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Abstract
Timed automata, and machines alike, currently lack a general mathematical characterisation. In
this paper we provide a uniform coalgebraic understanding of these devices. This framework
encompasses known behavioural equivalences for timed automata and paves the way for the
extension of these notions to new timed behaviours and for the instantiation of established results
from the coalgebraic theory as well. Key to this work is the use of lax functors for they allow
us to model time flow as a context property and hence offer a general and expressive setting
where to study timed systems: the index category encodes “how step sequences form executions”
(e.g. whether steps duration get accumulated or kept distinct) whereas the base category encodes
“step nature and composition” (e.g. non-determinism and labels). Finally, we develop the notion
of general saturation for lax functors and show how equivalences of interest for timed behaviours
are instances of this notion. This characterisation allows us to reason about the expressiveness
of said notions within a uniform framework and organise them in a spectrum independent from
the behavioural aspects encoded in the base category.
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1 Introduction

Timed automata, and machines alike, are abstract devices used in the modelling and
verification of real-time dynamical systems and recipients of much attention, both in terms of
theoretical and practical developments [2, 17, 9, 19]. Despite decades long efforts, a general
and mathematical characterisation of all these devices is missing. A uniform account of these
formalisms would provide guidelines for developing new kinds of timed systems starting from
existing notions of computations and, from a more foundational point of view, would allow a
cross-fertilizing exchange of definitions, notions, and techniques.

The theory of coalgebras has been recognized as a good context for the study of concurrent
and reactive systems [22]: systems are represented as maps of the form X → BX for some
suitable behavioural functor B. By changing the underlying category and functor a wide
range of cases are covered, from traditional LTSs to systems with I/O, quantitative aspects,
probabilistic distribution, and even systems with continuous state. Frameworks of this kind
provide great returns from a theoretical and a practical point of view, since they prepare the
ground for general results and tools which can be readily instantiated to various cases, and
moreover they help us to discover connections and similarities between apparently different

© Tomasz Brengos and Marco Peressotti;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:t.brengos@mini.pw.edu.pl
mailto:marco.peressotti@uniud.it
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 A Uniform Framework for Timed Automata

strong timed
bisimulation

weak timed
bisimulation

strong time-abstract
bisimulation

weak time-abstract
bisimulation

T∗ T

1∗ 1

εT

ε1

!∗T !T

combines unobservable moves

ab
st
ra
ct
s
tim

e

Figure 1 Monoid morphisms and the corresponding spectrum of behavioural equivalences.

notions. Among the several valuable results offered by the coalgebraic approach we mention
general accounts of bisimulation [1, 26], structural operational semantics [27, 21], trace
equivalence [12], minimization [3], determinisation [23] and up-to techniques [4].

Recent works [8, 6, 7] extended the theory of coalgebras with a general understanding
of coalgebras with unobservable moves and their weak bisimulations. As shown in loc. cit.
systems with internal steps should be modelled as coalgebras whose type is a monad. This
allows us to view coalgebras as endomorphisms in suitable Kleisli categories, hence, allowing
mutual composition. At the heart of weak bisimulation of such systems lies the notion of
saturation. Intuitively, it can be understood as a reflexive and transitive closure of a system.
Already, at this coalgebraic level, the so-called lax functors start to emerge. Indeed, the
reflexive and transitive morphisms can be seen as lax functors whose domain category is
the terminal category [7]. Additionally, the results of [6] demonstrate that the coalgebraic
saturation arises as a consequence of an adjoint situation between certain two categories of
lax functors. All these observations suggest that lax functors and adjunctions between lax
functor categories lie at the heart of different behavioural equivalences that take into account
accumulation and abstraction of certain portions of data.

In this paper we embrace and extend the lax functorial setting as a general environment
where to model systems dynamics. In the approach we propose:

the index category models those aspects of the computations under scrutiny associated
with the computation context, like time flow;
the base category models effects like non-determinism or unobservable moves.

Because systems considered in this work have a flat1 state space we can safely restrict to
index categories with one object i.e. monoids.

We extend the theory of saturation by allowing for monoid homomorphisms whose
codomain is not the final one-object monoid thus introducing the so called general saturation
(for lax functors on a monoid category). This theory extends the uniform definition of strong
and weak behavioural equivalences given by (simple) saturation offering a greater control
of which computational aspects are abstracted away. The resulting notion of behavioural
equivalence is parameterised by monoid congruences and naturally forms a spectrum reflecting
their discriminating power. This spectrum reflects the inclusion ordering on congruences with
coarser congruences yielding coarser notions of behavioural equivalence. This remarkable
correspondence allows for reasoning about the expressiveness of these definitions by means of
simple diagrams of monoid homomorphisms (cf. Figure 1). Besides from finer to coarser, this
spectrum can be organised along two orthogonal dimensions which intuitively correspond to:

1 We say that a class of systems has flat state spaces when there are no archetypal rôles associated to
states that prescribe restrictions on their possible behaviours, as opposed i.e., to alternating games.
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collecting effects modelled in the base category (e.g. τ -actions) and
abstracting from aspects modelled in the index category (e.g. time).

