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Abstract
Given n weighted points (positive or negative) in d dimensions, what is the axis-aligned box
which maximizes the total weight of the points it contains?

The best known algorithm for this problem is based on a reduction to a related problem, the
Weighted Depth problem [Chan, FOCS, 2013], and runs in time O(nd). It was conjectured
[Barbay et al., CCCG, 2013] that this runtime is tight up to subpolynomial factors. We answer
this conjecture affirmatively by providing a matching conditional lower bound. We also provide
conditional lower bounds for the special case when points are arranged in a grid (a well studied
problem known as Maximum Subarray problem) as well as for other related problems.

All our lower bounds are based on assumptions that the best known algorithms for the
All-Pairs Shortest Paths problem (APSP) and for the Max-Weight k-Clique problem in
edge-weighted graphs are essentially optimal.
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1 Introduction

Consider a set of points in the plane. Each point is assigned a real weight that can be either
positive or negative. The Max-Weight Rectangle problem asks to find an axis parallel
rectangle that maximizes the total weight of the points it contains. This problem (and its
close variants) is one of the most basic problems in computational geometry and is used
as a subroutine in many applications [17, 20, 23, 7, 6]. Despite significant work over the
past two decades, the best known algorithm runs in time quadratic in the number of points
[16, 14, 9]. It has been conjectured that there is no strongly subquadratic time algorithm1

for this problem [9].
An important special case of the Max-Weight Rectangle problem is when the points

are arranged in a square grid. In this case the input is given as an n× n matrix filled with

∗ The full version of the paper is available at [8].
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1 A strongly subquadratic algorithm runs in time O(N2−ε) for constant ε > 0.
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81:2 Tight Hardness Results for Maximum Weight Rectangles

Table 1 Upper bounds and conditional lower bounds for the various problems studied. The
bounds shown ignore subpolynomial factors.

Problem In 2 dimensions In d dimensions
Max-Weight Rectangle O(N2) [9, 12] O(Nd) [9, 12]

on N weighted points Ω(N2) [this work] Ω(Nd) [this work]
Maximum Subarray O(n3) [32, 31] O(n2d−1) [Kadane’s algorithm]
on n × · · · × n arrays Ω(n3) [this work] Ω(n3d/2) [this work]

Maximum Square Subarray O(n3) [trivial] O(nd+1) [trivial]
on n × · · · × n arrays Ω(n3) [this work] Ω(nd+1) [this work]
Weighted Depth O(N) [12] O(Nd/2) [12]

on N weighted boxes Ω(N) [trivial] Ω(Nd/2) [this work]

real numbers and the objective is to compute a subarray that maximizes the sum of its entries
[27, 31, 30, 28, 13]. This problem, known as Maximum Subarray problem, has applications
in pattern matching [19], data mining and visualization [20] (see [31] for additional references).
The particular structure of the Maximum Subarray problem allows for algorithms that run
in O(n3), i.e. O(N3/2) with respect to the input size N = n2, as opposed to O(N2) which is
the best algorithm for the more general Max-Weight Rectangle problem.

One interesting question is if this discrepancy between the runtimes of these two very
related problems can be avoided. Is it possible to apply ideas from one to improve the
runtimes of the other? Despite considerable effort there has been no significant improvement
to their runtime other than by subpolynomial factors since they were originally studied.

In this work, we attempt to explain this apparent barrier for faster runtimes by giving
evidence of the inherent hardness of the problems. In particular, we show that a strongly
subquadratic algorithm for Max-Weight Rectangle would imply a breakthrough for
fundamental graph problems. We show similar consequences for O(N3/2−ε) algorithms for
the Maximum Subarray problem. Our lower bounds are based on standard hardness
assumptions for the All-Pairs Shortest Paths and the Max-Weight k-Clique problems
and generalize to the higher-dimensional versions of the problems.

1.1 Related work on the problems

In one dimension, the Max-Weight Rectangle problem and Maximum Subarray
problem are identical. The 1-D problem was first posed by Ulf Grenander for pattern
detection in images, and a linear time algorithm was found by Jay Kadane [10].

