
Closing the Gap for Makespan Scheduling via
Sparsification Techniques∗ †

Klaus Jansen1, Kim-Manuel Klein2, and José Verschae3

1 Department of Computer Science, University of Kiel, Kiel, Germany
kj@informatik.uni-kiel.de

2 Department of Computer Science, University of Kiel, Kiel, Germany
kmk@informatik.uni-kiel.de

3 Facultad de Matemáticas and Escuela de Ingeniería, Pontificia Universidad
Católica de Chile, Santiago, Chile
jverschae@uc.cl

Abstract
Makespan scheduling on identical machines is one of the most basic and fundamental packing
problem studied in the discrete optimization literature. It asks for an assignment of n jobs
to a set of m identical machines that minimizes the makespan. The problem is strongly NP-
hard, and thus we do not expect a (1 + ε)-approximation algorithm with a running time that
depends polynomially on 1/ε. Furthermore, Chen et al. [3] recently showed that a running time
of 2(1/ε)1−δ + poly(n) for any δ > 0 would imply that the Exponential Time Hypothesis (ETH)
fails. A long sequence of algorithms have been developed that try to obtain low dependencies on
1/ε, the better of which achieves a running time of 2Õ(1/ε2) + O(n logn) [10]. In this paper we
obtain an algorithm with a running time of 2Õ(1/ε) +O(n logn), which is tight under ETH up to
logarithmic factors on the exponent.

Our main technical contribution is a new structural result on the configuration-IP. More
precisely, we show the existence of a highly symmetric and sparse optimal solution, in which
all but a constant number of machines are assigned a configuration with small support. This
structure can then be exploited by integer programming techniques and enumeration. We believe
that our structural result is of independent interest and should find applications to other settings.
In particular, we show how the structure can be applied to the minimum makespan problem on
related machines and to a larger class of objective functions on parallel machines. For all these
cases we obtain an efficient PTAS with running time 2Õ(1/ε) + poly(n).
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1 Introduction

Minimum makespan scheduling is one of the foundational problems in the literature on
approximation algorithms [6, 7]. In the identical machine setting the problem asks for an
assignment of a set of n jobs J to a set of m identical machines M. Each job j ∈ J is
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72:2 Closing the Gap for Makespan Scheduling via Sparsification Techniques

characterized by a non-negative processing time pj ∈ Z>0. The load of a machine is the total
processing time of jobs assigned to it, and our objective is to minimize the makespan, that
is, the maximum machine load. This problem is usually denoted P ||Cmax. It is well known
to admit a polynomial time approximation scheme (PTAS) [9], and there has been many
subsequent works improving the running time or deriving PTAS’s for more general settings.
The fastest PTAS for P ||Cmax achieves a running time of 2O(1/ε2) log3(1/ε)) +O(n logn) for
(1 + ε)-approximate solutions [10]. Very recently, Chen et al. [3] showed that, assuming
the exponential time hypothesis (ETH), there is no PTAS that yields (1 + ε)-approximate
solutions for ε > 0 with running time 2(1/ε)1−δ + poly(n) for any δ > 0 [3].

Given a guess T ∈ N on the optimal makespan, which can be found with binary search,
the problem reduces to deciding the existence of a packing of the jobs to m machines (or bins)
of capacity T . If we aim for a (1 + ε)-approximate solution, for some ε > 0, we can assume
that all processing times are integral and T is a constant number, namely T ∈ O(1/ε2).
This can be achieved with well known rounding and scaling techniques [1, 2, 8] which will
be specified later. Let π1 < π2 < . . . < πd be the job sizes appearing in the instance after
rounding, and let bk denote the number of jobs of size πk. The mentioned rounding procedure
implies that the number of different job sizes is d = O((1/ε) log(1/ε)). Hence, for large n we
obtain a highly symmetric problem where several jobs will have the same processing time.
Consider the knapsack polytope P = {c ∈ Rd

≥0 : π · c ≤ T}. A packing on one machine can
be expressed as a vector c ∈ Q = Zd ∩ P, where ck denotes the number of jobs of size πk

assigned to the machine. Elements in Q = Zd ∩ P are called configurations. Considering a
variable xc ∈ Z≥0 that decides the multiplicity of configuration c in the solution, our problem
reduces to solving the following linear integer program (ILP):

[conf-IP]
∑
c∈Q

c · xc = b, (1)

∑
c∈Q

xc = m, (2)

xc ∈ Z≥0 for all c ∈ Q. (3)

In this article we derive new insights on this ILP that help us to design faster algorithms
for P ||Cmax and other more general problems. These including makespan scheduling on
related machines Q||Cmax, and a more general class of objective functions on parallel machines.
We show that all these problems admit a PTAS with running time 2O((1/ε) log4(1/ε)) +poly(n).
Hence, our algorithm is best possible up to polylogarithmic factors in the exponent assuming
ETH [3].

1.1 Literature Review
There is an old chain of approximation algorithms for P ||Cmax, starting from the seminal
work by Graham [6, 7]. The first PTAS was given by Hochbaum and Shmoys [9] and had a
running time of (n/ε)O((1/ε)2) = nO((1/ε)2 log(1/ε)). This was improved to nO((1/ε) log2(1/ε)) by
Leung [14]. Subsequent articles improve further the running time. In particular Hochbaum
and Shmoys (see [8]) and Alon et al. [1, 2] obtain an efficient PTAS1 (EPTAS) with running
time 2(1/ε)poly(1/ε) +O(n logn). Alon et al. [1, 2] consider general techniques that work for

1 That is, a PTAS whose running time is f(1/ε)poly(|I|) where |I| is the encoding size of the input and f
is some function.
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several objective functions, including all Lp-norm of the loads and maximizing the minimum
machine load.