The former is determined by the counit ε : (−)∗ → Id of the free-monoid adjunction whereas
the latter by arbitrary monoid morphisms and their extension to free monoids as exemplified
by the inner diagram in Figure 1.

Synopsis and related work Our paper is closely related to the research presented in
[5, 7, 8, 6] with the emphasis laid on [6]. Indeed, Brengos’ [6], which is highly motivated
by Sobociński’s work on relational presheaves (i.e. lax functors whose codomain category
is the category of sets and relations) and their saturation [25], presents the lax functorial
framework as a natural extension of coalgebraic weak bisimulation and saturation studied
in [7, 8]. The main focus of [6] is on lax functorial weak bisimulation and reflexive and
transitive saturation. It is worth mentioning that in loc. cit. the author already pointed out
that timed transition systems and their weak behavioural equivalence can be modelled in the
lax functorial setting. Our paper extends these results in a systematic way by:

describing the categorical framework which pinpoints the relation between timed automata
and their semantics (Section 2.2),
presenting the concept of general saturation and the family of behavioural equivalences
associated with it (Section 2.3),
capturing a much wider spectrum of language and behavioural equivalences (Section 3).

2 A coalgebraic account of timed automata and their semantics

In this section we introduce a general framework for timed automata and systems alike.
The key ingredient is to separate time flow from other aspects of the computation (like
non-determinism) and model the dependency of the latter from the former by means of
(lax) functors. We remark that, although we use timed automata as a reference example,
this framework can accommodate any notion of resources and effects as long as they can be
modelled by some monoid M and by a (suitably enriched) category K, respectively.

We assume the reader to be familiar with basic 1-category and 2-category theory notions
and refer to [20, 18] for a thorough introduction.

2.1 Unobservable moves, acceptance and non-determinism
The behaviour associated to the classical notion of timed automata arise from non-determ-
inism, unobservable moves, and acceptance with the latter being relevant when language
equivalence is considered. All these computational effects are described briefly below and are
captured by Kleisli categories of well-known monads we will use as running examples.

The first example we discuss is the powerset monad P whose Kleisli category Kl(P)
consists of sets as objects and maps of the form X → PY as morphisms between X and Y
and, for each f : X → PY and g : Y → PZ, the composite g ◦ f : X → PZ is:

g ◦ f(x) =
⋃
g(f(x)) = {z | z ∈ g(y) and y ∈ f(x)}.

Let Στ , Σ+{τ}. The Set-endofunctor PΣ , P(Στ×Id) whose coalgebras model labelled
transition systems with unobservable moves [22] is a monad [7], herein the LTS monad. The
Kleisli category Kl(PΣ) has sets as objects and maps X → P(Στ × Y ) as morphisms from
X to Y . For f : X → PΣ(Y ) and g : Y → PΣ(Z) the composite g ◦ f ∈ Kl(PΣ) is

g ◦ f(x) = {(σ, z) | x σ−→f y
τ−→g z or x τ−→f y

σ−→g z},

CONCUR 2016



26:4 A Uniform Framework for Timed Automata

where x σ−→f y denotes (σ, y) ∈ f(x). The above Kleisli category (see [7, 8] for a discussion)
lets us consider non-deterministic systems with unobservable moves (a.k.a. τ -actions) as
endomorphisms and allows their mutual composition. We refer the interested reader to [5, 7]
for further details on how to extend other computational effects besides non-determinism
with unobservable moves.

Finally, the endofunctor PΣ
X , P(Στ × Id+ {X}) whose coalgebras model the behaviour

of non-deterministic automata with ε-moves (or ε-NA in short) [11, 24] also carries a monadic
structure [7, Example 4.5] (here and in loc. cit., the label ε is represented by the label τ).
The composition in its Kleisli category is given as follows. For two morphisms f : X → PΣ

X(Y )
and g : Y → PΣ

X(Z) the value of their composition g ◦ f in Kl(PΣ
X) on x ∈ X is:

{(σ, z) | x σ−→f y
τ−→g z or x τ−→f y

σ−→g z} ∪ {X | X ∈ f(x) or x τ−→f y and X ∈ g(y)}.