In two dimensions, Dobkin et al [16, 15, 24] studied the Max-Weight Rectangle
problem in the case where weights are +1 or −1 for its applications to computer graphics and
machine learning. They presented the first O(N2 log N) algorithm. More recently, Cortés et
al [14] studied the problem with arbitrary weights and they developed an algorithm with
the same runtime applicable to many variants of the problem. An even faster algorithm was
shown by Barbay et al. [9] that runs in O(N2) time.

For higher dimensions, Barbay et al [9] show a reduction to the related Weighted Depth
problem which allows them to achieve runtime O(Nd). Given N axis-parallel rectangular
weighted boxes, the Weighted Depth problem asks to find a point that maximizes the
total weight of all boxes that contain it. Compared to the Max-Weight Rectangle where
we are given points and we aim to find the best box, in this problem, we are given boxes and
the aim is to find the best point. The Weighted Depth problem is also related to Klee’s
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measure problem2 which has a long line of research. All known algorithms for one problem
can be adjusted to work for the other [12]. The Weighted Depth problem was first solved
in O(Nd/2 log n) by Overmars and Yap [26] and was improved to O(Nd/2) by Timothy M.
Chan [12] who gave a surprisingly simple divide and conquer algorithm.

A different line of work, studies the Maximum Subarray problem. Kadane’s algorithm
for the 1-dimensional problem can be generalized in higher dimensions for d-dimensional
n× · · · × n arrays giving O(n2d−1) which implies an O(n3) algorithm when the array is a
n× n matrix. Tamaki and Tokuyama [32] gave a reduction of the 2-dimensional version of
the problem to the distance product problem implying a O

(
n3

2Ω(
√

log n)

)
algorithm by using

the latest algorithm for distance product by Ryan Williams [34]. Tamaki and Tokuyama’s
reduction was further simplified by Tadao Takaoka [31] who also gave a more practical
algorithm whose expected time is close to quadratic for a wide range of random data.

1.2 Our results and techniques

Despite significant work on the Max-Weight Rectangle and Maximum Subarray
problems, it seems that there is a barrier in improving the best known algorithms for these
problems by polynomial factors. Our results indicate that this barrier is inherent by showing
connections to well-studied fundamental graph problems. In particular, our first result states
that there is no strongly subquadratic algorithm for the Max-Weight Rectangle problem
unless the Max-Weight k-Clique problem can be solved in O(nk−ε) time, i.e. substantially
faster than the currently best known algorithm. More precisely, we show the following:

I Theorem 1. For any constant ε > 0, an O(N2−ε) algorithm for the Max-Weight
Rectangle problem on N weighted points in the plane implies an O(nk−ε) algorithm for the
Max-Weight k-Clique problem on a weighted graph with n vertices where k = 4 · dε−1e.

Our conditional lower bound generalizes to higher dimensions. Namely, we show that
an O(Nd−ε) time algorithm for points in d-dimensions implies an O(nk−ε) time algorithm
for the Max-Weight k-Clique problem for k = d2dε−1e. This matches the best known
algorithm [9, 12] for any dimension up to subpolynomial factors. Therefore, because of our
reduction, significant improvements in the runtime of the known upper bounds would imply
a breakthrough algorithm for finding a k-clique of maximum weight in a graph.

To show this result, we embed an instance of the Max-Weight k-Clique problem to the
Max-Weight Rectangle problem, by treating coordinates of the optimal rectangular box
as base-n numbers where digits correspond to nodes in the maximum-weight k-clique. In the
construction, we place points with appropriate weights so that the weight of any rectangular
box corresponds to the weight of the clique it represents. We show that it is sufficient to use
only O(n k

d +1) points in d-dimensions to represent all weighted k-cliques which gives us the
required bound by choosing an appropriately large k.

We also study the special case of the Max-Weight Rectangle problem in the plane
where all points are arranged in a square grid, namely the Maximum Subarray problem.
Our second result states that for n× n matrices, there is no strongly subcubic algorithm for
the Maximum Subarray problem unless there exists a strongly subcubic algorithm for the
All-Pairs Shortest Paths problem. More precisely, we show that:

2 Klee’s measure problem asks for the total volume of the union of N axis-parallel boxes in d dimensions.
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I Theorem 2. For any constant ε > 0, an O(n3−ε) time algorithm for the Maximum
Subarray problem on n× n matrices implies an O(n3 − ε/10) time algorithm for the All-
Pairs Shortest Paths problem.