The previously fastest PTAS for P ||Cmax achieves a running time of 2O((1/ε)2 log3(1/ε)) +
O(n logn) [10]. More generally, this work gives an EPTAS for the case of related (uniform)
machines, where each machine i ∈ M has a speed si and assigning to i job j implies a
processing time of pj/si. For this more general case the running time is 2O((1/ε)2 log3(1/ε)) +
poly(n). For the simpler case of P ||Cmax, the ILP can be solved directly since the number of
variables is a constant. This can be done with Lentras’ algorithm [13], or even with Kannan’s
algorithm [12] that gives an improved running time. This technique yields a running time
that is doubly exponential in 1/ε. This was, in essence, the approach by Alon et al. [1, 2]
and Hochbaum and Shmoys [8]. To lower the dependency on 1/ε, Jansen [10] uses a result
by Eisenbrand and Shmonin [4] that implies the existence of a solution x with support of
size at most O(d log(dT )) = O((1/ε) log2(1/ε)). First guessing the support and then solving
the ILP with O((1/ε) log2(1/ε)) integer variables and using Kannan’s algorithm yields the
desired running time of 2O((1/ε)2 log3(1/ε)) +O(n logn).

The configuration ILP has recently been studied in the context of the (1-dimensional)
cutting stock problem. In this case, the dimension d is constant, T = 1, and π is a rational
vector. Moreover, π and b are part of the input. Goemans and Rothvoß [5] obtain an optimal
solution in time log(∆)2O(d) , where ∆ is the largest number appearing in the denominator of
πk or the multiplicities bk. This is achieved by first showing that there exists a pre-computable
set Q̃ ⊆ Q with polynomial many elements, such that there exists a solution x that gives all
but constant (depending only on d) amount of weight to Q̃. We remark that applying this
result to a rounded instance of P ||Cmax yields a running time that is doubly exponential
on 1/ε.

1.2 Our Contributions

Our main contribution is a new insight on the structure of the solutions of [conf-IP]. These
properties are specially tailored to problems in which T is bounded by a constant, which in
the case of P ||Cmax can be guaranteed by rounding and scaling. The same holds for Q||Cmax
with a more complex rounding and case analysis.

We first classify configurations by their support. We say that a configuration is simple
if its support is of size at most log(T + 1), otherwise it is complex. Our main structural
result2 states that there exists a solution x in which all but O(d log(dT )) weight is given to
simple configurations, the support is bounded by O(d log(dT )) (as implied by Eisenbrand
and Shmonin [4]) and no complex configuration has weight larger than 1.

I Theorem 1 (Thin solutions). Assume that [conf-IP] is feasible. Then there exists a feasible
solution x to [conf-IP] such that:
1. if xc > 1 then the configuration c is simple,
2. the support of x satisfies | supp(x)| ≤ 4(d+ 1) log(4(d+ 1)T ), and
3.
∑

c∈Qc
xc ≤ 2(d+ 1) log(4(d+ 1)T ), where Qc denotes the set of complex configurations.

2 We remark the resemblance of this structure to the result by Goemans and Rothvoß [5]. Indeed, similarly
to their result, we can precompute a subset of configurations such that all but a constant amount of
weight of the solution is given to such set. In their case the set is of cardinality polynomial on the input
and is constructed by covering the integral solutions of the knapsack polytope by parallelepipeds. In
our case, all but O(d log dT ) weight is given to simple configurations.
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We call a solution satisfying the properties of the theorem thin. The theorem can be
shown by iteratively applying a sparsification lemma that shows that if a solution gives a
weight of two or more to a complex configuration, then we can replace this partial solution
by two configurations with smaller support. The sparsification lemma is shown by a simple
application of the pigeonhole principle. The theorem can be shown by mixing this technique
with the theorem of Eisenbrand and Shmonin [4] and a potential function argument.

As an application to our main structural theorem, we derive a PTAS for P ||Cmax by first
guessing the jobs assigned to complex configurations. An optimal solution for this subinstance
can be derived by a dynamic program. For the remaining instance we know the existence of
a solution using only simple configurations. Then we can guess the support of such solution
and solve the corresponding [conf-IP] restricted to the guessed variables. The main use of
having simple configurations is that we can guess the support of the solution much faster,
as the number of simple configuration is (asymptotically) smaller than the total number of
configurations. The complete procedure takes time 2O((1/ε) log4(1/ε)) +O(n logn). Moreover,
using the rounding and case analysis of Jansen [10], we derive an mixed integer linear program
that can be suitably decomposed in order to apply our structural result iteratively. This
yields a PTAS with a running time of 2O((1/ε) log4(1/ε)) + poly(n) for Q||Cmax.

