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Abstract
We study data structure problems related to document indexing and pattern matching queries
and our main contribution is to show that the pointer machine model of computation can be
extremely useful in proving high and unconditional lower bounds that cannot be obtained in any
other known model of computation with the current techniques. Often our lower bounds match
the known space-query time trade-off curve and in fact for all the problems considered, there is
a very good and reasonable match between our lower bounds and the known upper bounds, at
least for some choice of input parameters.

The problems that we consider are set intersection queries (both the reporting variant and the
semi-group counting variant), indexing a set of documents for two-pattern queries, or forbidden-
pattern queries, or queries with wild-cards, and indexing an input set of gapped-patterns (or
two-patterns) to find those matching a document given at the query time.
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1 Introduction

In this paper we study a number of data structure problems related to document indexing
and prove space and query time lower bounds that in most cases are almost tight. Unlike
many of the previous lower bounds, we disallow random accesses by working in the pointer
machine model of computation, however, we obtain high and unconditional space and query
time lower bounds that almost match the best known data structures for all the problems
considered; at the moment, obtaining such unconditional and tight lower bounds in other
models of computation is a hopelessly difficult problem. Furthermore, compared to the
previous lower bounds in the area, our lower bounds probe deeper and thus are much more
informative. Consequently, these results show the usefulness of the pointer machine model.

Document indexing is an important problem in the field of information retrieval. Generally,
the input is a collection of documents D = {d1, d2, . . . dD} with a total length of n characters
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93:2 Data Structure Lower Bounds for Document Indexing Problems

Table 1 At every row, the 3rd cell presents our space lower bound for data structures that have
a query time bounded by the 2nd cell. PM stands for the pointer machine model. n is the input size
and t is the output size.

Problem Query Bound Space Lower Bound Assumptions
2P, FP, SI, 2FP

(counting) Q(n) Ω(n2−o(1)/Q2(n)) Semi-group

2P, FP, SI, 2FP
(reporting) Q(n) +O(t) Ω(n2−o(1)/Q(n)) PM

2P, FP, SI, 2FP
(reporting) O((nt) 1

2 −α + t) Ω
(
n

1+6α
1+2α−o(1)

)
PM, α > 0 a parameter

WCI (reporting) Q(n, κ) +O(t) Ω
(
n
κ

Θ
(

logn
κ logQ(n,κ)

)κ−1
)

PM, κ wild-cards,
κ ≤ logQ(n,κ) n

WCI (reporting) O(2κ/2 + t) Ω
(
n1+Θ(1/ log k)) PM, κ wild-cards,

3
√

logn ≤ κ = o( logn
log logn )

κ-GPI o
(

Dγκ

(2+2 logD)κ+1

)
nΩ(log1/(2κ) n) PM, αi = 0, βi = γ

κ = o( log logn
log log logn )

and usually the goal is to index them such that given a query, all the documents matching
the query can be either found efficiently (the reporting variant) or counted efficiently (the
searching variant). When the query is just one text pattern, the problem is classical and well-
studied and there are linear space solutions with optimal query time [33]. Not surprisingly,
there have been various natural extensions of this problem. We summarize the problems we
study and our results below.

1.1 New and Previous Results

1.1.1 Two-pattern and the Related Queries
The two-pattern query problem (abbreviated as the 2P problem) was introduced in 2001 by
Ferragina et al. [22] and since then it has attracted lots of attention. In the 2P problem,
each query is composed of two patterns and a document matches the query if both patterns
occur in the document. One can also define the Forbidden Pattern (FP) problem [23] where
a document matches the query if it contains one pattern but not the other. For symmetry,
we also introduce and consider the Two Forbidden Patterns (2FP) problem where none of
the patterns are allowed to match the document.

Previous Results. Ferragina et al. [22] presented a number of solutions for the 2P problem
with space and query times that depend on the “average size” of each document but the
worst case query time and space is O(P1 + P2 + nα + t) and O(n2−α logO(1) n), for any
0 < α < 1, respectively. Here P1 and P2 are the sizes of the query patterns and t is the
output size (see also [33]). Cohen and Porat [18] offered a solution that uses O(n logn) space
with O(P1 + P2 +

√
nt log2.5 n) query time. The space was improved to O(n) and the query

time to O(P1 + P2 +
√
nt log1.5 n) by Hon et al. [24]. The query time was reduced by a

O(
√

logn) in [29] factor and finally the query time O(P1 + P2 +
√
nt) was achieved in [10].

The FP problem was introduced by Fischer et al. [23] and they presented a data structure
that stores O(n3/2) bits and answers queries in O(P1 + P2 +

√
n + t) time. Another

solution was given by Hon et al. [25] that uses O(n) space but has O(P1 + P2 +
√
nt log2.5 n)

query time. For the searching variant (unweighted) their solution can answer queries in
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O(P1 + P2 +
√
n log logn) time. As Larsen et al. [29] remark, the log logn factor can be

removed by using range emptiness data structures and that the same data structure can be
used to count the number of matching documents for the two pattern problem.

