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Abstract
The isoperimetric profile of a graph is a function that measures, for an integer k, the size of
the smallest edge boundary over all sets of vertices of size k. We observe a connection between
isoperimetric profiles and computational complexity. We illustrate this connection by an example
from communication complexity, but our main result is in algebraic complexity.

We prove a sharp super-polynomial separation between monotone arithmetic circuits and
monotone arithmetic branching programs. This shows that the classical simulation of arithmetic
circuits by arithmetic branching programs by Valiant, Skyum, Berkowitz, and Rackoff (1983)
cannot be improved, as long as it preserves monotonicity.

A key ingredient in the proof is an accurate analysis of the isoperimetric profile of finite full
binary trees. We show that the isoperimetric profile of a full binary tree constantly fluctuates
between one and almost the depth of the tree.
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1 Introduction

Computational complexity theory is about understanding the amount of resources required
to compute a given function. One general framework for analyzing the limitations of a
given computational device is to partition it to two or more parts and study the interactions
between them (see [12, 2] and references trerein). This framework is directly related to
communication complexity [24, 15], and appears in the study of branching programs (e.g.
[4]), in algebraic complexity theory (e.g. [17, 10]), and more.

In this work, we observe the following phenomenon: the exact sizes of the parts in the
partition matter. Some functions are “easy” to compute when the sizes can be chosen
flexibly, but are “difficult” to compute when the sizes are chosen adversarially. The simplest
illustration of this phenomenon comes from communication complexity, and is discussed
below. Our most convincing application, however, comes from arithmetic circuit complexity,
and forms the bulk of this paper.
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1.1 Isoperimetric profile of graphs
The aforementioned phenomenon is related to expansion properties of graphs. For a graph
G = (V (G), E(G)) and A ⊆ V (G), the size of the edge boundary of A is

eG(A) =
∣∣{{a, b} ∈ E(G) : a ∈ A, b ∈ B}

∣∣,
where B = V (G) \A. The edge isoperimetric profile of G is the function

eipG(k) = min{eG(A) : A ⊆ V (G), |A| = k}.

For example, G is connected if and only if eip(k) ≥ 1 for every non trivial k. Analyzing
the isoperimetric profile of a graph is not a simple task. In fact, even understanding simple
properties of the isoperimetric profile in manifolds is difficult (see [16] and references therein).

The high-level connection is as follows. Consider functions defined over some graph G.
The vertices are labelled by variables, and the edges represent interactions between them. A
partitioning of the variables into two parts yields a partition of the vertices of G. Intuitively,
the size of the edge boundary represents the amount of interaction between the parts, and so
a large boundary implies high complexity.

1.2 Communication complexity
Communication complexity studies the amount of communication two or more parties need
to exchange in order to achieve a common goal. It was initiated by Yao in [24] in the context
of distributed computing. For simplicity of the presentation, here we focus on the best-case
deterministic two player model that was introduced by Papadimitriou and Sipser [18], and
applied to study of very-large-scale integration (for more background and details, see the
textbook [15]).

The deterministic communication complexity D(f) of a boolean function f : {0, 1}A ×
{0, 1}B → {0, 1} is the minimum number of bits two players need to exchange in order
to determine the value of f(x, y), where one player sees x ∈ {0, 1}A and the other sees
y ∈ {0, 1}B. Let F : {0, 1}V → {0, 1}. Given a partition of V to two sets A,B, we can
define a function FA,B : {0, 1}A × {0, 1}B → {0, 1} by FA,B(x, y) = F (z) where z|A = x and
z|B = y. The best-case deterministic communication complexity with partition-size k of F ,
denoted Dbest

k (F ), is the minimum of D(FA,B) over all partitions of V to two sets A,B with
|A| = k.

We observe the following connection between the best-case communication complexity and
the edge isoperimetric profile for certain functions. Let G = (V,E) be an undirected graph
with n vertices and maximum degree ∆. Consider, e.g., the function F : {0, 1}V → {0, 1}
defined via G as1

F (z) =
⊕

{u,v}∈E

zu ∧ zv,

where ⊕ is addition modulo two. Then, for every 1 ≤ k ≤ n, it holds that2

Ω(eipG(k)/∆2) ≤ Dbest
k (F ) ≤ O(eipG(k)).