Similarly, we can extend our results to derive PTAS’s for a larger family of objective
functions as considered by Alon et al. [1, 2]. Let `i denote the load of machine i, that is, the
total processing time of jobs assigned to machine i for a given solution. Our techniques then
gives a PTAS with the same running time for the problem of minimizing the Lp-norms of
the loads (for fixed p), and maximizing mini∈M `i, among others. To solve this problem, we
can round the instance and state an IP analogous to [conf-IP] but considering an objective
function. However, the objective function prevents us to use the main theorem as it is stated.
To get over this issue, we study several ILPs. In each ILP we consider xc to be a variable
only if c has a given load, and fix the rest to be some optimal solution. Applying to each such
ILP Theorem 1, plus some extra ideas, yields an analogous structural theorem. Afterwards,
an algorithm similar to the one for makespan minimization yields the desired PTAS.

From an structural point of view, our sparsification lemma has other consequences on the
structure of the knapsack polytope and the LP-relaxation of the [conf-IP]. More precisely, we
can show that any vertex of the convex hull of Q must be simple. This, for example, helps
us to upper bound the number of vertices by 2O(log2(T )+log2(d)). Moreover, we can show that
the configuration-LP, obtained by replacing the integrality restriction in [conf-IP] by x ≥ 0,
if it is feasible then admits a solution whose support consist purely of simple configurations.
Due to space limitations we leave many details and proofs to the full version.

2 Preliminaries

We will use the following notation throughout the paper. By default log(·) = log2(·), unless
stated otherwise. Given two sets A, I, we will denote by AI the set of all vectors indexed
by I with entries in A, that is, AI = {(ai)i∈I : ai ∈ A for all i ∈ I}. Moreover, for A ⊆ R,
we denote the support of a vector a ∈ AI as supp(a) = {i ∈ I : ai 6= 0}.

We consider an arbitrary knapsack polytope P = {c ∈ Rd
≥0 : π · c ≤ T} where π ∈ Zd

>0 is
a non-negative integral (row) vector and T is a positive integer. We assume without loss
of generality that each coordinate πk of π is upper bounded by T (otherwise ck = 0 for all
c ∈ Zd∩P). We focus on the set of integral vectors in P which we denote by Q = Zd∩P . We
call an element c ∈ Q a configuration. Given b ∈ Rd, consider the problem of decomposing b
as a conic integral combination of m configurations. That is, our aim is to find a feasible
solution to [conf-IP], defined above.
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A crucial property of the [conf-IP] is that there is always a solution with a support of
small cardinality. This follows from a Caratheodory-type bound obtained by Eisenbrand and
Shmonin [4]. Since we will need the argument later, we state the result applied to our case
and revise its (very elegant) proof. We split the proof in two lemmas.

For a given subset A ⊆ Q, let us denote by xA the indicator vector of A, that is xA
c = 1

if c ∈ A, and 0 otherwise. Let us also denote by M the (d+ 1)× |Q| matrix that defines the
system of equalities (1) and (2).

I Lemma 2 (Eisenbrand and Shmonin [4]). Let x ∈ ZQ
≥0 be a vector such that | supp(x)| >

2(d + 1) log(4(d + 1)T ). Then there exist two disjoint sets A,B with ∅ 6= A,B ⊆ supp(x)
such that MxA = MxB.

I Lemma 3 (Eisenbrand and Shmonin [4]). If [conf-IP] is feasible, then there exists a feasible
solution x such that | supp(x)| ≤ 2(d+ 1) log(4(d+ 1)T ).

Proof. Let x be a solution to [conf-IP] that minimizes | supp(x)| = s. Assume by contradiction
that s > 2(d + 1) log(4(d + 1)T ). We show that we can find another solution x′ to [conf-
IP] with | supp(x′)| < | supp(x)|, contradicting the minimality of | supp(x)|. By Lemma 2,
there exist two disjoint subsets A,B ∈ supp(x) such that MxA = MxB. Moreover, let
λ = min{xc : c ∈ A}. Vector x′ := x− λxA + λxB is also a solution to [conf-IP] and has a
strictly smaller support since a configuration c∗ ∈ arg min{xc : c ∈ A} satisfies x′c∗ = 0. J

3 Structural Results

Recall that we call a configuration c simple if | supp(c)| ≤ log(T + 1) and complex otherwise.
An important observation to show Theorem 1 is that if c is a complex configuration, then 2c
can be written as the sum of two configurations of smaller support. This is shown by the
following Sparsification Lemma.

I Lemma 4 (Sparsification Lemma). Let c ∈ Q be a complex configuration. Then there exist
two configurations c1, c2 ∈ Q such that
1. π · c1 = π · c2 = π · c,
2. 2c = c1 + c2,
3. supp(c1) ( supp(c) and supp(c2) ( supp(c).

Proof. Consider for each subset S ⊆ supp(c), a configuration cS ∈ Q such that cS
i = ci if

i ∈ S and cS = 0 otherwise. As the number of subsets of supp(c) is 2| supp(c)|, and cR 6= cS

if and only if R 6= S, the collection of vectors V := {cS : S ⊆ supp(c)} has cardinality
|V | = 2| supp(c)|.

On the other hand, for any vector cS ∈ V it holds that π · cS ≤ π · c ≤ T . Hence,
π · cS ∈ {0, 1 . . . , T} can take only T + 1 different values. Using that c is a complex
configuration and hence 2| supp(c)| > 2log(T +1) = T + 1, the pigeonhole principle ensures
that there are two different non-empty configurations cS , cR ⊆ V with π · cS = π · cR. By
removing the intersection, we can assume w.l.o.g. that S and R have no intersection. We
define c1 = c− cS + cR and c2 = c− cR + cS , which satisfy the properties of the lemma as

π · c1 = π · c− π · cS + π · cR = π · c and
2c = c− cS + cR + c− cR + cS = c1 + c2.