Morphisms of this category model non-deterministic computations with unobservables and
accepting states (for a morphism f : X → PΣ

XY any such state x ∈ X is specified by X ∈ f(x),
which we will often denote as x ↓). It is important to note that PΣ is a submonad of PΣ

X.
However, since the terminating states in classical timed automata and their semantics are
an extra feature [2] we decide to consider these two examples of monads separately. Indeed,
the Kleisli category for the LTS monad will be our main example throughout Section 2.2,
2.3 and 3.1. Our focus will move onto Kl(PΣ

X) in Section 3.2, where we discuss finite trace
equivalence and sets of accepted words.

The essence of non-determinism of these three examples lies in the fact that their Kleisli
categories are suitably order enriched in a natural point-wise manner:

f ≤ g 4⇐⇒ f(x) ⊆ g(x) ∀x ∈ X

with their hom-posets admitting arbitrary joins. Composition in Kl(P) and Kl(PΣ) preserves
them, whereas in Kl(PΣ

X) it only preserves non-empty ones [7]. Joins of morphisms, which
abstractly model non-deterministic choice, will play a key rôle in saturation.

I Remark. It is an easy exercise to prove that these three Set-based monads are commutative
strong monads [16]. It means that the monoidal structure (Set,×, 1) extends to all three
Kleisli categories above in a natural manner.

2.2 Timed automata in K and their semantics
Recall from [2] that a timed automaton, a.k.a. time transition table, over an alphabet Σ
and with access to C-many clocks is essentially a set of locations L and a relation on source
and target locations, symbols, and expressions for describing clock constraints and resets.
However, the actual semantics of clock expressions is not part of the definition of timed
transition tables but rather of their semantics as timed transition systems (herein TTS)
which is covered below. Hence, a timed automaton is essentially a morphism L→ E ⊗ L in
K = Kl(T ) (where T is PΣ

X or PΣ, depending whether acceptance is necessary, and ⊗ is ×)
or, more generally, a (E ⊗ Id)-coalgebra for some given object of (clock) expressions E ∈ K
for a monoidal category (K,⊗, I).

The interaction between timed automata and time flow is mediated by (a fixed and
finite set of) clocks which an automaton can interact with by means of the clock expressions
associated to its transitions. Clocks can be abstracted as an object V ∈ K representing clock
configurations (a.k.a. clock valuations) together with:

a morphism eval : V ⊗ E → V specifying the effect of expressions and
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a T-indexed family {flowt : V → V}t∈T describing the effect of time flow and such that
flow0 = idV and, for all t, t′ ∈ T, flowt+t′ = flowt ◦ flowt′ with T = (T,+, 0) being the
monoid of time, e.g. T = ([0,∞),+, 0).

In the case of timed automata (with clocks in C) the object of configurations is the set V of all
functions v : C → T and the object of expressions is the set E of pairs (γ, δ) where γ is a subset
of C and δ is a syntactic expression generated by the grammar δ ::= c ≤ r | r ≤ c | ¬δ | δ ∧ δ
where c is a clock and the r is a non-negative rational number (cf. [2, Def. 3.6]).

I Example 2.1. Consider the timed transition table from [2, Ex. 3.4] depicted below:
where > can be seen as a short hand for 0 ≤ c which is always satisfied.
Let C = {c} and Σ = {σ, θ}. Intuitively, the edge from l to l′ describes a
transition that can be performed provided the input character is σ and resets
c as its side effect. The other transition assumes c < 2 input θ and does not

l l′

>; {c}; σ

c < 2; ∅; θ
reset c. This automaton is equivalent to the E ⊗ Id-coalgebra α on {l, l′} such that:

α(l) = {(σ, (({c},>), l′))} α(l′) = {(θ, ((∅, c < 2), l))}.

Time flow is given, on t ∈ T, as flowt(v) = {(τ, λc : C.v(c) + t)} and expression evaluation as

eval(v, (γ, δ)) =
{
{(τ, v[γ := 0])} if v � δ
∅ otherwise

where v[γ := 0](c) =
{

0 if c ∈ γ
v(c) otherwise

and v � δ is the obvious interpretation of the boolean expression obtained by replacing every
c in δ with v(c).
I Remark. At a first glance τs and singletons may sound strident, especially given how the
semantics of timed automata is presented in [2]. However, their meaning is precise and plays
a crucial rôle in capturing how eval and flow interact with timed automata in defining their
semantics as timed transition systems—as will be made clear below. In fact, they arise from
the unit of PΣ meaning that when composed the only computational effect (modelled in K
and) carried by eval and flow is to prevent the firing of any transition not enabled by the
current clock configuration.