1 The definition of F is inspired by a private communication with Avi Wigderson following [19].
2 In this text, big O and Ω notation means “up to a constant multiplicative factor”.
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The upper bound is obtained by partitioning the variables according to the minimizer of
the edge boundary, noting that the players need only to exchange inputs that appear on
edges of the boundary. The lower bound holds for the following reason. For every partition
A,B of the inputs with |A| = k, the edge boundary of A contains an induced matching
of size m ≥ Ω(eipG(k)/∆2). Setting the variables not participating in the matching to
zero, the lower bound follows from standard lower bounds on the inner product function,⊕

i∈[m] xi ∧ yi.
In other words, the best-case communication complexity of F is determined by the

isoperimetric profile of G, as long as G has constant degree. So, if the isoperimetric profile of
G changes dramatically with k, then so does Dbest

k (F ). For example, there are functions F
so that Dbest

n/2 (F ) = O(1) whereas Dbest
n/3 (F ) = Ω(n).

1.3 Algebraic complexity
Algebraic complexity theory studies the complexity of computing polynomials over a field.
For more background and details, see [7, 5, 21] and references within. We start by outlining
definitions of the models we consider.

The most general model of computation in this area is that of arithmetic circuit. An
arithmetic circuit is a directed acyclic graph with fan-in either zero or two. Vertices of fan-in
zero are labelled by a field element or a variable. Vertices of fan-in two are labelled by either
+ or ×. Every vertex in an arithmetic circuit computes a polynomial in the obvious way.
A weaker model is an arithmetic formula: it is a circuit whose underlying graph is a tree.
Another model is the algebraic branching program, ABP. An ABP is a directed acyclic graph
with two special vertices vstart, vend. Each edge e in it is labelled by L(e) which is a variable
times a field element. The program computes f , which is the following sum over all directed
paths γ from vstart to vend:

f =
∑

γ:vstart→vend

∏
e∈γ

L(e).

The computation performed by ABPs corresponds to the iterated multiplication of matrices.
The size parameter in each of the three models is the number of edges in the underlying
graph.

We now discuss reductions between these models. Formulas can be losslessly simulated
by an ABP, which in turn can be losslessly simulated by a circuit. In the opposite direction,
Hyafil [11] showed that every circuit of size s computing a polynomial of degree r can be
simulated by a formula of size 2O(log(s) log(r)). Valiant, Skyum, Berkowitz and Rackoff [23]
significantly strengthened this result. In their seminal work, they showed that an arithmetic
circuit of size s computing a polynomial of degree r can be simulated by a circuit of size
poly(r, s) and depth O(log(r) log(s)). This result was later used in a sequence of works –
Agrawal and Vinay [1], Koiran [13], and Tavenas [22] – to prove non-trivial simulations of
circuits by circuits of depth four (and unbounded fan-in). This depth reductions sprung
a long sequence of works on lower bounds for constant depth circuits (see [9, 14, 6] are
references within).

An intriguing question is whether the simulations discussed above are sharp. It is possible
they can be significantly improved. However, since we do not have strong enough methods
for proving lower bounds for these models of computation, proving that the reductions are
sharp is currently beyond us.

We therefore address this question in the restricted setting of monotone computations. A
monotone arithmetic computation is a computation over the real numbers that uses only
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non-negative numbers. The aforementioned reductions of Hyafil and Valiant et al. transform
a monotone device to a monotone device. We call such reductions monotone.

Since we know how to prove lower bounds for monotone computation, we can in fact show
that in the category of monotone reductions the reductions above are indeed sharp. Indeed,
the reduction between ABPs and formulas is sharp since Shamir and Snir [20] proved that in
order to multiply d matrices of size n× n, we need a monotone formula of size nΩ(log d), but
on the other hand this can be done via a monotone ABP of size poly(n, d). The reduction
from circuits to ABPs was not previously studied. In this paper, we prove:

I Theorem 1. There is a multilinear n-variate polynomial f with zero-one coefficients so
that the following hold:
1. The polynomial f can be computed by a monotone arithmetic circuit of size poly(n).
2. Every monotone ABP computing f has size at least 2Ω(log2(n)).