The difficulty of obtaining fast data structures using (near) linear space has led many to
believe that very efficient solutions are impossible to obtain. Larsen et al. [29] specifically
focus on proving such impossibility claims and they show that the 2P and FP problems
are at least as hard as Boolean Matrix Multiplication, meaning, with current techniques,
P (n) + nQ(n) = Ω(nω/2) where P (n) and Q(n) are the preprocessing and the query times
of the data structure, respectively and ω is the exponent of the best matrix multiplication
algorithm (currently ω = 2.3728639). If one assumes that there is no “combinatorial” matrix
multiplication algorithm with better running time than O(n3−o(1)), then the lower bound
becomes P (n) + nQ(n) = Ω(n1.5−o(1)). Other conditional lower bounds for the 2P and FP
problems but from the integer 3SUM conjecture were obtained by Kopelowitz, et al. [27, 28].

The above results are conditional. Furthermore, they tell us nothing about the complexity
of the space usage, S(n), versus the query time which is what we are truly interested in for
data structure problems. Furthermore, even under the relatively generous assumption1 that
P (n) = O(S(n)no(1)), the space and query lower bounds obtained from the above results
have polynomial gaps compared with the current best data structures.

We need to remark that the only unconditional space lower bound is a pointer ma-
chine lower bound that shows with query time of O(poly(logn) + k) the space must be
Ω(n(logn/ log logn)3) [23]. However this bound is very far away from the upper bounds
(and also much lower than our lower bounds).

Our Results. We show that all the known data structures for 2P and FP problems are
optimal within no(1) factors, at least in the pointer machine model of computation: Consider
a pointer machine data structure that uses S(n) space and can report all the t documents
that match a given 2P query (or FP query, or 2FP query) in Q(n) +O(P1 + P2 + t) time.
We prove that we must have S(n)Q(n) = Ω

(
n2−o(1)). As a corollary of our lower bound

construction, we also obtain that any data structure that can answer 2P query (or FP query,
or 2FP query) in O((nt)1/2−ε + t) time, for any fixed constant ε > 0 must use super-linear
space. As a side result, we show that surprisingly, the counting variant of the problem is in
fact easier: in the semi-group model of computation (see [15] or the full version of this paper
[5] for a description of the semi-group model), we prove that we must have

S(n)Q2(n) = Ω(n2/ log4 n) .

1.1.2 Set Intersection Queries
The interest in set intersection problems has grown considerably in recent years and variants
of the set intersection problem have appeared in many different contexts. Here, we work
with the following variants of the problem. The input is m sets, S1, · · · , Sm of total size n,
from a universe U and a query is a pair of indices i and j. The decision variant asks whether
Si ∩ Sj = ∅. The reporting variant asks for all the elements in Si ∩ Sj . In the counting
variant, the result should be |Si ∩ Sj |. In the searching variant, the input also includes a
weight function w : U → G where G is a semi-group. The query asks for

∑
x∈Si∩Sj w(x).

1 There are problems, such as jumbled indexing [13], where the preprocessing time is a polynomial factor
larger than the space complexity.
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Previous Results. The set intersection queries have appeared in many different formulations
and variants (e.g., see [19, 37, 36, 1, 27, 18]). The most prominent conjecture is that answering
the decision variant with constant query time requires Ω(n2−o(1)) space (see [37] for more
details). For the reporting variant, Cohen and Porat [18] presented a data structure that
uses linear space and answers queries in O(

√
nt) time, where t is the output size. They also

presented a linear-space data structure for the searching variant that answers queries in
O(
√
n) time. In [26] the authors study set intersection queries because of connections to

dynamic graph connectivity problems. They offer very similar bounds to those offered by
Cohen and Porat (with a

√
logn factor worse space and query times) but they allow updates

in O(
√
n logn) time. It is commonly believed that all set intersection queries are hard.

Explicitly stated conjectures on set intersection problems are used to obtain conditional lower
bounds for problems such as distance oracles [37, 36, 19] while other well-known conjectures,
such as the 3SUM conjecture, can be used to show conditional lower bounds for variants of
set intersection problems [27, 1]. For other variants see [9, 34, 21].

Dietz et al. [21] considered set intersection queries in the semi-group model (a.k.a the
arithmetic model) and they presented near optimal dynamic and offline lower bounds. They
proved that given a sequence of n updates and q queries one must spend Ω(q + n

√
q) time

(ignoring polylog factors); in the offline version a sequence of n insertions and q queries are
used but in the dynamic version, the lower bound applies to a dynamic data structure that
allows insertion and deletion of points, as well as set intersection queries.

Our Results. Our lower bounds for the 2P problem easily extend to the SI problem. Perhaps
the most interesting revelation here is that the searching variant is much easier than the
reporting variant (S(n)Q(n) = Ω(n2−o(1)) for reporting versus S(n)Q(n)2 = Ω(n2−o(1)) for
searching)2. Based on this, we make another conjecture that even in the RAM model,
reporting the elements in Si ∩ Sj for two given query indices i and j, in O(n1−ε + |Si ∩ Sj |)
time, for any fixed constant ε > 0, requires ω(n) space. Such a separation between counting
and reporting is a rare phenomenon with often counting being the difficult variant.

Observe that conditional lower bounds based on the Boolean Matrix Multiplication or
the integer 3SUM conjectures have limitations in distinguishing between the counting and
the reporting variants: For example, consider the framework of Larsen et al. [29] and for
the best outcome, assume P (n) = S(n)no(1) and also that boolean matrix multiplication
requires Ω(n3−o(1)) time; then their framework yields that S(n) + nQ(n) = Ω(n3/2−o(1)).
When Q(n) = Θ(n2/3) this does not rule out the possibility of having S(n) = O(n) (in fact
the counting variant can be solved with linear space). However, our lower bound shows that
even with Q(n) = Θ(n2/3) the reporting variant requires Ω(n4/3−o(1)) space.