Given the semantics for expressions and (time) flow, every timed automaton yields a timed
transition system (TTS) that is a transition system with labels2 in Στ × T or, equivalently, a
T-indexed family of LTSs i.e. endomorphisms in K = Kl(PΣ):

X → P(Στ × T×X)
T→ P(Στ ×X)X

Albeit the two presentations are equivalent for TTSs, we adopt the latter since:
As noted in [17], the correspondence does not hold for arbitrary timed behaviours e.g.
the convex-set semantics of Segala systems assume probability distribution supports to
be (finitely) bounded (cf. [5, 13]) whereas a single entry of a timed transition table can
easily yield uncountably many transitions in the associated TTS.
Time flow is an aspect of the computational context instead of an observation and
the latter representation allows us to separate the rôle of time from non-deterministic
computations modelled in the base category K—along the lines of the lax functor approach.

2 The definition of TTS may vary: some authors (e.g. [2]) consider transitions to be labelled by pairs (σ, t)
of consumed symbols and time (durations) whereas others (e.g. [19]) consider “duration-less” discrete
transitions (i.e. labelled by σ ∈ Σ) and “symbol-less” time transitions (i.e. labelled by t ∈ (0,∞)). By
introducing a distinguished symbol τ the two approaches are uniformly covered by a single model where
labels are pairs in Στ ×T; duration-less and symbol-less transitions become (σ, 0) and (τ, t), respectively.
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26:6 A Uniform Framework for Timed Automata

In general, given eval and flow, every E ⊗Id-coalgebra, i.e. every morphism α : L→ E⊗L
in K induces its semantics, i.e. a T-indexed family {αt : V ⊗ L → V ⊗ L}t∈T where each
endomorphism αt ∈ K is defined as:

V ⊗ L V ⊗ E ⊗ L V ⊗ L

αt

flowt ⊗ α eval⊗ idL

From the definition of αt it is clear how any computational effect described by eval and flow
interact with α. In particular, when K = Kl(PΣ) and α models a timed automaton, the
above definition readily expands as follows:

αt(v, l) = {(σ, v′, l′) | (σ, (γ, δ), l′) ∈ α(l), vt = λc.v(c)+ t, vt � δ, and v′ = vt[γ := 0]} (1)

highlighting the contribution of effects in the definition of expression and flow semantics for
timed automata. Clearly, (1) precisely defines the timed transition system associated to the
given automaton α. This correspondence can be easily checked when the presentation from
[2] is used: consider the LTS with labels in Στ × T given by

(v, l) (σ,t)−−−→ (v′, l′) 4⇐⇒ (σ, v′, l′) ∈ αt(v, l)

then recall from [2, Def. 3.8] that

(l, v) (σ,t)−−−→ (l′, v′) 4⇐⇒ ∃(l, δ, γ, σ, l′) ∈ Tα s.t. v + t � δ and v′ = (v + t)[γ := 0]

where Tα ⊆ (L, E ,Σ, L) is the automaton transition table (cf. [2, Def. 3.7]) and

(l, δ, γ, σ, l′) ∈ Tα ⇐⇒ (σ, (γ, δ), l′) ∈ α(l).

I Example 2.2. Let α be the coalgebra from Example 2.1, then:

αt(v, l) = {(σ, (v + t)[c := 0], l′)} αt(v, l′) = {(θ, (v + t), l) | (v + t) < 2}.

Although flowt+t′ = flowt◦flowt′ we can derive neither αt+t′ ≤ αt◦αt′ nor αt+t′ ≥ αt◦αt′ .
This can be routed to clock constraints being as fine grained as being able to single out
exact time instants (e.g. c = 42) and hence the semantics cannot preserve (not even up-to
laxness) the action of time described by flow. Indeed, the notion of TTS does not assume
any condition on the time component of transitions (cf. [2, 17]) and the associated notion of
execution (or run) maintains transition duration distinct.

There is a 1-1 correspondence between families {αt}t∈T and (strict) functors α : T∗ → K:

αt1...tn = αt1 ◦ . . . ◦ αtn for t1 . . . tn ∈ T∗

where the free monoid T∗ is seen as a single object category: each αt is α(t) for t : ∗ → ∗
and the shared carrier is α(∗). In order to better illustrate the rôle of the free monoid let
T be the trivial monoid 1 = ({0},+, 0) and recall that 1∗ ∼= N: a functor α : 1∗ → K is
an endomorphism in K together with all its finite self-compositions (i.e. α(n) = αn). As
observed in [6] this precisely puts coalgebras with unobservable moves into the (lax) functorial
picture as they are endomorphisms in the Kleisli categories for their type monads.