The simulation of [23] shows that the lower bound in the theorem is tight, up to a constant
in the exponent. Stated differently, the theorem shows that any monotone reduction from
circuits to ABPs must incur a super-polynomial blowup. To the best of our knowledge, this
is the first separation between algebraic branching programs and circuits. Prior to this work,
it was conceivable that the monotone construction of [23] or other monotone variants of it
can simulate a circuit by an ABP with only a polynomial increase in size.

It is worth mentioning that Gupta, Kamath, Kayal and Saptharishi [8] showed how to
simulate a circuit of size s and degree r over n variables by a depth three circuit of size
exp(O(

√
d log(d) log(n) log(s))), over fields of characteristic 0. Their simulation uses the

reductions to depth four from [1, 13, 22] mentioned above, together with two other reductions.
Most relevant to our work is that their simulation is not monotone. In fact, as they mention,
a simulation to depth three achieving the same parameters can not be monotone.

We now briefly discuss the proof. All lower bounds we know of for monotone algebraic
computation are based on combinatorial problems that are related to counting monomials.
The lower bounds for circuits use the following structure, which is standard by now (see e.g.
[20, 21, 10]). We denote by deg(f) the total degree of f .

I Lemma 2. If f is a homogeneous polynomial of degree r that can be computed by a
monotone circuit of size s, then for every integer 2 ≤ k ≤ r, we can write

f =
s∑
i=1

higi (1)

where for each i, both hi, gi are homogeneous, monotone, and of degrees k/3 ≤ deg(hi) < 2k/3
and deg(gi) = r − deg(hi).

A typical monotone lower bound proceeds by showing that the number of monomials in
each higi is small and so s must be large. To separate monotone circuits from ABPs, we
must find a polynomial that has a small circuit and use some other property of ABPs. We
use the following.

I Lemma 3. If f is a homogeneous polynomial of degree r that can be computed by a
monotone ABP of size s, then for every integer 0 ≤ k ≤ r, we can write

f =
s∑
i=1

higi (2)

where for each i, both hi, gi are homogeneous, monotone, and of degrees deg(hi) = k and
deg(gi) = r − k.
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Notice the similarities between the two lemmas. The only difference between circuits and
ABPs is that circuits are slightly more flexible about the degrees of hi, gi in (1), whereas
ABPs are not. We exploit this weakness to prove the separation. Motivated by Section 1.2,
the polynomial f in Theorem 1 will be defined over an underlying graph G. The setting
will be such that for each k, large eipG(k) implies a super-polynomial lower bound on s in
(2), and hence gives a lower bound on the ABP-size. On the other hand, the graph must be
chosen so that f is easy to compute via a monotone circuit. If G is too complex, such as
an expander graph, then we do not expect to prove meaningful upper bounds. In fact, in
order to circumvent the lower bound implied by (1), the value of eipG(k) must be small for
many integers k. It turns out that the right graph to choose is the full binary tree, which we
discuss next.

1.4 Full binary trees
We analyze the isoperimetric profile of full finite binary trees. The case of the infinite binary
tree was previously studied by Bharadwaj, Chandran and Das in [3], where it was shown to
be related to meta-Fibonacci sequences and signed almost binary partitions.

For an integer d ≥ 0, denote by Td the full binary tree of depth d. It has precisely 2d
leaves and 2d+1 − 1 vertices. It is clear that there are many values k ≤ |V (Td)| for which
eipTd

(k) = 1. It is more surprising that for some k, the value of eipTd
(k) can be fairly large,

almost as large as the depth of Td. This is the content of the first theorem:

I Theorem 4. Let mip(Td) be the maximum of eipTd
(k) over all 0 ≤ k ≤ |V (Td)|. Then

d

2 −O(log d) ≤ mip(Td) ≤
d

2 +O(1) .

In order to analyze the isoperimetric profile of Td, we relate it to the binary representation
of k. For an integer k ≥ 0, denote the binary representation of k by

B(k) = (B0(k), B1(k), B2(k), . . .) ∈ {0, 1}N.

I.e., k =
∑∞
i=0Bi(k)2i. Denote by drops(k) the number of drops in B(k):

drops(k) = |{i ≥ 0 : Bi(k) > Bi+1(k)}|.

The number of drops is a quantity that is relatively easy to understand, and as the following
theorem shows, it captures the isoperimetric profile of binary trees.

I Theorem 5. For every d ≥ 0 and 0 ≤ k < |V (Td)|,

drops(k)
2 ≤ eipTd

(k) ≤ 2drops(k) .