1.1.3 Wild Card Indexing
We study the document indexing problem of matching with “don’t cares”, also known as
wild card matching or indexing (WCI). The setup is the same as for the 2P problem, except
a query is a single pattern but it also contains wild cards denoted by a special character “∗”.
A “∗” matches any one character. The task is to report all documents matched by the query.
This is a well-studied problem from the upper bound perspective and there are generally two
variations: either the maximum number of wild cards is bounded or it supports any number

2 While we believe our lower bounds are certainly interesting (particularly since they separate counting
and reporting variants), they do not make any progress towards resolving the status of the decision
version which is considered a major open problem.
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of wild cards. We consider the bounded version where patterns contain up to κ wild cards
and κ is known in advance by the data structure.

Previous Results. Cole et al. [20] presented a data structure that uses O(n logκ n
κ! ) words of

space and answers queries in O(P + 2κ log logn+ t), where t is the number of occurrences
and P is the length of the query pattern. The space has been improved to O(n logκ+ε n)
bits while keeping the same query time [30]. Another improvement came as a trade-off that
increased query time to O(P + βj log logn+ t) and reduced space usage O(n logn logκ−1

β n)
for any 2 ≤ β ≤ σ where σ is the alphabet size and j ≤ κ is the number of wild cards
in the query [8]. In the same paper an alternate solution with O(P + t) query time and
O(nσκ2 logκ n logn) space usage was also presented. Other results have focused on reducing
space while increasing the query time but their query time now depends on the alphabet
size, e.g., in [31] the authors provide a data structure with O(n logε n log σ) space but with
the query time of O(m+ σκ

√
log log logn+ t).

From these bounds we note three things, first that all solutions have some exponential
dependency on κ and second the alternate solution by Bille et al. [8] has an odd σκ2 factor,
which is exponential on a quadratic function of κ as opposed to being exponential on a
linear function of κ (such as 2κ, σκ, or logκ n). Third, when the query time is forced to be
independent of σ, there is a discrepancy between query and space when varying κ: Increasing
κ (when it is small) by one increases the space by approximately a logn factor, while to
increase the query time by a logn factor, κ needs to be increased by log logn. Based on the
third point, it is quite likely that unlike SI or 2P problems, WCI does not have a simple
trade-off curve.

Other results that are not directly comparable to ours include the following: One is an
O(n) space index with O(P + α) query time [38] where α is the number of occurrences of all
the subpatterns separated by wild card characters. Note that α could be much larger than
t and in fact, this can result in a worst case linear query time, even with small values of t.
Nonetheless, it could perform reasonably well in practice. Two, there are lower bounds for
the partial match problem, which is a related problem (see [35] for more details).

Our Results. For WCI with κ wild cards, we prove two results, both in the pointer machine
model. In summary, we show that the exponential dependency of space complexity or query
time on κ generally cannot be avoided.

As our first result and for a binary alphabet (σ = 2), we prove that for 3
√

logn ≤ κ =
o( logn

log logn ), any data structure that answers queries in O(2κ/2 + P + t) time must consume
n1+Θ(1/ logκ) space. This result rules out the possibility of lowering the σκ2 factor in the
alternate solution offered by Bille et al. [8], over all values of κ, to σκ2−ε for any constant
ε > 0: by setting κ = 3

√
logn (and σ = 2), such a bound will be much smaller than our

space lower bound (essentially involves comparing 2O(log1−ε/2 n) factor to a 2Ω(logn/ log logn)

factor). While this does not rule out improving the space bound for small values of κ, it
shows that the exponential dependency on κ2 is almost tight at least in a particular point in
the range of parameters.

As our second result, we prove that answering WCI queries in Q(n, κ) +O(P + t) time
requires Ω(nκΘ

(
logQ(n,κ) n

κ

)κ−1
) space, as long as κ < logQ(n,κ) n. Note that this query

time is assumed to be independent of σ. This result also has a number of consequences.
One, it shows that any data structure with query time of O(logO(1) n + P + t) requires
Ω(nκ

(
logn

κ log logn

)κ−1
) space. Note that this is rather close to the space complexity of the
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data structure of Cole et al. [20] (2O(κ)(log logn)κ factor away). In other words, the data
structure of Cole et al. cannot be significantly improved both in space complexity and
query time; e.g., it is impossible to answer WCI queries in O(logO(1) n+ P + t) time using

O
(
n
(

logn
κ

)κ(1−ε)
)

space, for any constant ε > 0.

Two, κ = 2 is the smallest value where linear space becomes impossible with polyloga-
rithmic query time. This is very nice since κ = 1 can be solved with almost linear space [30].
Furthermore this shows that the increase by a logn factor in the space complexity for every
increase of κ is necessary (for small values of κ).

Three, we can combine our second result with our first result when κ = 3
√

logn. As
discussed before, our first result rules out fast queries (e.g., when Q(n) ≤ 2κ/2), unless
the data structure uses large amounts of space, so consider the case when Q(n) = O(2κ).
In this case, we can rule out lowering the space usage of the data structure of Cole et al.

to Ω
(
n
(

logn
κ

)κ1−ε)
for any constant ε > 0: apply our second lower bound with fewer

wild cards, specifically, with κ′ = κ1−δ wild cards, for a small enough constant δ > 0 that
depends on ε. Observe that κ′ < logQ(n) n, so the second result lower bounds the space by

Ω
(
n
κ′Θ

(
log

δ
2κ

1−δ
n
))

, which for a sufficiently small δ is greater than Ω
(
n
(

logn
κ

)κ1−ε)
.