So far we modelled the semantics of timed automata as families of transition systems
indexed over time durations i.e. strict functors from T∗ to K. This setting is enough to
define “timed” behavioural equivalences by componentwise extension of the “untimed” notion
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but, however intuitive it may be, its limited applicability become clear as soon as weak or
time-abstract bisimulations are considered. In such cases lax functors have to be considered.

In fact, all these notions share a certain pattern: they combine computations abstracting
time or unobservable moves (i.e. effects). Since computations of a timed automaton α are
described by a functor α : T∗ → K, these transformations can be intuitively understood as
“turning a functor T∗ → K into some functor-like assignment with a different base category”.
In the remaining of the section we develop a general theory of such transformations we will
refer to as saturations.

2.3 General saturation for lax functors
In this section we extend the theory of saturation developed in [7, 8, 6] for modelling weak
behavioural equivalences for systems with unobservable moves to cope with time in the
abstract sense described above. Intuitively, saturation can be understood as a closure of
a given system w.r.t. a certain pattern (e.g. reflexive and transitive closure). Akin to
loc. cit., the theory is developed in an order enriched setting where the order stems from
suitable notion of simulation and non-determinism between systems and provides a notion of
approximation between the intermediate steps of the aforementioned closure operation. For
timed automata, the ordering is given by pointwise extension of the inclusion order defined
by P (cf. loc. cit.).

Below we assume J is a wide subcategory of an order enriched category K (i.e. a
subcategory with all objects from K).

The category of lax functors

Here we focus on recalling the main notions from the theory of order enriched categories and
lax functors needed in our paper.

A functor-like assignment π from a category D to K is called lax functor if:
idπD ≤ π(idD) for any object D ∈ D,
π(d1) ◦ π(d2) ≤ π(d1 ◦ d2) for any two composable morphisms d1, d2 ∈ D.

Let π, π′ : D → K be two lax functors. A family f = {fD : πD → π′D}D∈D of morphisms
in K is called lax natural transformation from π to π′ if for any d : D → D′ in D we have
fD′ ◦ π(d) ≥ π′(d) ◦ fD. Oplax functors and oplax transformations are defined by reversing
the order in the above. Note that in the more general 2-categorical setting an (op)lax functor
and an (op)lax natural transformation are assumed to additionally satisfy extra coherence
conditions [18]. In our setting of order enriched categories these conditions are vacuously
true, hence we do not list them here.

Let D be a small category. By [D,K]J we denote the category whose objects are lax
functors from D to K and whose morphisms are oplax transformations with components
from J . The category [D,K]J is order enriched with the order on hom-sets given as follows.
For π, π′ ∈ [D,K]J and two oplax transformations f, f ′ : π → π′ whose components are
morphisms in J we define:

f ≤ f ′ ⇐⇒ fD ≤ f ′D in K for any D ∈ D.

Any functor q : D → E between small categories induces the change-of-base functor
[q,K]J : [E,K]J → [D,K]J which is given for any object π ∈ [E,K]J and for any oplax
transformation f = {fE : π(E) → π′(E)}E∈E between π, π′ ∈ [E,K]J by [q,K]J(π) = π ◦ q
and [q,K]J(f)D = fq(D).

CONCUR 2016



26:8 A Uniform Framework for Timed Automata

To keep the paper more succinct, we only focus on D being a monoid category (i.e. a
one-object category). In this case, a monoid M = (M, ·, 1) will be often associated with the
one-object category it induces. The only object of the categoryM will be denoted by ∗ and the
composition ◦ of morphisms m1,m2 : ∗ → ∗ for m1,m2 ∈M is given by: m1 ◦m2 = m1 ·m2.
In this case, any lax functor π ∈ [M,K]J is a family π = {π(m) = πm : X → X}m∈M of
endomorphisms in K with a common carrier X = π(∗) which additionally satisfies [6]:

idX ≤ π1 and πm ◦ πn ≤ πm·n.

An oplax transformation between two lax functors π = {πm : X → X}m∈M and π′ =
{π′m : Y → Y }m∈M in [M,K]J is given in terms of an arrow f : X → Y in J which satisfies:

f ◦ πm ≤ π′m ◦ f for any m ∈M .

The curious reader is referred to [6] for several examples of these categories.

General saturation

For a functor q : M → N between monoid categories for (M, ·, 1) and (N, ·, 1) (i.e. a monoid
homomorphism) and an order enriched category K we say that K admits q-saturation provided
that [q,K]J : [N,K]J → [M,K]J admits a left strict 2-adjoint. In order to prove q-saturation
admittance below, we work with stronger types of order enrichment on K. We will introduce
them now. We say that K is DCpo∨-enriched if it is DCpo-enriched (i.e. each hom-set is a
complete order with directed suprema being preserved by the composition) and, additionally,
each hom-set admits binary joins (which are not assumed to be preserved by the composition).
A DCpo∨-enriched category K is J-left distributive if f ◦ (g ∨ h) = f ◦ g ∨ f ◦ h for any maps
f ∈ J and g, h ∈ K with suitable domains and codomains. We define J-right distributivity
dually. Finally, we say that K is J-distributive if it is both, J-left and J-right distributive.