Moreover, the lower bound can be improved to drops(k)−O(log(drops(k))).

The theorem provides an almost optimal description of the isoperimetric profile eipTd
(k)

of Td. It implies that although eipTd
(k) = 1 for many values of k, for most values of k we

have eipTd
(k) ≥ Ω(d).

We get an explicit choice of k for which eip(k) is large. For even d ≥ 0, define

σd = 1 + 4 + 16 + . . .+ 2d ≈ 2
32d+1, (3)

and for odd d define σd = σd−1. The number of drops in B(σd) is at least d/2. The number
σd can be thought of as the truncation of the binary expansion of 2/3.

I Corollary 6. For every d ≥ 0, we have eipTd
(σd) ≥ d/2−O(log d) ≥ d/4.
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1.5 Organization
Section 3 contains the proof of the separation between monotone circuits and ABPs. Section 2
contains the proofs concerning the isoperimetric profile of the full binary tree that are needed
in Section 3 (due to space limitations, some of the proofs that are not used in Section 3 will
appear in the full version of the text).

2 Binary trees

In order to prove the lower bounds in Theorems 4 and Theorem 5, we will introduce the
quantity sbl(k) which, roughly speaking, measures how far k is from powers of 2. We then
relate eipTd

(k) and sbl(k),
We say that k is a signed power of two if it is of the form ±2j for some integer j ≥ 0. For

k ∈ Z, the signed binary length of k, denoted sbl(k), is the minimum b so that there exist b
signed powers of two k1, . . . , kb so that k =

∑b
i=1 ki, where repetitions are a priori allowed.

For example, sbl(0) = 0 and if d ≥ 1 then

sbl(1 + 2 + 4 + . . .+ 2d) = sbl(2d+1 − 1) = 2.

The following lemma gives a lower bound on eipTd
(k) in terms of sbl(k).

I Lemma 7. For every d ≥ 0 and 0 < k ≤ |V (Td)|,

eipTd
(k) ≥ sbl(k)−O(log(sbl(k))) .

In addition, if k < |V (Td)| then eipTd
(k) ≥ sbl(k)/2.

Proof. For an integer k, let st(k) denote the smallest b such that there exist non-negative
integers j1, . . . , jb and ε1, . . . , εb ∈ {−1, 1} with3

k =
b∑
j=1

εj · (2j − 1) . (4)

Recall that if j > 0, then 2j−1 is the number of vertices in Tj−1. We will prove the following:

I Claim 8. For every U ⊆ V (Td) not containing the root of Td, we have st(|U |) ≤ eTd
(U).

Claim 8 implies that for every U ⊆ V (Td),

st(|U |) ≤ eTd
(U) + 1 . (5)

Indeed, if U contains the root of Td, then apply Claim 8 to the complement Ū = V (Td) \ U .
Then Ū does not contain the root of Td and eTd

(U) = eTd
(Ū) ≥ st(|Ū |). But |U | =

|V (Td)| − |Ū | gives st(|U |) ≤ st(|Ū |) + 1.

Proof of Claim 8. The proof is by induction on d. The claim holds for d = 0 as st(0) = 0.
Assume d > 0. Let vd be the root of Td and for a node v, let T (v) be the full subtree of Td
with root v. Let U ⊆ V (Td) be so that vd 6∈ U . Let M be the subset of maximal vertices in

3 This quantity previously appeared in [3].
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U . That is, a vertex v is in M if v ∈ U and the shortest path from v to vd does not contain
a vertex from U . For v ∈M , let U(v) = U ∩ V (T (v)). Hence,

eTd
(U) = |M |+

∑
v∈M

eT (v)(U(v)).

Since |U | =
∑
v∈M |U(v)|,

st(|U |) ≤
∑
v∈M

st(|U(v)|).

For every v ∈M , the inductive assumption and (5) show that

st(|U(v)|) ≤ eT (v)(U(v)) + 1.

Overall,

st(|U |) ≤
∑
v∈M

(1 + eT (v)(U(v))) = |M |+
∑
v∈M

eT (v)(U(v)) = eTd
(U). J

To prove the lemma, it remains to estimate sbl(k) in terms of st(k). If k is written as
in (4) with b = st(k), we have

sbl(k) ≤ sbl(
b∑
j=1

εj2j) + sbl(
b∑
j=1

εj) ≤ st(k) + log2(st(k) + 1).