As mentioned in the beginning, our results show that the exponential dependency of
space or query time on κ cannot be improved in general. Furthermore, at a particular point
in the range of parameters (when κ = 3

√
logn), all the known exponential dependencies on

κ are almost tight and cannot be lowered to an exponential dependency on κ1−ε (or on κ2−ε

for the alternate solution) for any constant ε > 0. Nonetheless, there are still gaps between
our lower bounds and the known data structures. We believe it is quite likely both our lower
bounds and the existing data structures can be improved to narrow the gap.

1.1.4 Gapped Pattern Indexing
A κ-gapped pattern is a pattern p1{α1, β1}p2{α2, β2}, · · · , pκ{ακ, βκ}pκ+1 where αi and βi,
1 ≤ i ≤ κ are integers, and each pi, 1 ≤ i ≤ κ+ 1, is a string over an alphabet of size σ. Such
a κ-gapped pattern matches a documents in which one can find one occurrence of every pi
such that there are at least αi and at most βi characters between the occurrence of pi and
the occurrence of pi+1, 1 ≤ i ≤ κ.

Previous Results. The gapped pattern indexing is often considered both in the online and
the offline version (e.g., see [7, 40]). However, the result most relevant to us is [6], where they
consider the following data structure problem: given a set of 1-gapped patterns of total size n,
where all the patterns are in the form of p1{α, β}p2, store them in a data structure such that
given a document of length D at the query time, one can find all the gapped patterns that
match the query document (in general we call this the κ-gapped pattern indexing (κ-GPI)
problem). In [6], the authors give a number of upper bounds and conditional lower bounds
for the problem. Among a number of results, they can build a data structure of linear size
that can answer queries in Õ(D(β − α) + t) where Õ notation hides polylogarithmic factors
and t is the output size. For the lower bound and among a number of results, they can show
that with linear space Ω(D(β − α)1−o(1) + t) query time is needed.

Our Results. We consider the general κ-GPI problem where βi − αi = γ for all 1 ≤ i ≤ κ,
and a prove lower bound that is surprisingly very high: any pointer machine data structure
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that can answer queries in o(Dγκ/(2 logD)κ+1) time must use super polynomial space of
nΩ(log1/(κ+1) n). By construction, this result also holds if the input is a set of κ+ 1 patterns
where they all need to match the query document (regardless of their order and size of
the gaps). In this case, answering queries in o(Dκ+1/(2 logD)κ+1) requires the same super-
polynomial space. Note that in this case κ = 1 is the “dual” of the 2P problem: store a
set of two-patterns in data structure such that given a query document, we can output the
subset of two-patterns that match the document.

1.2 Technical Preliminaries
The Pointer Machine Model [39]. This models data structures that solely use pointers
to access memory locations (e.g., any tree-based data structure)3. We focus on a variant
that is the popular choice when proving lower bounds [14]. Consider an abstract “reporting”
problem where the input includes a universe set U where each query q reports a subset, qU ,
of U . The data structure is modelled as a directed graph G with outdegree two (and a root
node r(G)) where each vertex represents one memory cell and each memory cell can store one
element of U ; edges between vertices represent pointers between the memory cells. All other
information can be stored and accessed for free by the data structure. The only requirement
is that given the query q, the data structure must start at r(G) and explore a connected
subgraph of G and find its way to vertices of G that store the elements of qU . The size of
the subgraph explored is a lower bound on the query time and the size of G is a lower bound
on the space.

An important remark. The pointer-machine can be used to prove lower bounds for data
structures with query time Q(n) + O(t) where t is the output size and Q(n) is “search
overhead”. Since we can simulate any RAM algorithm on a pointer-machine with logn factor
slow down, we cannot hope to get high unconditional lower bounds if we assume the query
time is Q(n) +O(t logn), since that would automatically imply RAM lower bounds for data
structures with Q(n)/ logn+O(t) query time, something that is hopelessly impossible with
current techniques. However, when restricted to query time of Q(n) + O(t), the pointer-
machine model is an attractive choice and it has an impressive track record of proving lower
bounds that match the best known data structures up to very small factors, even when
compared to RAM data structures; we mention two prominent examples here. For the
fundamental simplex range reporting problem, all known solutions are pointer-machine data
structures [32, 11, 17] and the known pointer machine lower bounds match these up to an
no(1) factor [2, 16]. One can argue that it is difficult to use the power of RAM for simplex
range reporting problem. However, for the other fundamental orthogonal range reporting,
where it is easy to do various RAM tricks, the best RAM data structures save at most a
logn factor compared to the best known pointer machine solutions (e.g., see [3, 4, 12]). Also,
where cell-probe lower bounds cannot break the logn query barrier, very high lower bounds
are known for the orthogonal range reporting problem in the pointer machine model [3, 4, 14].

Known Frameworks. The fundamental limitation in the pointer machine model is that
starting from a memory cell v, one can visit at most 2` other memory cells using ` pointer

3 Many of the known solutions for various indexing problems use tree structures, such as suffix trees or
wavelet trees. While sometimes trees are can be encoded using bit-vectors with rank/select structures
on top, these tricks can only save polylogarithmic factors in space and query times.