I Theorem 2.3. Let q : M → N be a surjective homomorphism and K be J-left distributive
(hence DCpo∨-enriched). Then K admits q-saturation with the left strict 2-adjoint Σq :
[M,K]J → [N,K]J given as the identity on morphisms and on any lax functor π ∈ [M,K]J as

Σq(π)(∗) = π(∗) and Σq(π)w =
∨

Πw

where w ∈ N , Πw =
⋃
n∈N Πw,n, Πw,0 = {πm1 ∨ . . . ∨ πmk

| q(mi) = w}, and Πw,n =
{t1 ∨ t2 ∨ . . . ∨ tk | ti ∈ Πw1,n−1 ◦ . . . ◦Πwl,n−1 and w1 . . . wl = w}.

Proof. Firstly we show that Σq(π) is a well defined lax functor in [N,K]J . Note that the
family {Πw,n}n∈N is an ascending family of sets and Πw is, by surjectivity of q, a non-empty
directed set. Moreover, Πw ◦Πw′ ⊆ Πw·w′ for any w,w′ ∈ N . We have id ≤

∨
Π1 ≤ Σq(π)1

and

Σq(π)w ◦ Σq(π)w′ =
∨

Πw ◦
∨

Πw′ =
∨

Πw ◦Πw′ ≤
∨

Πw·w′ = Σq(π)w·w′ .

This proves the first statement. Now, we will verify that any oplax transformation in [M,K]J
is mapped onto an oplax transformation in [N,K]J . Assume f ◦ πm ≤ π′m ◦ f for any m ∈M .
We have f ◦Σq(π)w = f ◦

∨
Πw =

∨
f ◦Πw≤

∨
Π′w ◦ f = Σq(π′)w ◦ f , which follows by J-left

distributivity, induction and Scott continuity of the composition.
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To complete the proof we have to show that for any lax functor π ∈ [M,K]J and
π′ ∈ [N,K]J the poset [M,K]J(π, [q,K](π′)) is isomorphic to [N,K]J(Σq(π), π′). Indeed:

f ◦ πm ≤ π′q(m) ◦ f for any m ∈M (†)⇐⇒

f ◦ (πm1 ∨ . . . ∨ πmk
) ≤ π′q(m) ◦ f for any m,m1 . . .mk ∈M and q(mi) = q(m) ⇐⇒

∀m ∈M,f ◦
∨

Πq(m),0 ≤ π′q(m) ◦ f
(††)⇐⇒ ∀m ∈M, ∀n ∈ N, f ◦

∨
Πq(m),n ≤ π′q(m) ◦ f

⇐⇒ ∀m ∈M,f ◦
∨

Πq(m) ≤ π′q(m) ◦ f ⇐⇒ ∀m ∈M,f ◦ Σq(π)q(m) ≤ π′q(m) ◦ f.

The equivalence (†) follows by J-left distributivity of K and (††) by induction on n ∈ N. J

If K comes equipped with an even stronger type of order enrichment then the formula for Σq
simplifies considerably. Indeed, we have the following (see also [6, Th. 3.14]).

I Theorem 2.4. If the hom-posets of K admit arbitrary non-empty suprema which are
preserved by the composition then for any π ∈ [M,K]J we have:

Σq(π)w =
∨

m:q(m)=w

πm.

Proof. It follows by the fact that in this case we have Πw = Πw,0. Hence, Σq(π)w =
∨

Πw =∨
Πw,0 =

∨
m:q(m)=w πm. J

I Remark. The notion of lax functorial saturation has already been considered in [6] whenever
N = 1 is the one-element monoid and q : M → 1 the unique homomorphism sending all
elements of M to the neutral element of 1. In that case it was simply called saturation and
was shown to be directly linked to the notion of coalgebraic weak bisimulation.

In the remaining of this subsection we take q1 : M → N1, q2 : N1 → N2 and q : M → N

to be monoid homomorphisms and K to be J-left distributive (hence DCpo∨-enriched).

I Theorem 2.5. The functor Σq2 ◦ Σq1 is (naturally isomorphic to) Σq2◦q1 .