This gives st(k) ≥ sbl(k)−O(log(sbl(k))) and so (5) gives

eipTd
(k) ≥ sbl(k)−O(log(sbl(k))) ,

as required.
Finally, assume that U 6= V (Td). If U does not contain the root, apply Claim 8 and the

estimate sbl(k) ≤ 2st(k), to obtain eTd
(U) ≥ sbl(|U |)/2. If U does contain the root, apply

Claim 8 to Ū = V (Td) \ U and note that sbl(|U |) ≤ 2st(|Ū |) whenever Ū 6= ∅. J

The next lemma shows that, up to a constant factor, sbl(k) and drops(k) are the same.

I Lemma 9. For every k ≥ 0, we have drops(k) ≤ sbl(k) ≤ 2drops(k).

Proof. We start by showing that sbl(k) ≤ 2drops(k). First, note that k can be written as

k =
t∑
i=1

∑
ri≤j≤`i

2j , (6)

where t ≤ drops(k) and r1 ≤ `1 < r2 ≤ `2 < · · · < rt ≤ `t are non-negative integers. Second,
note that each sum

∑
ri≤j≤`i

2j can be expressed in terms of at most two signed powers of 2.
In order to prove the other inequality, we first note that for every k, j ≥ 0

|drops(k + 2j)− drops(k)| ≤ 1 . (7)

To see (7), assume first that Bj(k) = 0. Then adding 2j can introduce one drop if Bj+1(k) = 0
and delete one drop if j > 0 and Bj−1(k) = 1. If Bj(k) = 1, let ` be the smallest integer
with B`(k) = 0 and ` > j. The binary representations of k and k + 2j are the same, except
that B`(k + 2j) = 1 and Bi(k + 2j) = 0 for every j ≤ i < `. The number of drops in k + 2j

ICALP 2016
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can increase only if Bj−1(k) = 1 and j > 0, and increases at most by one. It can decrease
only if B`+1(k) = 1, and again at most by one.

By induction on sbl(k), we now prove that for every k ≥ 0, drops(k) ≤ sbl(k). If
sbl(k) = 0, the statement holds. Otherwise, let k1, . . . , kb, with b = sbl(k), be signed powers
of two that sum to k. Choose ki so that k − ki is non-negative. Hence, (7) shows that
drops(k − ki) ≥ drops(k) − 1. Furthermore, we have sbl(k − ki) = sbl(k) − 1. By the
inductive assumption, sbl(k − ki) ≥ drops(k − ki). Altogether, sbl(k) = sbl(k − ki) + 1 ≥
(drops(k)− 1) + 1 = drops(k), completing the proof. J

Proof of Theorems 4 and 5. The lower bounds in both theorems follow from Lemmas 7
and 9, since drops(σd) = d/2 for σd as defined in (3). The proof of the upper bounds is by
induction and is not presented due to space considerations. J

Remarks

First, none of the bounds in Theorem 5 is tight for all k. For example, the 2drops(k) upper
bound exceeds the upper bound from Theorem 4 for k = σd from (3). Furthermore, we do
not know which of the bounds in Theorem 4 is more accurate.

Second, we have eipTd
(σd) ≤ d/2 − Ω(log d). Hence, the lower bound of drops(k) −

O(log(drops(k)) from Theorem 5 cannot be improved as a function of drops(k). A similar
statement holds for Lemma 7 and sbl(k).

Third, the quantity st(k) from Claim 8 characterizes eip almost exactly: st(k) − 1 ≤
eipTd

(k) ≤ st(k). This can be deduced from Claim 8 and Theorem 2.3 from [3]. It also
implies |eipTd

(k)− sbl(k)| ≤ O(log k).
Fourth, we do not know of a simple procedure to compute eipTd

(k), or to find a subset of
size k that minimizes the boundary-size. The quantity sbl(k), however, can be computed
exactly and quite easily, in time polynomial in log k, which allows to efficiently approximate
eipTd

(k) more accurately.

3 Algebraic complexity

In this section, we prove the separation between monotone circuits and ABPs stated in
Theorem 1, and the structure of ABPs stated in Lemma 3.