ICALP 2016
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navigations. There are two known methods that exploit this limitation and build two different
frameworks for proving lower bounds.

The first lower bound framework was given by Bernard Chazelle [14, 16]. However, we
will need a slightly improved version of his framework that is presented in the following
lemma; essentially, we need a slightly tighter analysis on a parameter that was originally
intended as a large constant. Due to lack of space, the proof is only available in the full
version [5].

I Theorem 1. Let U be a set of n input elements and Q a set of queries where each query
outputs a subset of U . Assume there exists a data structure that uses S(n) space and answers
each query in Q(n) + αk time, where k is the output size. Assume (i) the output size of any
query q ∈ Q, denoted by |U ∩ q|, is at least t, for a parameter t ≥ Q(n) and (ii) for integers
` and β, and indices, i1, · · · , i`, |U ∩ qi1 ∩ · · · ∩ qi` | < β. Then, S(n) = Ω

(
|Q|t

`·2O(αβ)

)
.

The second framework is due to Afshani [2] and it is designed for “geometric stabbing
problems”: given an input set of n geometric regions, the goal is store them in a data
structure such that given a query point q, one can output the subset of regions that contain
q. The framework is summarized below.

I Theorem 2 ([2]). Assume one can construct a set of n geometric regions inside the d-
dimensional unit cube such that (i) every point of the unit cube is contained in at least t
regions 4, and (ii) the volume of the intersection of every β regions is at most v, for some
parameters β, t, and v. Then, for any pointer-machine data structure that uses S(n) space
and can answer geometric stabbing queries on the above input in time g(n) +O(k), where k is
the output size and g(·) is some increasing function, if g(n) ≤ t then S(n) = Ω(tv−12−O(β)).

These two frameworks are not easily comparable. In fact, for many constructions, often
only one of them gives a non-trivial lower bound. Furthermore, as remarked by Afshani [2],
Theorem 2 does not need to be operated in the d-dimensional unit cube and in fact any
measure could be substituted instead of the d-dimensional Lebesgue measure.

Our Techniques. Our first technical contribution is to use Theorem 2 in a non-geometric
setting by representing queries as abstract points under a discrete measure and each input
object as a range that contains all the matching query points. Our lower bound for the κ-GPI
problem and one of our WCI lower bounds are proved in this way. The second technical
contribution is actually building and analyzing proper input and query sets to be used in
the lower bound frameworks. In general, this is not easy and in fact for some problems it is
highly challenging5. Also see Section 5 (Conclusions) for a list of open problems.

In the rest of this article, we present the technical details behind our κ-GPI lower bound
and most of the details of our first WCI lower bound. Due to lack of space, the rest of the
technical details can be found in the full version [5].

We begin with the κ-GPI problem since it turns out for this particular problem we can
get away with a simple deterministic construction. For WCI, we need a more complicated
randomized construction to get the best result and thus it is presented next.

4 In [2] this is stated as “exactly t ranges” but the proof works with only a lower bound on t.
5 A good example is the classical halfspace range reporting problem where constructing proper input and

query sets has been a longstanding open problem; the current best lower bound uses a highly inefficient
reduction from the simple range reporting problem [2].
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2 Gapped Pattern Lower Bound

In this section we deal with the data structure version of the gapped pattern problem. The
input is a collection of κ-gapped patterns (typically called a dictionary), with total length n
(in characters). The goal is to store the input in a data structure such that given a document
of size D, one can report all the input gapped patterns that match the query. We focus on
special κ-gapped patterns that we call standard: a standard κ-gapped pattern in the form of
p1 {0, γ} p2 {0, γ} . . . {0, γ} pκ+1 where each pi is a string (which we call a subpattern) and γ
is an integer.

I Theorem 3. For κ = o( log logn
log log logn ) and in the pointer machine model, answering κ-GPI

queries in o
(

Dγκ

(2+2 logD)κ+1

)
+O(t) time requires nΩ(log1/(2κ) n) space.

To prove this theorem, we build a particular input set of standard κ-gapped patterns. We
pick the alphabet Σ = {0, 1,#}, and the gapped patterns only use {0, 1}. Each subpattern
in the input is a binary string of length p. The subpatterns in any gapped pattern are
in lexicographic order, and a subpattern occurs at most once in a pattern (i.e., no two
subpatterns in a pattern are identical). The input set, S, contains all possible gapped
patterns obeying these conditions. Thus, |S| =

( 2p
κ+1
)
. Each query is a text composed of

concatenation of D/(p + 1) substrings (for simplicity, we assume D/(p + 1) is an integer)
and each substring is in the form ’#{0, 1}p’. We restrict the query substrings to be in
lexicographic order and without repetitions (no two substrings in a query are identical). The
set of all query texts satisfying these constraints is denoted by Q. Thus, |Q| =

( 2p
D/(p+1)

)
.

I Lemma 4. For D ≥ 2κγ, any text T ∈ Q matches Θ
(

Dγκ

(p+1)κ+1

)
gapped patterns in S.

