ αj . Let f = (if , rf ) be the last tight pair added to the tight-pair
set T , and Bf = B(if , rf ). We sometimes abuse notation and use (i, r) to also denote the
singleton set {(i, r)}. For a set P of (i, r) pairs, define uncov(P ) := D′ \

⋃
(i,r)∈P B(i, r).

Note that |uncov(T \ f)| > m ≥ |uncov(T )|. Let Out be a set of m clients such that
uncov(T ) ⊆ Out ⊆ uncov(T \ f). Note that αj = γ for all j ∈ Out.

The pruning phase is similar to before, but we only use f if necessary. Let TI be a maximal
subset of non-intersecting pairs picked by greedily scanning pairs in T \ f in non-increasing
order of radius. For i ∈ µ(TI), set rad(i) to be the unique r such that (i, r) ∈ TI , and let
ri be the smallest radius ρ such that B(i, ρ) ⊇ B(i′, r′) for every (i′, r′) ∈ T \ f such that
r′ ≤ rad(i) and (i′, r′) intersects (i, rad(i)). Let F ′ = {(i, ri)}i∈µ(TI ). If uncov(F ′) ≤ m, set
F = F ′. If uncov(F ′) > m and ∃i ∈ µ(F ′) such that c(i, if ) ≤ 2R∗, then increase ri so that
B(i, ri) ⊇ Bf and let F be this updated F ′. Otherwise, set F = F ∪f and rif = rad(if ) = rf .
We return (F, f,Out, {rad(i)}i∈µ(F ), α, γ).

I Theorem 8. Let (F, f,Out, {rad(i)}, α, γ) = PDAlgo(D′,L′, z). Then:
(i) uncov(F ) ≤ m;
(ii) cost(F \ f) + 3|F \ f |z − 3R∗ ≤ 3(

∑
j∈D′ αj −mγ) ≤ 3(OPT + k′z);

(iii)
{

(i, rad(i))
}
i∈µ(F ) ⊆ L

′, is a set of non-intersecting pairs, rad(i) ≤ ri ≤ 3R∗ ∀i ∈ µ(F );
(iv) if |F \ f | ≥ k′ then cost(F ) ≤ 3 ·OPT + 4R∗, and if |F \ f | > k′ then z ≤ OPT .

Modified algorithm k-BSAlgo(D′,L′, k′, ε). We again use binary search to find solutions
F1, F2 and extract a low-cost solution from these. The only changes to step B1 are as follows.
We start with z1 = 0 and z2 = 2nk′cmax; for this z2, one can argue PDAlgo returns at most
k′ pairs. We stop when z2 − z1 ≤ δz := εOPT

3n2n . We do not stop even if PDAlgo returns a
solution (F, . . .) with |F | = k′ for some z = z1+z2

2 , since Theorem 8 is not strong enough to
bound cost(F ) even when this happens! If |F | > k′, we update z1 ← z and the F1-solution;
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otherwise, we update z2 ← z and the F2-solution. Thus, we maintain that k1 = |F1| > k′,
and k2 = |F2| ≤ k′.

The main change is in the way solutions F1, F2 are combined. We adapt step B2 to
handle outliers (procedure A in Section 2.2.1), but the key extra ingredient is that we
devise an alternate combination procedure B (Section 2.2.2) that returns a low-cost solution
when z1 = Ω(OPT). We return the better of the solutions output by the two procedures.
Combining Theorem 9 with Lemma 1 (for the right selection of t (i, r) pairs) yields Theorem 7.

I Theorem 9. k-BSAlgo(D′,L′, k′, ε) returns a solution (F, rad) with cost(F ) ≤
(
12.365 +

O(ε)
)
·OPT +O(R∗) where

{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ comprises non-intersecting pairs.

2.2.1 Combination subroutine A
(
(F1, rad1), (F2, rad2)

)
As in step B2, we cluster the F1-pairs around F2-pairs in stars. However, unlike before, some
(i′, r′) ∈ F1 may remain unclustered and and we may not pick (i′, r′) or some pair close to it.
Since we do not cover all clients covered by F1, we need to cover a suitable number of clients
from uncov(F1). We again setup an LP to obtain a suitable collection of pairs, which is now
a 2-dimensional covering knapsack LP, and use the structure of an extreme-point optimal
solution to extract from it a good collection of pairs.