Combined with the fact that the Maximum Subarray problem reduces to the All-Pairs
Shortest Paths problem as shown in [32, 31], our result implies that the two problems are
equivalent, in the sense that any strongly subcubic algorithm for one would imply a strongly
subcubic algorithm for the other.

To extend our lower bound to higher dimensions, we need to make a stronger hardness
assumption based on the Max-Weight k-Clique problem. We show that an O(n3d/2 − ε)
time algorithm for the Maximum Subarray problem in d-dimensions implies an O(nk−ε)
time algorithm for the Max-Weight k-Clique problem. To prove this result, we introduce
the following intermediate problem: Given a graph G find a maximum weight subgraph H

that is isomorphic to a clique on 2d nodes without the edges of a matching (Max-Weight
Clique without Matching problem). This graph H contains a large clique of size 3d/2

as a minor and we show that this implies that no O(n3d/2 − ε) algorithms exist for the
Max-Weight Clique without Matching problem. We complete our proof by reducing
the Max-Weight Clique without Matching problem to the Maximum Subarray
problem in d dimensions.

We note that the best known algorithm for the Maximum Subarray problem runs in
O(n2d−1) time and is based on Kadane’s algorithm for the 1-dimensional problem. It remains
an interesting open question to close this gap. To improve either the lower or upper bound,
it is necessary to better understand the computational complexity of the Max-Weight
Clique without Matching problem.

Another related problem we consider is the Maximum Square Subarray problem:
Given an n× n matrix find a maximum subarray with sides of equal length. This problem
and its higher dimensional generalization can be trivially solved in O(nd+1) runtime by
enumerating over all possible combinations of the d + 1 parameters, i.e. the side-length and
the location of the hypercube. We give a matching lower bound based on hardness of the
Max-Weight k-Clique problem.

Finally, we adapt the reduction for Klee’s measure problem shown by Timothy M Chan [11]
to show a lower bound for the Weighted Depth problem.

Our results are summarized in Table 1, where we compare the current best upper bounds
with the conditional lower bounds that we show.

The conditional hardness results presented above are for the variants of the problems
where weights are arbitrary real numbers. We note that all these bounds can be adapted to
work for the case where weights are either +1 or −1. In this case, we reduce the (unweighted)
k-Clique-Detection problem3 to each of these problems. The k-Clique-Detection
problem can be solved in O(nωbk/3c+(k mod 3)) [25] using fast matrix multiplication, where
ω < 2.372864 [35, 22] is the fast matrix multiplication exponent.4 Without using fast matrix
multiplication, it is not known whether a purely combinatorial algorithm exists that runs
in O(nk−ε) time for any constant ε > 0 and it is a longstanding graph problem. Our lower
bounds can be adapted for the +1 / − 1 versions of the problems obtaining the same
runtime exponents for combinatorial algorithms as in Table 1. Achieving better exponents

3 Given a graph on n vertices, the k-Clique-Detection problem asks whether a k-clique exists in the
graph.

4 There is a slightly faster algorithm for the case when k is not divisible by 3 [18].
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for any of these problems would imply a breakthrough combinatorial algorithm for the
k-Clique-Detection problem.

There is a vast collection of problems in computation geometry for which conditional
lower bounds are based on the assumption of 3-SUM hardness, i.e. that the best known
algorithm for the 3-SUM problem5 can’t be solved in time O(n2−ε). This line of research was
initiated by [21] (see [33] for more references). Reducing 3-SUM problem to the problems
that we study seems hard if possible at all. Our work contributes to the list of interesting
geometry problems for which hardness is shown from different assumptions.