Proof. Consider a text T ∈ Q. To count the number of gapped patterns that can match
it, we count the different ways of selecting κ+ 1 positions that correspond to the starting
positions of a matching subpattern. Each position starts immediately after ’#’, with at
most γ characters between consecutive positions. Since D ≥ 2κγ, we have Θ(D/p) choices
for picking the first position, i.e., the starting position of a gapped pattern matching T .
After fixing the first match, there are at most γ/(p+ 1) choices for the position of the next
match between a subpattern and substring. However, if the first match happens in the first
half of text T , there are always γ/(p+ 1) choices for the position of each subpattern match
(since D ≥ 2κγ). Thus, we have Θ

(
Dγk/(p+ 1)κ+1) choices. As input subpatterns are in

lexicographically increasing order, different choices result in distinct gapped patterns that
match the query. J

To apply Theorem 2, we consider each query text T in Q as a “discrete” point with
measure 1/|Q|. Thus, the total measure of Q (i.e., the query space) is one and Q functions as
the “unit cube” within the framework of Theorem 2. We consider an input gapped pattern
P in S as a range that contains all the points of Q that match P . Thus, to apply Theorem 2,
we need to find a lower bound on the output size of every query (condition (i)) and an
upper bound on v, the measure of the intersection of β inputs (condition (ii)). By the
above lemma, meeting the first condition is quite easy: we pick t = Θ

(
Dγκ

(p+1)κ+1

)
(with the

right hidden constant). Later we shall see that p = 1 + 2 logD so this can be written as
t = Θ

(
Dγκ

(2+2 logD)κ+1

)
Thus, we only need to upper bound v which we do below.

I Lemma 5. Consider β patterns P1, · · · , Pβ ∈ S. At most
( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
texts in Q

can match all patterns P1, · · · , Pβ.
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Proof. Collectively, P1, · · · , Pβ must contain at least r = β1/(κ+1) distinct subpatterns:
otherwise, we can form at most

(
r

κ+1
)
< β different gapped patterns, a contradiction. This in

turn implies that any text T matching P1, · · · , Pβ must contain all these at least r distinct
subpatterns. Clearly, the number of such texts is at most

( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
. J

As the measure of each query in Q is 1/|Q|, by the above theorem, we have v ≤( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
/|Q|. We now can apply Theorem 2. Each pattern in the input has Θ(pκ)

characters and thus the total input size, n, is Θ(pκ|S|) = Θ(pκ
( 2p
κ+1
)
). By the framework,

and Lemmata 5 and 4, we know that the space usage of the data structure is at least

Ω

 Dγκ

(p+1)κ+1 ·

( 2p
D/(p+1)

)( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

) · 2−O(β)

 = Ω

1 ·
(

(p+ 1)2(p−1)

D

)β1/(κ+1)

· 2−O(β)


where to obtain the rightmost equation we expand the binomials, simplify, and constrain
β1/(κ+1) < 2p/2 to lower bound 2p − β1/(κ+1) with 2p−1. Now we work out the parameters.
We know that n = Θ(pκ

( 2p
κ+1
)
) = 2Θ(p(κ+1)); this is satisfied by setting p = cp(logn)/(κ+ 1)

for some constant cp. Observe that there is an implicit constraint on D and p: there
should be sufficient bits in the subpatterns to fill out a query with distinct subpatterns, i.e.
2p > D/(p+ 1); we pick D = ncD1/(κ+1) for some other constant cD such that D = 2p/2−1

and thus (p+ 1)2p−1/D = 2p/2. Using these values, the space lower bound is simplified to

Ω
(

2β
1/(κ+1) cp

2
logn
κ+1 · 2−cββ

)
where cβ is another constant. We now optimize the lower bound by picking β such that
cββ = 1

2β
1/(κ+1) cp

2
logn
κ+1 which solves to β = Θ(( logn

κ+1 )1+1/κ). Thus, for constant c, the space
complexity of the data structure is

Ω
(

2c(
logn
κ+1 )1+ 1

κ

)
= Ω

(
2logn·c log

1
κ n( 1

κ+1 )1+ 1
κ

)
= n

Ω
(

log
1
κ n( 1

κ+1 )1+ 1
κ

)
= n

Ω
(

log
1

2κ n

)
where the last part follows from κ = o(log logn/ log log logn).

3 Wild Card Indexing

In this section we consider the wild card indexing (WCI) problem and prove both space and
query lower bounds in the pointer machine model of computation. Note that our query lower
bound applies to an alphabet size of two (i.e., binary strings).

3.1 The Query Lower Bound
Assume for any input set of documents of total size n, we can build a data structure such
that given a WCI query of length m containing κ wild cards, we can find all the documents
that match the query in Q(n, κ) +O(m+ t) time, where t is the output size. Furthermore,
assume κ is a fixed parameter known by the data structure and that the data structure
consumes S(n, κ) space. Our main result here is the following.

I Theorem 6. If 3
√

logn ≤ κ = o(logn) and Q(n, κ) = O(2κ2 ), then S(n, κ) ≥ n1+Θ( 1
logκ ).

To prove the lower bound, we build a particular set of documents and patterns and prove
that if the data structure can answer the queries fast, then it must consume lots of space, for
this particular input, meaning, we get lower bounds for the function S(·). We now present
the details. We assume Q(n, κ) ≤ 2κ/2, as otherwise the theorem is trivial.
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Documents and patterns. We build the set of documents in two stages. Consider the set of
all bit strings of length m with exactly ` = κ/2 “1”s. In the first stage, we sample each such
string independently with probability r−1 where r = 2κ/3. Let D be the set of sampled strings.
In the second stage, for every set of ` + `′ indices, 1 ≤ i1 < i2 < · · · < i`+`′ ≤ m, where
`′ = (log` r)/2 = Θ(κ/ log κ), we perform the following operation, given another parameter
β: if there are more than β strings in D that have “1”s only among positions i1, · · · , i`+`′ ,
then we remove all such strings from D. Consequently, among the remaining strings in D,
“1”s in every subset of β strings will be spread over at least `+ `′ + 1 positions. The set of
remaining strings D will form our input set of documents. Now we consider the set P of all
the patterns of length m that have exactly κ wild cards and m− κ “0”s. We remove from P
any pattern that matches fewer than

(
κ
`

)
/(2r) documents from D. The remaining patterns

in P will form our query set of patterns. In the full version [5], we prove the following.