I Theorem 10. We can obtain a solution
(
F, {rad(i)}i∈µ(F )

)
to the k-BS-problem with

cost(F ) ≤
(
6.1821 + O(ε)

)
(OPT + z1) + O(R∗) where

{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ is a set of
non-intersecting pairs.

2.2.2 Subroutine
B
(
(F1, f1,Out1, rad1, α

1, γ1), (F2, f2,Out2, rad2, α
2, γ2)

)
Subroutine A in the previous section yields a low-cost solution only if z1 = O(OPT). We
complement subroutine A by now describing a procedure that returns a good solution when
z1 is large. We assume in this section that z1 > (1 + ε)OPT . Then |F1 \ f1| ≤ k′ (otherwise
z ≤ OPT by part (iv) of Theorem 8), so |F1 \ f1| ≤ k′ < |F1|, which means that k1 = k′ + 1
and f1 ∈ F1. Hence, α1

j = γ1 for all j ∈ Bf1 ∩D′. We utilize the following continuity lemma,
which is essentially Lemma 6.6 in [11]; we include a proof in the full version of the paper.

I Lemma 11. Let (Fp, . . . , αp, γp) = PDAlgo(D′,L′, zp) for p = 1, 2, where 0 ≤ z2− z1 ≤ δz.
Then, ‖α1

j − α2
j‖∞ ≤ 2nδz and |γ1 − γ2| ≤ 2nδz. Thus, if (3) is tight for some (i, r) ∈ L′ in

one execution, then
∑
j∈B(i,r)∩D′ α

p
j ≥ r + z − 2nδz for p = 1, 2.

First, we take care of some simple cases. If there exists (i, r) ∈ F1 \ f1 such that∣∣uncov
(
F1 \ {f1, (i, r)} ∪ (i, r + 12R∗)

)∣∣ ≤ m, then set F = F1 \ {f1, (i, r)} ∪ (i, r + 12R∗).
We have cost(F ) = cost(F1 \ f1) + 12R∗ ≤ 3 ·OPT + 15R∗ (by part (ii) of Theorem 8). If
there exist pairs (i, r), (i′, r′) ∈ F1 such that c(i, i′) ≤ 12R∗, take r′′ to be the minimum
ρ ≥ r such that B(i′, r′) ⊆ B(i, ρ) and set F = F1 \ {(i, r), (i′, r′)} ∪ (i, r′′). We have
cost(F ) ≤ cost(F1\f1)+13R∗ ≤ 3·OPT +16R∗. In both cases, we return

(
F, {rad1(i)}i∈µ(F )

)
.

So we assume in the sequel that neither of the above apply. In particular, all pairs
in F1 are well-separated. Let AT = {(i, r) ∈ L′ :

∑
j∈B(i,r)∩D′ α

1
j ≥ r + z1 − 2nδz}

and AD = {j ∈ D′ : α1
j ≥ γ1 − 2nδz}. By Lemma 11, AT includes the tight pairs of

PDAlgo(D′,L′, zp) for both p = 1, 2, and Out1 ∪Out2 ⊆ AD. Since the tight pairs T2 used
for building solution F2 are almost tight in (α1, γ1, z1), we swap them in and swap out pairs
from F1 one by one while maintaining a feasible solution. Either at some point, we will

ICALP 2016



69:12 Approximation Algorithms for Clustering Problems with Lower Bounds and Outliers

be able to remove f , which will give us a solution of size k′, or we will obtain a bound
on cost(F2). The following lemma is our main tool for bounding the cost of the solution
returned.

I Lemma 12. Let F ⊆ L′, and TF =
{

(i, r′i)
}
i∈µ(F ) where r

′
i ≤ r for each (i, r) ∈ F . Suppose

TF ⊆ AT and consists of non-intersecting pairs. If |F | ≥ k′ and |AD \
⋃

(i,r)∈F B(i, r))| ≥ m
then cost(TF ) ≤ (1 + ε)OPT . Moreover, if |F | > k′ then z1 ≤ (1 + ε)OPT .