1.3 Hardness assumptions
There is a long list of works showing conditional hardness for various problems based on
the All-Pairs Shortest Paths problem hardness assumption [29, 36, 4, 2, 3]. Among
other results, [36] showed that deciding whether a weighted graph contains a triangle of
negative weight is equivalent to the All-Pairs Shortest Paths problem meaning that
a strongly subcubic algorithm for the Negative Triangle problem implies a strongly
subcubic algorithm for the All-Pairs Shortest Paths problem and the other way around.
It is easy to show that the problem of computing the maximum weight triangle in a graph
is equivalent to the Negative Triangle problem (by inverting edge-weights of the graph
and doing the binary search over the weight of the max-weight triangle). Computing a
max-weight triangle is a special case of the problem of computing a max-weight k-clique in a
graph for a fixed integer k. This is a very well studied computational problem and despite
serious efforts, the best known algorithm for this problem still runs in time O(nk−o(1)), which
matches the runtime of the trivial algorithm up to subpolynomial factors. The assumption
that there is no O(nk−ε) time algorithm for this problem, has served as a basis for showing
conditional hardness results for several problems on sequences [1, 5].

2 Preliminaries

2.1 Problems studied in this work
I Definition 3 (Max-Weight Rectangle problem). Given N weighted points (positive
or negative) in d ≥ 2 dimensions, what is the axis-aligned box which maximizes the total
weight of the points it contains?

I Definition 4 (Maximum Subarray problem). Given a d-dimensional array M with nd

real-valued entries, find the d-dimensional subarray of M which maximizes the sum of the
elements it contains.

I Definition 5 (Max-Weight Square problem). Given a d-dimensional array M with
nd real-valued entries, find the d-dimensional square (hypercube) subarray of M , i.e. a
rectangular box with all sides of equal length, which maximizes the sum of the elements it
contains.

I Definition 6 (Weighted Depth problem). Given a set of N weighted axis-parallel boxes
in d-dimensional space Rd, find a point p ∈ Rd that maximizes the sum of the weights of the
boxes containing p.

5 Given a set of integers, decide if there are 3 integers that sum up to 0.

ICALP 2016
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2.2 Hardness assumptions
We use the hardness assumptions of the following problems. Whenever we refer to a weighted
graph, we assume that the graph is edge-weighted (as opposed to node-weighted).

I Definition 7 (All-Pairs Shortest Paths problem). Given a weighted undirected graph
G = (V, E) such that |V | = n, find the shortest path between u and v for every u, v ∈ V .

I Definition 8 (Negative Triangle problem). Given a weighted undirected graph G =
(V, E) such that |V | = n, output yes if there exists a triangle in the graph with negative total
edge weight.

I Definition 9 (Max-Weight k-Clique problem). Given an integer k and a weighted
graph G = (V, E) with n vertices, output the maximum total edge-weight of a k-clique in
the graph. W.l.o.g. we assume that the graph is complete since otherwise we can set the
weight of non-existent edges to be equal to a negative integer with large absolute value.

For any fixed k, the best known algorithm for the Max-Weight k-Clique problem runs in
time O(nk−o(1)).

In Sections 3 and 5, we use the following variant of the Max-Weight k-Clique problem
which can be shown to be equivalent to Definition 9:

I Definition 10 (Max-Weight k-Clique problem for k-partite graphs). Given an integer k

and a weighted k-partite graph G = (V1 ∪ . . .∪Vk, E) with kn vertices such that |Vi| = n for
all i ∈ [k]. Choose k vertices vi ∈ Vi and consider total edge-weight of the k-clique induced
by these vertices. Output the maximum total-edge weight of a clique in the graph.

Notation

For any integer n, we denote the set {1, 2, . . . , n} by [n]. For a set S and an integer d, we
denote the set {(s1, . . . , sd) | si ∈ S} by Sd.

3 Hardness of the Max-Weight Rectangle problem

The goal of this section is to show a hardness result for the Max-Weight Rectangle
problem making the assumption of Max-Weight k-Clique hardness. We will show the
result directly for any constant number of dimensions.

I Theorem 11. For any constants ε > 0 and d, an O(Nd−ε) time algorithm for the Max-
Weight Rectangle problem on N weighted points in d-dimensions implies an O(nK−ε)
time algorithm for the Max-Weight K-Clique problem on a weighted graph with n vertices
for K = d2dε−1e.

We set k = d · dε−1e. To prove the theorem, we will construct an instance of the
Max-Weight Rectangle problem whose answer computes a max-weight dk-clique in a
(d × k)-partite weighted graph G with n nodes in each of its parts. The Max-Weight
dk-Clique problem on general graphs reduces to this case since we can create d× k copies
of the nodes and connect nodes among different parts with edge-weights as in the original
graph.