I Lemma 7. With positive probability, we get a set D of Θ(
(
m
`

)
/r) documents and a set P

of Θ(
(
m
κ

)
) patterns such that (i) each pattern matches Θ(

(
κ
`

)
/r) documents, and (ii) there

are no β = Θ(logκm) documents whose “1”s are contained in a set of `+ `′ indices.

To prove the lower bound, we use Theorem 2. We use a discrete measure here: each
pattern is modelled as a “discrete” point with measure 1

|P| , meaning, the space of all patterns
has measure one. Each document forms a range: a document di contains all the patterns
(discrete points) that match di. Thus, the measure of every document di ∈ D is ti/|P|, where
ti is the number of patterns that match di. We consider the measure of the intersection
of β documents (regions) d1, . . . , dβ . By Lemma 7, there are ` + `′ indices where one of
these documents has a “1”; any pattern that matches all of these documents must have a
wild card in all of those positions. This means, there are at most

(
m−`−`′
κ−`−`′

)
patterns that

could match documents d1, . . . , dβ . This means, when we consider documents as ranges,
the intersection of every β documents has measure at most

(
m−`−`′
κ−`−`′

)
/|P| which is an upper

bound for parameter v in Theorem 2. For the two other parameters t and g(n) in the
theorem we have, t = Θ(

(
κ
`

)
/r) (by Lemma 7) and g(n) = Q(n, κ) + O(m). To obtain a

space lower bound from Theorem 2, we must check if g(n) ≤ t = Θ(
(
κ
`

)
/r). Observe that(

κ
`

)
=
(
κ
κ/2
)
≥ 2κ/κ since the binomials

(
κ
i

)
sum to 2κ for 0 ≤ i ≤ κ and

(
κ
κ/2
)
is the largest

one. As r = 2−κ/3, we have t = Ω(2κ2−κ/3/κ) = ω(2κ/2) = ω(Q(n, k)). However, g(n) also
involves an additive O(m) term. Thus, we must also have t = ω(m) which will hold for our
choice of parameters but we will verify it later.

By guaranteeing that g(n) ≤ t, Theorem 2 gives a space lower bound of Ω(tv−12−O(β)).
However, we would like to create an input of size Θ(n) which means the number of sampled
documents must be Θ(n/m) and thus we must have

(
m
`

)
/r = Θ(n/m). As m = ω(κ), it

follows that
(
m
`

)
= (Θ(1)m/`)`. Thus, (Θ(1)m/`)` = Θ(rn/m). Thus, we have that

v−1 ≥ |P |(
m−`−`′
κ−`−`′

) ≥ Θ
((
m
κ

))(
m−`−`′
κ−`−`′

) = Θ(1) ·
m!

κ!(m−κ)!
(m−`−`′)!

(κ−`−`′)!(m−κ)!

≥ Θ(1) · m
`+`′

(2κ)`+`′ = Θ(1) · n
mΘ(1)κ ·

(m
2κ

)`′
where the last step follows from (Θ(1)m/`)` = Θ(rn/m), r = 2κ/3 and ` = κ/2.

Now we bound m in terms of n. From (m/(2κ))` = n
mcκ we obtain that m = κ`/(`+1) ·

n1/(`+1)/Θ(1)κ = n2/(κ+2)/Θ(1)κ. Remember that `′ = Θ(κ/ log κ). Based on this, we
get that v−1 = n · nΘ(1/ logκ)/Θ(1)κ and since κ = o(logn/ log logn) the Θ(1)κ term is
dominated and we have v−1 = n · nΘ(1/ logκ). It remains to handle the extra 2−O(β) factor
in the space lower bound. From Lemma 7, we know that β = c logκm. Based on the value
of m, this means β = Θ(logn/(κ log κ)) which means 2−O(β) is also absorbed in nΘ(1/ logκ)
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factor. It remains to verify one last thing: previously, we claimed that we would verify that
t = ω(m). Using the bound t = ω(2κ/2) this can be written as 2κ/2 = ω(m) which translates
to κ/2 = (2 logn)/(κ+ 2) + ω(1) which clearly holds if κ ≥ 3

√
logn.

3.2 The Space Lower Bound
The details of our space lower can be found in the full version [5], where we prove the
following.

I Theorem 8. labelthm:wcis Any pointer-machine data structure that answers WCI
queries with κ wild cards in time Q(n) + O(m + t) over an input of size n must use

Ω
(
n
κΘ
(

logQ(n) n

κ

)κ−1
)

space, as long as κ < logQ(n) n, where t is the output size, and

m is the pattern length.

Refer to the introduction for a discussion of the consequences of these lower bounds.

4 Two Pattern Document Indexing and Related Problems

Due to lack of space we only state the primary results for 2P, FP, 2FP, and SI. The proofs
for Theorems 9 and 10 can be found in the full version [5].