3.1 The tree function
We first describe a boolean function Td,m which is later used to prove our separation. Recall
that Td is the full binary tree of depth d, and let V be the set of its vertices. For an integer
m > 1, let Zm be the additive group of integers modulo m, and let ZVm be the set of functions
γ : V → Zm.

A function γ ∈ ZVm will be called legal, if for every vertex v which is not a leaf and its
two children v1, v2, we have

γ(v) = γ(v1) + γ(v2) .

The tree function Td,m : ZVm → {0, 1} takes γ ∈ ZVm and accepts if γ is legal.
For a node v ∈ V , let T (v) be the full subtree of Td rooted at v and let `(T (v)) be the

set of its leaves. Then γ is legal iff

γ(v) =
∑

u∈`(T (v))

γ(u) (8)

holds for every vertex v in T .
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The following lemma depicts the key property of Td,m that we later use. For two functions
f, g over the same domain, write f ≤ g if f(x) ≤ g(x) for all x. Denote by sup(f) the set of
inputs x so that f(x) = 1.

I Lemma 10. Let V0, V1 be a partition of V where |V0| = σd, as defined in (3). If

h0 : ZV0
m → {0, 1}, h1 : ZV1

m → {0, 1}, h0 ∧ h1 ≤ Td,m,

then | sup(h0 ∧ h1)| ≤ m−d/16| sup(Td,m)|.

Proof. View Td as directed from leaves to root. A directed path v1, . . . , vk in Td from
v1 ∈ `(T (vk)) to vk will be called pure if v1 6= vk and there exists i ∈ {0, 1} so that
{v1, . . . , vk} ∩ Vi = {vk}. A node will be called pure if it is the last node of some pure path.
Let P ⊂ V be the set of pure nodes. Let E be the edge boundary of V0.

To prove the lemma, we use the following two claims.

I Claim 11. |P | ≥ |E|/4.

Proof of Claim 11. Let S be the set of nodes v ∈ V so that the parent of v in Td is pure.
Since |S| ≤ 2|P |, it is enough to show that |S| ≥ |E|/2. Let T ′ be the minor of Td obtained
by contracting all the edges of Td not in E. The tree T ′ is a (not necessarily binary) tree
with |E| edges. For x ∈ V (T ′), let [x] ⊆ V be the set of vertices that have been contracted
to x. The root of T ′ is the vertex x so that the root of Td is in [x]. View T ′ as directed from
leaves to the root. For x ∈ V (T ′), let v(x) ∈ V be the vertex in [x] that is closest to the root
of Td. This is well defined, since the set [x] is connected in Td. For every leaf x ∈ V (T ′),
we have v(x) ∈ S. For every x ∈ V (T ′) with in-degree one which is not the root of T ′, the
vertex v(x) is also in S. Recall that T ′ can have at most |E|/2 vertices of in-degree at least
two. Hence, |S| ≥ (|E|+ 1)− (|E|/2 + 1), as required. J

For every pure node v, fix a leaf ṽ such that the path from ṽ to v is pure. Let P̃ = {ṽ :
v ∈ P}. The sizes of P̃ and P are the same.

I Claim 12. Assume sup(h0) 6= ∅. Then every β ∈ sup(h1) is uniquely determined by its
values on (`(Td) ∩ V1) \ P̃ .

Proof of Claim 12. Fix α ∈ sup(h0). For the sake of contradiction, assume that there are
two distinct β1, β2 ∈ sup(h1) which agree on (`(Td) ∩ V1) \ P̃ . Since h0 ∧ h1 ≤ Td,m, both
α ∪ β1 and α ∪ β2 are legal maps satisfying (8). Hence, β1 and β2 differ on some leaf in
V1. They agree on leaves outside of P̃ and so there exists a pure node v ∈ V0 such that
β1(ṽ) 6= β2(ṽ). We can assume that v is minimal in that for every pure node u ∈ T (v) ∩ V0
with u 6= v, we have β1(ũ) = β2(ũ). Since every pure path that starts in `(T (v)) ∩ V1 must
also end in T (v), we obtain that β1(u) = β2(u) for every leaf in T (v) ∩ V1 with the sole
exception of ṽ. But this is impossible since (8) implies that for every i ∈ {1, 2},

α(v)−
∑

u∈`(T (v))∩V0

α(u) = βi(ṽ) +
∑

u∈(`(T (v))∩V1)\{ṽ}

βi(u) ,

which gives β1(ṽ) = β2(ṽ). J

To conclude the lemma, assume that sup(h0 ∧ h1) 6= ∅, otherwise we are done. Claim 12
shows that

| sup(h0)| ≤ m|(`(Td)∩V0)\P̃ | , | sup(h1)| ≤ m|(`(Td)∩V1)\P̃ | .
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Since | sup(Td,m)| = m|`(Td)|,

| sup(h0)| · | sup(h1)| ≤ m|`(Td)|−|P̃ | = m−|P̃ || sup(Td,m)| .