The instance of the Max-Weight Rectangle problem will consist of N = O(nk+1)
points with integer coordinates {−nk, ..., nk}d. For such an instance the required runtime
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for the Max-Weight Rectangle problem, from the theorem statement, would imply that
the maximum weight dk-clique can be computed in

O
(
Nd−ε

)
= O

(
n(k+1)(d−ε)

)
= O

(
ndk−ε+(d−kε)

)
= O

(
ndk−ε

)
where the last equality follows as k ≥ d

ε .
To perform the reduction we introduce the following intermediate problem:

I Definition 12 (Restricted Rectangle problem). Given N = Ω(nk) weighted points in
an {−nk, ..., nk}d-grid, compute a rectangular box of a restricted form that maximizes the
weight of its enclosed points. The rectangular box

∏d
i=1[−x′i, xi] must satisfy the following

conditions:
1. Both ~x, ~x′ ∈ {0, ..., nk − 1}d, and
2. Treating each coordinate xi as a k-digit integer (xi1xi2...xik)n in base n, i.e., xi =∑k

j=1 xijnk−j and xij ∈ {0, ..., n− 1}, we must have ~x′ = (xd, x1, x2, ..., xd−1), where for
an integer z = (z1z2...zk)n ∈ {0, ..., nk − 1}, we denote by z = (zk...z2z1)n the integer
that has all the digits reversed.

We show that the Restricted Rectangle problem reduces to the Max-Weight Rect-
angle problem.

3.1 Restricted Rectangle ⇒ Max-Weight Rectangle
Consider an instance of the Restricted Rectangle problem. We can convert it to an
instance of the Max-Weight Rectangle problem by introducing several additional points.
Let C be a number greater than twice the sum of absolute values of all weights of the given
points. We know that the solution to any rectangular box must have weight in (−C/2, C/2).

The conditions of the Restricted Rectangle require that the rectangular box must
contain the origin ~0. To satisfy that we introduce a point with weight C at the origin. This
forces the optimal rectangle to contain the origin since any rectangle that doesn’t include
this point gets weight strictly less than C.

The integrality constraint is satisfied since all points in the instance have integer coordin-
ates so without loss of generality the optimal rectangle in the Max-Weight Rectangle
problem will also have integer coordinates.

Finally, we can force x′2 = x1, by adding for each x1 ∈ {0, ..., nk − 1} the 4 points:
(x1,−x1, 0, 0, .., 0) with weight C

(x1 + 1,−x1, 0, 0, .., 0) with weight −C

(x1,−x1 − 1, 0, 0, .., 0) with weight −C

(x1 + 1,−x1 − 1, 0, 0, .., 0) with weight C

This creates 4nk points and adds weight C to any rectangle with x′2 = x1 without affecting
any of the others. Working similarly for x2..., xd we can force that the optimal solution
satisfies the constraint that ~x′ = (xd, x1, x2, ..., xd−1).

If x and x′ satisfy the conditions of the Restricted Rectangle problem, we collect
weight dC for satisfying the constraints on all coordinates and C from including the point
at the origin. So the total weight is at least (d + 1)C − C

2 = (d + 1
2 )C as every rectangle

has weight at least −C/2 with respect to the original points. On the other hand, if at least
one of the conditions is not satisfied, we receive weight strictly less than (d + 1

2 )C. Thus,
the optimal rectangular box for the Max-Weight Rectangle problem coincides with the
optimal rectangular box for the Restricted Rectangle problem. The total number of
points is still O(N) since N = Ω(nk) and we added O(nk) points.

ICALP 2016
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3.2 Max-Weight (d× k)-Partite Clique ⇒ Restricted Rectangle
Consider a (d× k)-partite weighted graph G. We label each of its parts as Pij for i ∈ [d] and
j ∈ [k]. We associate each dk-clique of the graph G with a corresponding rectangular box
in the Restricted Rectangle problem. In particular, for a rectangular box defined by a
point ~x ∈ {0, ..., nk − 1}d, each xij , i.e. the j-th most significant digit of xi in the base n

representation, corresponds to the index of the node in part Pij (0-indexed).
We now create an instance by adding points so that the total weight of every rectangular

box satisfying the conditions of the Restricted Rectangle problem is equal to the weight
of its corresponding dk clique. To do that we need to take into account the weights of all
the edges. We can easily take care of edges between parts P11, P12, ..., P1k of the graph by
adding the following points for each x1 ∈ {0, ..., nk − 1}.