Since supp(c1) ⊆ supp(c) \ S and supp(c2) ⊆ supp(c) \R, property 3 is satisfied. J

ICALP 2016
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With Lemma 4 we are ready to show Theorem 1. For the proof it is tempting to
apply the lemma iteratively, replacing any complex configuration that is used twice by
two configurations with smaller support. This can be repeated until there is no complex
configuration taken multiple times. Then we can apply the technique of Lemma 3 to the
obtained solution to bound the cardinality of the support. However, the last step might break
the structure obtained if the solution implied by Lemma 3 uses a complex configuration more
than once. In order to avoid this issue we consider a potential function. We show that a
vector minimizing the chosen potential uses each complex configuration at most once, and
that the number of complex configurations in the support is bounded. Finally, we apply the
techniques from Lemma 3 restricted to variables corresponding to simple configurations.

Proof of Theorem 1. Consider the following potential function of a solution x ∈ ZQ
≥0 of

[conf-IP],

Φ(x) =
∑

complex config. c

xc| supp(c)|.

Let x be a solution of [conf-IP] with minimum potential Φ(x), which is well defined since the
set of feasible solutions has finite cardinality. We show two properties of x.

P1: xc ≤ 1 for each complex configuration c ∈ Q.
Assume otherwise. Consider the two configurations c1 and c2 implied by the previous

lemma. We define a new solution x′e = xe for e 6∈ {c, c1, c2}, x′c1
= xc1 + 1, x′c2

= xc2 + 1
and x′c = xc − 2. Since | supp(c1)| < | supp(c)| and | supp(c2)| < | supp(c)|, we obtain that
Φ(x′) < Φ(x) which contradicts the minimality of Φ(x).

P2: The number of complex configurations in supp(x) is at most 2(d+ 1) log(4(d+ 1)T ).
Let x̃ be the vector defined as x̃c = xc if c ∈ Q is complex, and x̃ = 0 if c ∈ Q is simple.

Then Lemma 2 implies that there are exist two disjoint subsets A,B ⊆ supp(x̃) of complex
configurations such that MxA = MxB . Thus, the solution x′ = x−xA +xB and the solution
x′′ = x− xB + xA are feasible for [config-IP]. By linearity, the potential function on the new
solutions are Φ(x′) = Φ(x)−Φ(xA) + Φ(xB) or respectively Φ(x′′) = Φ(x)−Φ(xB) + Φ(xA).
If Φ(xA) > Φ(xB) or Φ(xB) > Φ(xA) then we have constructed a new solution with smaller
potential, contradicting our assumption on the minimality of Φ(x). We conclude that
Φ(xB) = Φ(xA) and thus Φ(x) = Φ(x′). By construction of x′, we obtain that x′c > xc ≥ 1
for any complex configuration c ∈ B. Having multiplicity ≥ 2 for a complex configuration c,
we can proceed as in Case 1 to find a new solution with decreased potential, which yields a
contradiction.

Given these two properties, to conclude the theorem it suffices to upper bound the number
of simple configurations by 2(d+ 1) log(4(d+ 1)T ). Suppose this property is violated, then we
find two sets A,B ⊆ supp(x) of simple configurations (see Lemma 2) with MxA = MxB and
proceed as in Lemma 3. Since Lemma 3 is only applied to simple configurations, properties
P1 and P2 continue to hold and the theorem follows. J

Our techniques, in particular our Sparsification Lemma, imply two corollaries on the
structure of the knapsack polytope and the LP-relaxation implied by the [conf-IP].

I Corollary 5. Every vertex of conv.hull(Q) is a simple configuration. Moreover, the total
number of simple configurations in Q is upper bounded by 2O(log2(T )+log2(d)) and thus the
same expression upper bounds the number of vertices of conv.hull(Q).
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The following corollary follows as each complex configuration can be represented by a
convex combination of simple configurations.

I Corollary 6. Let [conf-LP] be the LP relaxation of [conf-IP], obtained by changing each
constraint xc ∈ Z≥0 to xc ≥ 0 for all c ∈ Q. If the LP is feasible then there exists a solution
x such that each configuration c ∈ supp(x) is simple.

4 Applications to Scheduling on Parallel Machines

In what follows we show how to exploit the structural insights of the previous section to
derive faster algorithms for parallel machines scheduling problems. We start by considering
P ||Cmax, where we seek to assign a set of jobs J with processing times pj ∈ Z>0 to a setM
of m machines. For a given assignment a : J 7→ M, we define the load of a machine i as∑

j:a(j)=i pj and the makespan as the maximum load of jobs over all machines, which is the
minimum time needed to complete the execution of all jobs on the processors. The goal is to
find an assignment J 7→M that minimizes the makespan.

We first follow well known rounding techniques [1, 2, 9, 8]. Consider an error tolerance
0 < ε < 1/3 such that 1/ε2 is an integer. To get an estimation of the optimal makespan, we
follow the standard dual approximation approach. First, we can use, e.g., the 2-approximation
algorithm by Graham [6] to get an initial guess of the optimal makespan. Using binary
search, we can then estimate the optimal makespan within a factor of (1 + ε) in O(log(1/ε))
iterations. Therefore, it remains to give an algorithm that decides for a given makespan
T , if there exists an assignment with makespan (1 +O(ε))T or reports that there exists no
assignment with makespan ≤ T .