Proof. This statement follows directly by the fact that Σq1 and Σq2 are left adjoints and
that [q1,K]J ◦ [q2,K]J = [q2 ◦ q1,K]J . J

I Theorem 2.6. The functor Σq ◦ [q,K]J is the identity on [N,K]J .

Proof. It is enough to show that for any π′ ∈ [N,K]J we have Σq(π′ ◦q) = π′. Take π = π′ ◦q
and note that Πw,0 = {πm1 ∨ . . . ∨ πmk

| q(mi) = w} = {π′w ∨ . . . ∨ π′w | q(mi) = w} = {π′w}
for w ∈ N . Moreover, since π′ is a lax functor we can easily prove by induction that t ≤ π′w
holds for any t ∈ Πw,n. Hence, Σq(π′ ◦ q)w =

∨
Πw = π′w which proves the assertion. J

I Theorem 2.7. If K is J-distributive then, for any π, π′ ∈ [M,K]J and f : π(∗)→ π′(∗) ∈ J :

f ◦ πm = π′m ◦ f for any m ∈M =⇒ f ◦ Σq(π)w = Σq(π′)w ◦ f for any w ∈ N .

Proof. We have:

f◦(πm1∨. . .∨πmk
) J-LD= f◦πm1∨. . .∨f◦πmk

= π′m1
◦f∨. . .∨π′mk

◦f J-RD= (π′m1
∨. . .∨π′mk

)◦f .

Hence, for any f ◦Πw,0 = Π′w,0 ◦ f . By induction it follows that f ◦Πw,n = Π′w,n ◦ f for any
n. Hence, f ◦Πw = Π′w ◦ f which proves the assertion. J
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2.4 Saturation-based behavioural equivalences
Notions of coalgebraic strong bisimulation have been well captured in the literature [1, 22, 26].
This paper builds on a variant called kernel bisimulation i.e. “a relation which is the kernel of
a compatible refinement of a system” [26]. However, since coalgebras with internal moves are
endomorphisms in suitable Kleisli categories[7], kernel bisimulation has been reformulated in
[8] in the language of behavioural morphisms for endomorphisms in an arbitrary category
K. This choice allows us to streamline the exposition while working at the abstract level
of morphism between endomorphisms and accommodate general saturation along the lines
of [8]. Let us quickly recall this notion here. We say that f : X → Y ∈ J is a behavioural
morphism on an endomorphism α : X → X ∈ K provided that there is β : Y → Y ∈ K such
that f ◦ α = β ◦ f . If K = Kl(T ) for a monad T on C and J is the category whose objects
are those of C and whose morphisms are ηY ◦ f , where η is the unit of the monad and
f : X → Y a morphism of C, then the behavioural morphisms coincide with homomorphisms
of T -coalgebras [8]. This approach is adopted in this paper taking lax functors and their
saturation into account.

I Definition 2.8. Let π ∈ [M,K]J and X = π(∗). A morphism f : X → Y in J is called
q-behavioural morphism on π provided that there is a lax functor π′ ∈ [N,K]J such that
π′(∗) = Y for any n ∈ N the following holds:

f ◦ Σq(π)n = π′n ◦ f .

A q-bisimulation on π is a relation R⇒ π(∗) (i.e. a jointly monic span) in J which is the
kernel pair of a q-behavioural morphism on π.

I Theorem 2.9. A morphism f : X → Y in J is a q-behavioural morphism on π ∈ [M,K]J
if and only if there is π′ ∈ [M,K]J such that f ◦ Σq(π)n = Σq(π′)n ◦ f for any n ∈ N .

Proof. By Theorem 2.6. J

Definition 2.8 is a conservative extension of kernel bisimulation. In fact, α ∈ [M∗,K]
describes a family of endomorphisms in K, i.e., a timed system, and all its finite self-
composition and since ΣidM∗

∼= Id, idM∗ -bisimulation coincides with kernel bisimulation.
Among the several choices of monoid homomorphisms we focus on two main families:

those abstracting effects (e.g. non-determinism) and those abstracting aspects modelled by
the context (e.g. time). The first case corresponds to εM : M∗ →M where ε : (−)∗ → Id is
the counit forming the free monoid adjunction. By Theorem 2.4, if K admits and preserves
arbitrary non-empty joins the functor ΣεM

: [M∗,K]J → [M,K]J is given on a system α:

ΣεM
(α)m =

∨
~m∈ε−1

M
(m) α~m =

∨
m1·...·mk=m αm1 ◦ · · · ◦ αmk

.