(x1, 0, 0, 0, .., 0) with weight W (x1) equal to the weight of the k-clique x11, x12, ..., x1k in
parts P11, P12, ..., P1k

(x1 + 1, 0, 0, 0, .., 0) with weight −W (x1)
This creates 2nk points and adds weight W (x1) to any rectangle whose first coordinate
matches x1 without affecting any of the others. We work similarly for every coordinate i

from 2 through d accounting for the weight of all edges between parts Pia and Pib for all
i ∈ [d] and a 6= b ∈ [k]. To take into account the additional edges, we show how to add edges
between parts P1a and P2b. For all x1 ∈ nk−a{0, ..., na − 1} and x2 ∈ nk−b{0, ..., nb − 1} we
add the points:

(x1, x2, 0, 0, .., 0) with weight w equal to the weight of the edge between nodes x1a and
x2b in parts P1a and P2b.
(x1 + nk−a, x2, 0, 0, .., 0) with weight −w

(x1, x2 + nk−b, 0, 0, .., 0) with weight −w

(x1 + nk−a, x2 + nk−b, 0, 0, .., 0) with weight w

This adds weight equal to the weight of the edge between nodes x1a and x2b in parts P1a and
P2b for any rectangle with corner ~x. This creates O(na+b) points. This number becomes too
large if a + b > k + 1. However, if this is the case we can instead apply the same construction
in the part of the space where the numbers x1 and x2 appear reversed, i.e. by working with
x′2 = x1 and x′3 = x2. For all x′2 ∈ na−1{0, ..., nk+1−a − 1} and x′3 ∈ nb−1{0, ..., nk+1−b − 1}
we add the points:

(0,−x′2,−x′3, 0, 0, .., 0) with weight w equal to the weight of the edge between nodes
x′2(k+1−a) and x′3(k+1−b) in parts P1a and P2b.
(0,−x′2 − na−1,−x′3, 0, .., 0) with weight −w

(0,−x′2,−x′3 − nb−1, 0, .., 0) with weight −w

(0,−x′2 − na−1,−x′3 − nb−1, 0, .., 0) with weight w

This produces the identical effect as above creating O(n2k+2−a−b) rectangles. If a + b ≥ k + 1
this adds at most O(nk+1) points as desired. We add edges between any other 2 parts Pi,·
and Pi′,· by performing a similar construction as above.

The overall number of points in the instance is O(nk+1) and this completes the proof of
the theorem.

4 Hardness for Maximum Subarray in 2 dimensions

In this section our goal is to show that, if we can solve the Maximum Subarray problem on
a matrix of size n×n in time O(n3−ε), then we can solve the Negative Triangle problem
in time O(n3−ε) on n vertex graphs. It is known that a O(n3−ε) time algorithm for the
Negative Triangle implies a O(n3 − ε/10) time algorithm for the All-Pairs Shortest
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Paths problem [36]. Combining our reduction with the latter one, we obtain Theorem 2
from the introduction, which we restate here:

I Theorem 2. For any constant ε > 0, an O(n3−ε) time algorithm for the Maximum
Subarray problem on n× n matrices implies an O(n3 − ε/10) time algorithm for the All-
Pairs Shortest Paths problem.

The generalization of this statement can be found in Section 5. Here we prove 2-
dimensional case first because the argument is shorter.

Clearly, the Negative Triangle problem in equivalent to the Positive Triangle
problem. In the remainder of this section we therefore reduce the problem of detecting
whether a graph has a positive triangle to the Maximum Subarray problem.

We need the following intermediate problem:

I Definition 13 (Maximum 4-Combination). Given a matrix B ∈ Rm×m, output

max
i,i′,j,j′∈[m] : i≤i′ and j≤j′

B[i, j] + B[i′, j′]−B[i, j′]−B[i′, j].

Our reduction consists of two steps:
1. Reduce the Positive Triangle problem on n vertex graph to the Maximum 4-

Combination problem on 2n× 2n matrix.
2. Reduce the Maximum 4-Combination problem on n × n matrix to the Maximum

Subarray matrix of size n× n.