For a given makespan T we define the set of big jobs Jbig = {j ∈ J : pj ≥ εT} and
the set of small jobs Jsmall = J \ Jbig. The following lemma shows that small jobs can be
replaced from the instance by adding big jobs, each of size εT , as placeholders. Let S be the
sum of processing times of jobs in Jsmall and let S∗ denote the next value of S rounded up
to the next multiple of εT , that is, S∗ = εT · dS/(εT )e. We define a new instance containing
only big jobs by J ∗ = Jbig ∪ Jnew, where Jnew contains S∗/(εT ) ∈ N jobs of size εT . The
proof of the next lemma and the rest of the missing proofs of this section can be found in
the full version.

I Lemma 7. Given a feasible assignment a : J 7→ M of jobs with makespan T . Then
there exists a feasible assignment aB : J ∗ 7→ M of makespan T ∗ ≤ (1 + ε)T . Similarly,
an assignment of jobs in J ∗ of makespan T ∗ can be transformed to an assignment of J of
makespan at most (1 + ε)T ∗.

By scaling the processing times of jobs in J ∗, we can assume that the makespan T has
value 1/ε2. Also notice that we can assume that pj ≤ T for all j, otherwise we cannot
pack all jobs within makespan T . This implies that each job j ∈ J ∗ has a processing
time of 1/ε ≤ pj ≤ 1/ε2. In the following we give a transformation of big jobs in J ∗ by
rounding their processing times. We first round the jobs to the next power of 1 + ε as
p′j = (1 + ε)dlog(1+ε) pje, and thus all rounded processing times belong to Π′ = {(1 + ε)k :
1/ε ≤ (1 + ε)k ≤ (1 + ε)/ε2 and k ∈ N}. We further round processing times p′j to the next
integer p̄j = dp′je and define a new set Π = {dpe : p ∈ Π′}. Notice that Π only contains
integers and |Π| ≤ |Π′| ∈ O((1/ε) log(1/ε)).

I Lemma 8. If there is a feasible schedule of jobs J ∗ with processing times pj onto m

machines with makespan T ∗ ≤ (1 + ε)T , then there is also a feasible schedule of jobs J ∗ with

ICALP 2016
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rounded processing p̄j with a makespan of at most (1 + 5ε)T . Furthermore, the number of
different processing times is at most |Π| ∈ O((1/ε) log(1/ε)).

In what follows we give an algorithm that decides in polynomial time the existence
of a solution for instance J ∗ with processing times p̄j and makespan T̄ = b(1 + 5ε)T c.
We call numbers in Π by π1, . . . , πd and define the vector π = (π1, π2, . . . , πd) ∈ Nd of
rounded processing times. We consider configurations to be vectors in Q = P ∩ Zd, where
P = {c ∈ Rd

≥0 : π · c ≤ T̄} is a knapsack polytope (see Section 3). As before, we say that
a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex otherwise. For a given
assignment of jobs to machines, we say that a machine follows a configuration c if ck is the
number of jobs of size πk assigned to the machine. We denote by Qc ⊆ Q the set of complex
configurations and by Qs ⊆ Q the set of simple configurations.

Let bk be the number of jobs of size πk in the instance J ∗ (with processing times p̄).
Consider an ILP with integer variables xc for each c ∈ Q, which denote the number of
machines that follow configuration c. With these parameters the problem of scheduling all
jobs in a solution of makespan T̄ is equivalent to finding a solution to [conf-IP]. To solve the
ILP we use, among other techniques, Kannan’s algorithm [12] which is an improvement on
the algorithm by Lenstra [13]. The algorithm has a running time of 2O(N log N)s where N
is the number of variables and s is number of bits used to encode the input of the ILP in
binary.

By Theorem 1, if [conf-IP] is feasible then there exists a thin solution. In particular if
one configuration c is used by more than one machine then c is simple, and the total number
of used configurations is 4(d + 1) log(4(d + 1)T̄ ) ∈ O((1/ε) log2(1/ε)). Additionally, the
number of machines following a complex configurations is at most 2(d+ 1) log(4(d+ 1)T̄ ) ∈
O((1/ε) log2(1/ε)). We consider the following strategy to decide the existence of a schedule
of makespan T̄ .

I Algorithm 9.
1. For each processing time πk, guess the number bc

k ≤ bk of jobs covered by complex
configurations.

2. Find a minimum number of machines mc to schedule jobs bc with makespan T̄ .
3. Guess the support of simple configurations Q̄s ⊆ Qs used by a thin solution, with
|Q̄s| ≤ 4(d+ 1) log(4(d+ 1)T̄ ) ∈ O((1/ε) log2(1/ε)).

4. Solve the ILP restricted to configurations in Q̄s:∑
c∈Q̄s

c · xc = b− bc,

∑
c∈Q̄s

xc = m−mc,

xc ∈ Z≥0 for all c ∈ Q̄s.

One of the key observations to prove the running time of the algorithm is that the number
of simple configurations |Qs| is bounded by a quasi polynomial term:

|Qs| ≤ 2O(log2(1/ε)).

This follows easily by Corollary 5, using that |T̄ | ∈ O(1/ε2) and d = |Π| ∈ O((1/ε) log(1/ε)).