Define a mapping ψ : F2 → F1 \ f1 as follows. Note that any (i, r) ∈ F2 may intersect
with at most one F1-pair: if it intersects (i′, r′), (i′′, r′′) ∈ F1, then we have c(i′, i′′) ≤ 12R∗.
First, for each (i, r) ∈ F2 that intersects with some (i′, r′) ∈ F1, we set ψ(i, r) = (i′, r′). Let
M ⊆ F2 be the F2-pairs mapped by ψ this way. For every (i, r) ∈ F2 \M , we arbitrarily
match (i, r) with a distinct (i′, r′) ∈ F1 \ψ(M). We claim that ψ is in fact a one-one function.

I Lemma 13. Every (i, r) ∈ F1 \ f1 intersects with at most one F2-pair.

Let F ′2 be the pairs (i, r) ∈ F2 such that if (i′, r′) = ψ(i, r), then r′ < r. Let P = F ′2 ∩M
and Q = F ′2 \M . For every (i′, r′) ∈ ψ(Q) and j ∈ B(i′, r′), we have j ∈ uncov(F2) ⊆ AD
(else (i′, r′) would lie in ψ(M)). Starting with F = F1 \ f1, we iterate over (i, r) ∈ F ′2
and do the following. Let (i′, r′) = ψ(i, r). If (i, r) ∈ P , we update F ← F \ (i′, r′) ∪
(i, r + 2r′) (so B(i, r + 2r′) ⊇ B(i′, r′)), else we update F ← F \ (i′, r′) ∪ (i, r). Let
TF = {(i, rad1(i))}(i,r)∈F∩F1∪{(i, rad2(i))}(i,r)∈F\F1 . Note that |F | = k′ and uncov(F ) ⊆ AD
at all times. Also, since (i, r) intersects only (i′, r′), which we remove when (i, r) is added,
we maintain that TF is a collection of non-intersecting pairs and a subset of AT ⊆ L′. This
process continues until |uncov(F )| ≤ m, or when all pairs of F ′2 are swapped in. In the former
case, we argue that cost(F ) is small and return

(
F, {rad1(i)}(i,r)∈F∩F1 ∪ {rad2(i)}(i,r)∈F\F1

)
.

In the latter case, we show that cost(F ′2), and hence cost(F2) is small, and return (F2, rad2).

I Lemma 14.
(i) If the algorithm stops with |uncov(F )| ≤ m, cost(F ) ≤ (9 + 3ε)OPT + 18R∗.
(ii) If case (i) does not apply, then cost(F2) ≤ (3 + 3ε)OPT + 9R∗.
(iii) The pairs corresponding to the radii returned are non-intersecting, and a subset of L′.

3 Minimizing the maximum radius with lower bounds and outliers

The lower-bounded k-supplier with outliers (LBkSupO) problem is the min max-radius version
of LBkSRO. The input and the set of feasible solutions are the same as in LBkSRO: the input
is an instance I =

(
F ,D, {c(i, j)}, {Li}, k,m

)
, and a feasible solution is

(
S ⊆ F , σ : D 7→

S ∪ {out}
)
with |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. The cost of (S, σ)

is now maxi∈S maxj∈σ−1(i) c(i, j). The case m = 0 is called the lower-bounded k-supplier
(LBkSup) problem, and the setting where D = F is often called the k-center version.