Finally, Claim 11 and Corollary 6 give |P̃ | = |P | ≥ |E|/4 ≥ eTd
(V0)/4 ≥ d/16. J

3.2 The tree polynomial
We now describe the polynomial that separates monotone circuits from ABPs. Recall that
Td is the full binary tree of depth d and Td,m : ZVm → {0, 1} is the tree function, where
V = V (Td). For every v ∈ Td and z ∈ Zm, introduce the variable xv,z. For a partial function
γ : V → Zm, define the monomial xγ =

∏
v∈dom(γ) xv,γ(v). Define the tree polynomial as

Pd,m =
∑

γ∈ZV
m:Td,m(γ)=1

xγ .

It is homogeneous of degree |V | = 2d+1 − 1 and it has m|V | variables.
We now prove a generalization of Theorem 1.

I Proposition 13. The polynomial Pd,m can be computed by a monotone arithmetic circuit
of size O(m22d). However, every monotone ABP computing Pd,m has size at least mΩ(d).

Theorem 1 follows from Proposition 13 by setting m = 2d.

Proof of Proposition 13. We first prove the lower bound. Assume that Pd,m has a monotone
ABP of size s. Let σd be as defined in (3). By Lemma 3, we can write

Pd,m =
s∑
i=1

higi ,

where hi, gi are homogeneous and monotone, hi has degree σd and gi has degree deg(Pd,m)−σd.
We can assume higi 6= 0 for every i. For a polynomial f , let mon(f) be the set of γ’s such that
xγ has a non-zero coefficient in f , and let f? be the boolean function with sup(f?) = mon(f).
Monotonicity guarantees that for every i ∈ [s], there exists Vi ⊆ V with |Vi| = σd such
mon(hi) ⊆ ZVi

m and mon(gi) ⊆ ZV \Vi
m . Therefore,

P?d,m =
s∨
i=1

h?i ∧ g?i .

Since P?d,m = Td,m, Lemma 10 gives s ≥ md/16.
For the upper bound, fix m and proceed by induction on d. For a ∈ Zm, let Fa,d be the

polynomial defined as Pd,m, except γ range over legal maps with γ(vd) = a, where vd is the
root. Hence, Td,m =

∑
a∈Zm

Fa,d.
We will show that Fd,a, for all a ∈ Zm, can be simultaneously computed by a circuit

of size s(d) = O(m32d). For d = 0, we have s(d) = O(m). Assume that d > 0. Let T` be
the left subtree of Td of depth d − 1, and let Tr be the right subtree of depth d − 1. Let
C`, Cr be the two circuits guaranteed by induction on T`, Tr. For a ∈ Zm, denote by f`,a the
polynomial computed in C` so that the root of T` is mapped to a, and similarly define fr,a.
To define the circuit for Fd,a, use the following:

Fd,a =
∑

a`,ar∈Zm:a=a`+ar

f`,a`
fr,ar

xvd,a,
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Overall, we get the recursion

s(d) ≤ O(m2) + 2 · S(d− 1),

showing that s(d) = O(m22d). J

3.3 The structure of ABPs
We end this section by proving Lemma 3.

Proof of Lemma 3. Let P be an ABP computing a homogeneous polynomial f of degree r.
For a vertex v in P , denote by hv the polynomial

hv =
∑

γ:vstart→v

∏
e∈γ

LP (e)

and denote by gv the polynomial

gv =
∑

γ:v→vend

∏
e∈γ

LP (e).

Since the computation is monotone and f homogeneous, both hv, gv are homogeneous and
the sum of their degrees is r. Denote by U the set of vertices v in P so that the degree of hv
is k. Every directed path from vstart to vend in P passes through U exactly once. It follows
that

f =
∑
v∈U

hvgv,

as needed. J
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