I Lemma 10. Algorithm 9 can be implemented with a running time of 2O((1/ε) log4(1/ε)) log(n).
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Proof. In step 1, the algorithm guesses which jobs are processed on machines following
a complex configurations. Since each configuration contains at most O(1/ε) jobs, there
are at most O(mc/ε) = O((1/ε2) log2(1/ε)) jobs assigned to such machines. For each size
πk ∈ Π, we guess the number bc

k of jobs of size πk assigned to such machines. Hence, we can
enumerate all possibilities for jobs assigned to complex machines in time 2O((1/ε) log2(1/ε)).
After guessing the jobs, we can assign them to a minimum number of machines in step 2
(with makespan T̄ ) with a simple dynamic program that stores vectors (`, z1, . . . , zd) with
zk ≤ bc

k being the number of jobs of size πk used in the first ` ≤ mc processors [11]. The
size of the dynamic programming table is O(mc

∏d
k=1(bc

k + 1)). For any vector (`, z1, . . . , zd),
determining whether it corresponds to a feasible solution can be done by checking all
vectors of the type (` − 1, z′1, . . . , z′d) for z′k ≤ zk. Thus, the running time of the dynamic
program is O(mc[

∏d
k=1(bc

k + 1)]2). Since bc
k ∈ O((1/ε2) log2(1/ε)) for each k, recalling that

mc ∈ O((1/ε) log2(1/ε)), and that d = |Π| ∈ O((1/ε) log(1/ε)), we obtain that step 2 can be
implemented with 2O((1/ε) log2(1/ε)) running time.

In step 3, our algorithm guesses the support of a thin solution x. Recall that if x is thin
then | supp(x)| ≤ 4(d+1) log(4(d+1)T̄ ) = O((1/ε) log2(1/ε)). Let D = 4(d+1) log(4(d+1)T̄ ).
Then this guess can be done in time

D∑
i=0

(
|Qs|
i

)
≤ (D + 1)|Qs|D ≤ 2O((1/ε) log4(1/ε)).

We remark that for this step is that thin solutions are particularly useful. Indeed, guessing
the support on the original ILP takes time 2O((1/ε)2 log3(1/ε)).

In step 4, the restricted ILP with 4(d+ 1) log(4(d+ 1)T̄ ) = O((1/ε) log2(1/ε)) variables
is solved. Moreover, the size of the input can be bounded by O((1/ε2) log3(1/ε) log(n)).
Running Kannan’s algorithm [12] to solve the ILP takes time 2O((1/ε) log3(1/ε)) log(n). Hence,
the total running time of our algorithm can be bounded by 2O((1/ε) log4(1/ε)) log(n). J

Putting all pieces together, we conclude with the following theorem.

I Theorem 11. The minimum makespan problem on parallel machines P ||Cmax admits an
EPTAS with running time 2O((1/ε) log4(1/ε)) +O(n logn).

4.1 Extension to other objectives
We now consider a more general family of objective functions defined by Alon et al. [1, 2].
For a fixed function f : R≥0 → R≥0, we consider the following two objective functions:
(I) min

∑
i∈M f(`i), and (II) min maxi∈M f(`i), where `i denotes the load of machine i.

Analogously, we study maximization versions of the problems: (I’) max
∑

i∈M f(`i) and
(II’) max mini∈M f(`i).

For the minimization versions of the problem we assume that f is convex, while for (I’)
and (II’) we assume it is concave. Moreover, we will need that the function satisfies the
following sensitivity condition.

I Condition 12. For all ε > 0 there exists δ = δ(ε) > 0 such that for all x, y ∈ R≥0,

(1− δ)y ≤ x ≤ (1 + δ)y ⇒ (1− ε)f(y) ≤ f(x) ≤ (1 + ε)f(y).

Alon et al. showed that each problem in that family admits a PTAS with running time
h(ε)+O(n logn), where h(ε) is a constant term that depends only on ε. Moreover, if δ(ε) in the
condition further satisfies that 1/(δ(ε)) ∈ O(1/ε), the running time is 2(1/ε)poly(1/ε) +O(n logn).
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In what follows we show how to improve this dependency if we have the additional condition
that function f is non-decreasing, i.e., for all 0 ≤ x ≤ y we have that f(x) ≤ f(y). Since
1/(δ(ε)) ∈ O(1/ε), we know that, for small enough ε, there exists a constant γ (independent
of ε and δ) such that 1/δ ≤ γ/ε. Moreover, we can assume w.l.o.g. that δ ≤ ε, and thus
δ ≤ ε ≤ γδ.

It is worth noticing that many interesting functions belong to this family. In particular
(II) with f(x) = x corresponds to the minimum makespan problem, (I) with f(x) = xp,
for constant p, corresponds to a problem that is equivalent to minimizing the Lp-norm of
the vector of loads. Similarly, (II’) with f(x) = x corresponds to maximizing the minimum
machine load. Notice that for all those objectives we have that 1/δ = O(1/ε).

The techniques of Alon et al. are based on a rounding method and then solving an
ILP. We based our results in the same rounding techniques and extend them further. We
show that to obtain a PTAS in time 2O((1/ε) log4(1/ε)) + O(n logn) it suffices to obtain a
(1 + O(ε))-approximate solution to the rounded instance in the same running time. The
details of the rounding are given in the full version.