I Theorem 9. Any data structure on the Pointer Machine for the 2P, FP, 2FP, and SI
problems with query time Q(n) and space usage S(n) must obey S(n)Q(n) = Ω

(
n2−o(1)).

Also, if Q(n, k) = O((nk)1/2−α + k) for a constant 0 < α < 1/2, then S(n) =
Ω
(
n

1+6α
1+2α−o(1)

)
.

The above theorem is proved using Theorem 1 which necessitates a randomized construc-
tion involving various high probability bounds. Unlike our lower bound for κ-GPI we were
unable to find a deterministic construction that uses Theorem 2.

We also prove the following lower bound in the semi-group model which addresses the
difficulty of the counting variants of 2P and the related problems.

I Theorem 10. Answering 2P, FP, 2FP, and SI queries in the semi-group model requires
S(n)Q2(n) = Ω(n2/ log4 n).

5 Conclusions

In this paper we proved unconditional and high space and query lower bounds for a number
of problems in string indexing. Our main message is that the pointer machine model remains
an extremely useful tool for proving lower bounds, that are close to the true complexity
of many problems. We have successfully demonstrated this fact in the area of string and
document indexing. Within the landscape of lower bound techniques, the pointer machine
model, fortunately or unfortunately, is the only model where we can achieve unconditional,
versatile, and high lower bounds and we believe more problems from the area of string and
document indexing deserve to be considered in this model. To this end, we outline a number
of open problems connected to our results.
1. Is it possible to generalize the lower bound for 2P to the case where the two patterns are

required to match within distance γ? This is essentially a "dual" of the 1-GPI problem.
2. Recall that our space lower bound for the WCI problem (Subsection 3.2) assumes that

the query time is independent of the alphabet size σ. What if the query is allowed to
increase with σ?
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3. Our query lower bound for the WCI (Subsection 3.1) is proved for a binary alphabet.
Is it possible to prove lower bounds that take σ into account? Intuitively the problem
should become more difficult as σ increases, but we were unable to obtain such bounds.

4. We require certain bounds on κ for the WCI problem. Is it possible to remove or at least
loosen them? Or perhaps, can the upper bounds be substantially improved?

5. What is the difficulty of the κ-GPI problem when κ is large?
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on the RAM, revisited. In Symposium on Computational Geometry (SoCG), pages 1–10,
2011.

ICALP 2016

http://dx.doi.org/10.1145/2261250.2261299
http://arxiv.org/abs/1604.06264
http://arxiv.org/abs/1604.06264
http://arxiv.org/abs/1503.07563
http://arxiv.org/abs/1503.07563


93:14 Data Structure Lower Bounds for Document Indexing Problems

13 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 31–40,
2015.

14 Bernard Chazelle. Lower Bounds for Orthogonal Range Searching: I. The Reporting Case.
J. ACM, 37(2):200–212, 1990.

15 Bernard Chazelle. Lower Bounds for Orthogonal Range Searching II. The Arithmetic Model.
J. ACM, 37(3):439–463, 1990.

16 Bernard Chazelle and Burton Rosenberg. Simplex Range Reporting on a Pointer Machine.
Comput. Geom., 5:237–247, 1995.

17 Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8:407–429, December 1992.

18 Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching. Theor.
Comput. Sci., 411(40-42):3795–3800, 2010.

19 Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse graph.
http://arxiv.org/abs/1006.1117, 2010.

20 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 91–100, 2004.

21 Paul F. Dietz, Kurt Mehlhorn, Rajeev Raman, and Christian Uhrig. Lower bounds for set
intersection queries. Algorithmica, 14(2):154–168, 1995.

22 Paolo Ferragina, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Two-dimensional
substring indexing. Journal of Computer and System Sciences, 66(4):763–774, 2003. Special
Issue on PODS 2001.

23 Johannes Fischer, Travis Gagie, Tsvi Kopelowitz, Moshe Lewenstein, Veli Mäkinen, Leena
Salmela, and Niko Välimäki. Forbidden patterns. In LATIN 2012: Theoretical Informatics
– 10th Latin American Symposium, Arequipa, Peru, April 16-20, 2012. Proceedings, pages
327–337, 2012.

24 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. String Re-
trieval for Multi-pattern Queries. In String Processing and Information Retrieval – 17th
International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceed-
ings, pages 55–66, 2010.

25 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Document
Listing for Queries with Excluded Pattern. In Combinatorial Pattern Matching – 23rd
Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceedings, pages 185–
195, 2012.

26 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Word-packing
algorithms for dynamic connectivity and dynamic sets. http://arxiv.org/abs/1407.6755,
2014.

27 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. http://arxiv.org/abs/1407.6756, 2016.

28 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1272–1287, 2016.

29 Kasper Green Larsen, J. Ian Munro, Jesper Sindahl Nielsen, and Sharma V. Thankachan.
On Hardness of Several String Indexing Problems. In Combinatorial Pattern Matching
– 25th Annual Symposium, CPM 2014, Moscow, Russia, June 16-18, 2014. Proceedings,
pages 242–251, 2014.

30 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less
space: Indexing for queries with wildcards. Theoretical Computer Science, 557:120–127,
2014.



P. Afshani and J. S. Nielsen 93:15

31 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing
for wildcard pattern matching. CoRR, abs/1401.0625, 2014. URL: http://arxiv.org/
abs/1401.0625.

32 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computa-
tional Geometry, 10(2):157–182, 1993.

33 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002.
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