Let τ∗ denote the optimal value; note that there are only polynomially many choices
for τ∗. As is common in the study of min-max problems, we reduce the problem to a
“graphical” instance, where given some value τ , we try to find a solution of cost O(τ) or
deduce that τ∗ > τ . We construct a bipartite unweighted graph Gτ =

(
Vτ = D ∪ Fτ , Eτ ),

where Fτ = {i ∈ F : |B(i, τ)| ≥ Li}, and Eτ = {ij : c(i, j) ≤ τ, i ∈ Fτ , j ∈ D}. Let distτ (i, j)
denote the shortest-path distance in Gτ between i and j, so c(i, j) ≤ distτ (i, j) · τ . We say
that an assignment σ : D 7→ Fτ ∪ {out} is a distance-α assignment if distτ (j, σ(j)) ≤ α

for every client j with σ(j) 6= out. We call such an assignment feasible, if it yields a
feasible LBkSupO-solution, and we say that Gτ is feasible if it admits a feasible distance-1
assignment. It is not hard to see that given F ⊆ Fτ , the problem of finding a feasible
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distance-α-assignment σ : D 7→ F ∪ {out} in Gτ (if one exists) can be solved by creating a
network-flow instance with lower bounds and capacities.

Observe that an optimal solution yields a feasible distance-1 assignment in Gτ∗ . We
devise an algorithm that for every τ , either finds a feasible distance-α assignment in Gτ
for some constant α, or detects that Gτ is not feasible. This yields an α-approximation
algorithm since the smallest τ for which the algorithm returns a feasible LBkSupO-solution
must be at most τ∗. We obtain Theorems 15 and 16 via this template, and complement
these via a hardness result (Theorem 17) showing that our approximation factor for LBkSup
is tight.

I Theorem 15. There is a 3-approximation algorithm for LBkSup.

I Theorem 16. There is a 5-approximation algorithm for LBkSupO.

I Theorem 17. It is NP-hard to approximate LBkSup within a factor better than 3.

Finding a distance-5 assignment for LBkSupO. The goal is to find a set F ⊆ Fτ of at most
k centers that are close to the centers in F ∗ ⊆ Fτ for some feasible distance-1 assignment
σ∗ : D 7→ F ∗ ∪ {out} in Gτ . If centers in F do not share a neighbor in Gτ , then clients in
N(i) can be assigned to i for each i ∈ F to satisfy the lower bounds.

I Definition 18 ([14]). Given the graph Gτ , a set F ⊆ F is called a skeleton if it satisfies
the following properties.
(a) (Separation property) For i, i′ ∈ F , i 6= i′, we have distτ (i, i′) ≥ 6;
(b) There exists a feasible distance-1 assignment σ∗ : D 7→ F ∗ ∪ {out} in Gτ such that

(Covering property) For all i∗ ∈ F ∗, distτ (i∗, F ) ≤ 4, where distτ (i∗, F ) =
mini∈F distτ (i∗, i).
(Injection property) There exists f : F 7→ F ∗ such that distτ (i, f(i)) ≤ 2 for all i ∈ F .

If F satisfies the separation and injection properties, it is called a pre-skeleton.

I Lemma 19. Let F be a pre-skeleton in Gτ . Define U = {i ∈ Fτ : distτ (i, F ) ≥ 6} and let
i = arg maxi′∈U |N(i′)|. Then, either F is a skeleton, or F ∪ {i} is a pre-skeleton.

Suppose F ⊆ Fτ is a skeleton and satisfies the properties with respect to a feasible
distance-1 assignment (F ∗, σ∗). The separation property ensures that the neighbor sets of
any two locations i, i′ ∈ F are disjoint. The covering property ensures that F ∗ is at distance
at most 4 from F , so there are at least |D| −m clients at distance at most 5 from F . Finally,
the injection and separation properties together ensure that |F | ≤ k. Thus, if F is a skeleton,
then we can obtain a feasible distance-5 assignment σ : D 7→ F ∪ {out}.

If Gτ is feasible, then ∅ is a pre-skeleton. A skeleton can have size at most k. So using
Lemma 19, we can find a sequence F ′ of at most k + 1 subsets of Fτ by starting with ∅ and
repeatedly applying Lemma 19 until we either have a set of size k or the set U in Lemma 19
is empty. By Lemma 19, if Gτ is feasible then one of these sets must be a skeleton. So for
each F ∈ F ′, we check if there exists a feasible distance-5 assignment σ : D 7→ F ∪ {out},
and if so, return (F, σ). Otherwise we return that Gτ is not feasible.
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