Let L =
∑

j pj/m be the average machine load (of the original instance). After our
rounding we obtain an instance I ′ with job set J ′ and processing times p̄j for j ∈ J ′.
Moreover, the p̄j are multiples of L/λ2, where λ ≥ 1/δ is an integer such that λ = O(1/δ),
and also p̄j ≥ L/λ. It holds that there exists an optimal solution of the rounded instance
with makespan at most 4L (see full version). Let Π = {π1, . . . , πd} be the distinct values that
the processing times p̄j can take. Our rounding guarantees that d = |Π| = O((1/δ) log(1/δ)).
We consider the knapsack polytope with capacity T̄ := 4L, that is P = {c ∈ Rd

≥0 : π · c ≤ T̄}.
Notice that π and T̄ are integer multiples of L/λ2, and that P can also be written as
{c ∈ Rd

≥0 : π/(L/λ2) · c ≤ T̄ /(L/λ2)}.
As before, we say that a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex

otherwise. We denote by Qc ⊆ Q the set of complex configurations and by Qs ⊆ Q the set
of simple configurations. In what follows we focus on objective function (I).

We set an ILP for the problem as before. Notice that each configuration c incurs a cost
of fc := f(π · c). Moreover, we round and scale the values fc by defining f̄c = dfc/(εfmin)e,
where fmin = minc∈Q fc. It is not hard to see that solving a problem with those coefficients
yields a (1 + ε)-approximate solution to the optimal solution of I ′ with processing times p̄j .
Let also bk be the number of jobs j of processing time p̄j = πk in J ′. Consider the ILP
obtained by adding to [conf-IP] the objective function min

∑
c∈Q f̄c · xc. We call this ILP

[cost-conf-IP]. With our previous discussion, it suffices to solve this ILP optimally. To solve
this problem, we first notice that the largest coefficient in the objective can be bounded as
follows.

I Lemma 13. If f satisfies Condition 12 and it is non-decreasing, then the largest value
maxc∈Q f̄c is upper bounded by 1/δO(1).

As we now must consider the objective function, we cannot simply apply Theorem 1 to
[cost-conf-ILP]. However, we can prove a slightly weaker version by decomposing the ILP in
several smaller ones and applying the theorem to each of them.

I Theorem 14. If [cost-conf-IP] is feasible, then there exists an optimal solution x satisfy-
ing:
1.
∑

c∈Qc
xc ∈ O((1/δ3) log2(1/δ)), and

2. | supp(x) ∩Qs| ∈ O((1/δ) log2(1/δ)).

Proof. Notice that the load of each configuration π · c is a multiple of L/λ2, and thus
π · c ∈ {L/λ, L/λ+ L/(λ2), . . . , 4L}. We classify the configurations according to their loads,
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Q` := {c ∈ Q : π · c = L/λ + ` · L/(λ2)}, for ` ∈ {0, . . . , 4λ2 − λ}. Let x∗ be an optimal
solution of [cost-conf-IP]. Then we can considered an ILP for each load value `:

[conf-IP]`
∑

c∈Q`

c · xc =
∑

c∈Q`

c · x∗c , (4)

∑
c∈Q`

xc =
∑

c∈Q`

x∗c , (5)

xc ∈ Z≥0 for all c ∈ Q`. (6)

Scaling π by multiplying it by λ2/L we obtain an integral vector (since π is an integer
multiple of L/(λ2)), we can apply Theorem 1 to each ILP [conf-IP]`, which yields that
there exists a thin solution x`. In particular the number of complex configurations in x` is∑

c∈Qc∩Q` x
`
c ∈ O((1/δ) log2(1/δ)). Since f̄c depends only on the load of c, concatenating

these solutions yields a solution x′ := (x`)` that is optimal for [cost-conf-IP], such that∑
c∈Qc

x′c ∈ O((λ2) · (1/δ) log2(1/δ)) = O((1/δ3) log2(1/δ)). It remains to bound the number
of simple configurations in the support. To this end, we consider the ILP restricted to simple
configurations as follows:

[cost-conf-IP]s min
∑

c∈Qs

f̄c · xc∑
c∈Qs

c · xc = b−
∑

c∈Qc

c · x′c, (7)

∑
c∈Qs

xc = m−
∑

c∈Qc

x′c, (8)

xc ∈ Z≥0 for all c ∈ Qs. (9)

We apply the result of Eisenbrand and Shmonin [4] to this ILP. In its more general form,
this result ensures the existence of a solution x′′ with support of size O(N(log(N)+∆)), where
N is the number of restrictions and ∆ is the encoding size of the largest coefficient appearing
in the cost vector and restriction matrix. In our case N = d+ 1 = O((1/δ) log(1/δ)), and
∆ = O(log(max{1/δ,maxc∈Q f̄c)}) = O(log(1/δ)) (Lemma 13). Thus O(N(log(N) + ∆)) =
O((1/δ) log2(1/δ)). The theorem follows by concatenating (x′′c )c∈Qs with (x′c)c∈Qc . J

Finally, we use the structure given by the theorem to solve this ILP optimally. The idea
is similar to Algorithm 9 and thus we defer the details to the full version.

I Theorem 15. Consider the scheduling problem on parallel machines with objective functions
(I), (II) for f convex (respectively (I’) and (II’) for f concave). If f satisfies Condition 12
for 1/δ = O(1/ε) and it is non-decreasing, then the problem admits an EPTAS with running
time 2O((1/ε) log4(1/ε)) +O(n logn).