4.1 Positive Triangle ⇒ Maximum 4-Combination
Let A be the weighted adjacency matrix of size n× n of the graph and let M be the largest
absolute value of an entry in A. Let M ′ := 10M and M ′′ := 100M . We define matrix
D ∈ Rn×n :

Di,j =
{

M ′ + M ′′ if i = j;
M ′′ otherwise.

We define matrix B ∈ R2n×2n :

B :=
[

A −AT

−AT D

]
.

The reduction follows from the following lemma.

I Lemma 14. Let X be the weight of the max-weight triangle in the graph corresponding to
the adjacency matrix A. Let Y be the output of the Maximum 4-Combination algorithm
when run on matrix B. The following equality holds:

Y = X + M ′ + M ′′.

Proof. Consider integers i, j, i′, j′ that achieve a maximum in the Maximum 4-Combination
instance as per Definition 13. Our first claim is that i, j ≤ n and i′, j′ ≥ n + 1. If this
is not true, we do not collect the weight M ′′ and the largest output that we can get is
≤ 4M ′ ≤ 9M ′′/10. Note that we can easily achieve a larger output with i = j = 1 and
i′ = j′ = n + 1.
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Our second claim is that i′ = j′. If this is not so, we do not collect the weight M ′ and the
largest output that we can get is M ′′ + 4M ≤M ′′ + M ′/2. Note that we can easily achieve
a larger output with i = j = 1 and i′ = j′ = n + 1. Thus, we can denote i′ = j′ = k + n.

Now, by the construction of B, we have

B[i, j] + B[i′, j′]−B[i, j′]−B[i′, j] = A[i, j] + A[j, k] + A[k, i] + M ′ + M ′′.

We get the equality we need. J

4.2 Maximum 4-Combination ⇒ Maximum Subarray

Let A′ ∈ R(n+1)×(n+1) be a matrix defined by A′[i, j] = A[i − 1, j − 1] if i, j ≥ 2 and
A′[i, j] = 0 otherwise.

Let C ∈ Rn×n be a matrix defined by C[i, j] = A′[i, j] + A′[i + 1, j + 1]−A′[i, j + 1]−
A′[i + 1, j].

The reduction follows from the claim that the output of the Maximum Subarray on C

is equal to the output of the Maximum 4-Combination on A′. The claim follows from the
following equality:

i′′∑
i=i′

j′′∑
j=j′

C[i, j] = A′[i′′ + 1, j′′ + 1] + A′[i′, j′]−A′[i′′ + 1, j′]−A′[i′, j′′ + 1].

The proofs of the hardness results of the next 3 sections are presented in the Appendix of
this paper in the interest of space.

5 Hardness for Maximum Subarray for arbitrary number of
dimensions

We state the hardness result we prove for the Maximum Subarray problem on d dimensional
arrays.

I Theorem 15. For any constant ε > 0, an O
(
nd+bd/2c−ε

)
time algorithm for the Maximum

Subarray problem on d-dimensional array, implies an O
(
nd+bd/2c−ε

)
time algorithm for

the Max-Weight (d + bd/2c)-Clique problem.

The complete proof of Theorem 15 is given in the full version of the paper [8]. It
generalizes the constructions used in the hardness proof of Theorem 2.

6 Hardness for Maximum Square Subarray problem

We state the hardness result we prove for the Maximum Square Subarray problem on d

dimensional arrays.

I Theorem 16. For any constant ε > 0, an O
(
nd+1−ε

)
time algorithm for the Maximum

Square Subarray problem on a d-dimensional array implies an O
(
nd+1−ε

)
time algorithm

for the Max-Weight (d + 1)-Clique problem.

The proof of Theorem 16 is given in the full version of the paper [8].
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7 Hardness for Weighted Depth problem

We state the hardness result we prove for the Weighted Depth problem in d dimensional
space.

I Theorem 17. For any constant ε > 0, an O
(
nbd/2c−ε

)
time algorithm for the Weighted

Depth problem in d dimensional space implies an O
(
nd−2ε

)
time algorithm for the Max-

Weight (d)-Clique problem.

The proof of the above theorem is given in the full version of the paper [8].
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