5 Minimum makespan scheduling on uniform machines

In this section we generalize our result for P ||Cmax to uniform machines. Consider a set of
jobs J with processing times pj and a set of m non-identical machinesM where machine
i ∈M runs at speed si. If job j is executed on machine i the machine needs pj/si time units
to complete the job. The problem is to find an assignment a : J →M for the jobs to the
machines that minimizes the makespan; maxi

∑
j:a(j)=i pj/si. The problem is denoted by

Q||Cmax. We suppose that s1 ≥ s2 ≥ . . . ≥ sm. Jansen [10] found an efficient polynomial

ICALP 2016



72:12 Closing the Gap for Makespan Scheduling via Sparsification Techniques

time approximation scheme (EPTAS) for this scheduling problem which has a running time
of 2O(1/ε2 log3(1/ε)) + poly(n). Here we show how to improve the running time and prove the
main result of this section.

I Theorem 16. There is an EPTAS (a family of algorithms {Aε : ε > 0}) which, given
an instance I of Q||Cmax with n jobs and m machines and a positive number ε > 0,
produces a schedule of makespan Aε(I) ≤ (1 + ε)Opt(I). The running time of Aε is
2O(1/ε log4(1/ε)) + poly(n).

Let 0 < δ < ε. We follow the approach by Jansen [10], transforming the scheduling
problem into a bin packing problem with different bin capacities, rounding the processing
times and bin capacities, and dividing the bins into at most three groups B1,B2 and B3
depending on the bin capacities.

Here, we focus on a special case which contains the main difficulty of the problem. The full
exposition can be found in the full version. In group B2, the bins can have a capacity of value
c̄(1) > . . . > c̄(L) for some L ∈ O(1/δ log(1/δ)). We call B` the set of bins in B2 with capacity
c̄(`). Our rounded instance contains jobs of sizes π1, . . . , πd for d ∈ O(1/δ log(1/δ)). For each
B` we consider configurations C̄(`)

1 , . . . , C̄
(`)
h̄`

. The configurations are defined using job of size
at least δc̄(`) which are rounded up to multiples of δ2c̄(`). Thus, regarding these configurations
(and only these configurations), jobs have sizes of the form q(k, `)δ2c̄(`) with q(k, `) ∈ Z+

and k ∈ {1, . . . , d}. We denote by a(k, C̄(`)
i ) the multiplicity of jobs of size q(k, `)δ2c̄(`)

in configuration C̄
(`)
i . The rounding implies also that the rounded size size(C̄(`)

i ) of a
configuration is a multiple of δ2c̄(`). Each such configuration corresponds to an integral point
inside the knapsack polytope P` = {C = (a(k,C))k :

∑
k q(k, `)δ2c̄(`)a(k,C) ≤ (1 + δ)c̄(`)}.

Let m̄` = |B`| be the number of machines of capacity c̄(`). Consider a given solution
to our scheduling problem. For this case we say that a bin in B` follows a configuration
C̄

(`)
i if it has a(k, C̄(`)

i ) jobs whose size, rounded to the next multiple of δ2c̄(`), equals to
q(k, `)δ2c̄(`). Let x̄(`)

i be the number of bins in B` that follows configuration C̄(`)
i . Notice

that the configurations do not consider jobs of size smaller than δc̄(`) that might be assigned
to a bin in B`. Consider the following ILP, which we denote by [conf-IP]Q:∑

i

x
(`)
i = m̄` for ` = 1, . . . , L,∑

`,i

a(k, C̄(`)
i )x(`)

i =
∑
`,i

a(k, C̄(`)
i )x̄(`)

i for k = 1 . . . , d,

∑
i

size(C̄(`)
i )

δ2c̄(`) x
(`)
i =

∑
i

size(C̄(`)
i )

δ2c̄(`) x̄
(`)
i ,

x
(`)
i ≥ 0 integral for i = 1, . . . , h̄`, ` = 1, . . . , L.

The second equality of the ILP ensures that the solution constructed maintains the same
subset of jobs larger than δc̄(`) to bins in B` as solution x̄. The third equality ensures
that we are leaving enough space for jobs not covered by a configuration (i.e., a job that is
assigned within B` but whose size is less than δc̄(`)). As in previous sections, a configuration
C̄

(`)
i is called simple if | supp(C̄(`)

i )| ≤ log(c̄(`)(1 + δ)/(δ2c̄(`)) + 1) = log(1/δ2 + 1/δ + 1)
(here we are scaling the capacity of a configuration by δ2c̄(`), since all rounded job sizes
are multiples of δ2c̄(`)). Otherwise, we call a configuration C̄

(`)
i complex. Crucially, the

ILP above satisfies that all coefficients are at most poly(1/δ). This allows us to generalize
our result in Theorem 1 to our ILP above, with a similar proof technique as Theorem 14,
which yields the following lemma. Using this lemma, we can define an algorithm similar to
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the algorithm for the case of identical machines, to obtain an improved running time for
Q||Cmax and prove Theorem 16.

I Lemma 17. Assume that the ILP [conf-IP]Q is feasible and let S denote the set of all simple
configurations. Then there exists a feasible solution x′ such that: (1) If x′(`)

i > 1 then the
configuration C̄(`)

i is simple, (2) the support of x′ satisfies | supp(x′) ∩ S| ∈ O(1/δ log2(1/δ)),
and (3) the support of x′ satisfies | supp(x′) \ S| ∈ O(1/δ2 log3(1/δ)).
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