Steps in the saturated system are combinations of all sequences in the original one associated
with any decomposition of the stage m. In particular, when K models unobservable moves,
εM -bisimulation can be seen as the weak counterpart of strong behavioural equivalence
for systems modelled in [M∗,K]J , i.e., idM∗-bisimulation. The second case corresponds to
q∗ : M∗ → N∗ for some q : M → N . The functor Σq∗ : [M∗,K]J → [N∗,K]J is given on a
system α as:

Σq∗(α)n1...nk
=

∨
ni=q(mi) αm1...mk

=
∨
ni=q(mi) αm1 ◦ · · · ◦ αmk

.

Steps in the saturated system are combinations of all steps associated to a pre-image through
q; in particular, Σq∗(α)n =

∨
n=q(m) αm. When !M : M → 1 is considered, all the information
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in M is erased whereas computational effects in K are preserved. From this perspective
!∗M -bisimulation can be seen as a conservative generalisation of time-abstract bisimulations
(cf. Section 3.1). These two orthogonal directions can be combined as εN ◦ q∗ or as q ◦ εM ;
by naturality of ε the notions of saturation coincide:

ΣεN◦q∗(α)n = Σq◦εM
(α)n =

∨
n1·...·nk=n
ni=q(mi)

αm1 ◦ · · · ◦ αmk
=

∨
n=q(m)

m1·...·mk=m

αm1 ◦ · · · ◦ αmk
.

When K models unobservable moves and N is 1, !M∗-bisimulation can be thought as the
weak counterpart of !∗M -bisimulation.

The notion of q-bisimulation for systems modelled in [M,K]J arise from some congruence
for M and, vice versa, each congruence defines a notion of q-bisimulation. The following
theorem states that that coarser congruences define coarser notions of bisimulations. In
the remainder of this section we assume that q1 : M → N1 and q2 : N1 → N2 are monoid
morphisms and K is a J-distributive DCpo∨-enriched category.

I Theorem 2.10. A q1-behavioural morphism on π is a (q2 ◦ q1)-behavioural morphism on π.

Proof. Follows directly by Theorems 2.5 and 2.7. J

I Corollary 2.11. Let q1 : M → N1 and q2 : N1 → N2 be monoid homomorphisms. For any
π ∈ [M,K]J , if R⇒ π(∗) is a q1-bisimulation on π then it is a (q2 ◦ q1)-bisimulation on π.

Thus, q-bisimulations for systems modelled in the context of [M,K]J form a spectrum where
the finest and coarsest notions are defined by idM : M →M and !M : M → 1, respectively.

3 Application: timed behavioural and language equivalences

This section instantiates the general framework developed in Section 2.4 to timed auto-
mata covering semantic equivalences of interest such as (weak) timed and time-abstract
bisimulations and (finite) timed and untimed language equivalences.

3.1 Behavioural equivalences
This subsection recovers known notions of behavioural equivalences for timed automata as
instances of q-bisimulation thus deriving the spectrum illustrated in Figure 1. Before stating
these results, recall from [2, 19] the following definitions of the main bisimulations of interest.

I Definition 3.1 ([2, 19]). For a TTS α and an equivalence relation R on its carrier:

R is a (strong) timed bisimulation for α if (x, y) ∈ R and x (σ,t)−−−→ x′ implies that there is
y′ ∈ X such that y (σ,t)−−−→ y′ and (x′, y′) ∈ R;

R is a (strong) time-abstract bisimulation for α if (x, y) ∈ R and x (σ,t)−−−→ x′ implies that
there are y′ ∈ X and t′ ∈ [0,∞) such that y (σ,t′)−−−→ y′ and (x′, y′) ∈ R;

R is a weak timed bisimulation for α if (x, y) ∈ R and x
(σ,t)==⇒ x′ implies that there is

y′ ∈ X such that y (σ,t)==⇒ y′ and (x′, y′) ∈ R;

R is a weak time-abstract bisimulation for α if (x, y) ∈ R and x (σ,t)==⇒ x′ implies that there
are y′ ∈ X and t′ ∈ [0,∞) such that y (σ,t′)===⇒ y′ and (x′, y′) ∈ R;
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where → and ⇒ denote the transition relation of α and the smallest relation such that:

x
(τ,0)===⇒ x

x
(τ,t)−−−→ y

x
(τ,t)===⇒ y

x
(τ,t0)====⇒ x′ x′

(σ,t1)−−−→ y′ y′
(τ,t2)====⇒ y t = t0 + t1 + t2

x
(σ,t)===⇒ y

I Theorem 3.2. For a TTS α, an equivalence relation R on its carrier is a timed/weak
timed/time-abstract/weak time-abstract bisimulation for α if, and only if, it is a idT∗-/εT-
/!∗T-/!T∗-bisimulation for α, respectively.

I Corollary 3.3. For a TTS α and an equivalence relation R on its carrier, the implications
illustrated in Figure 1 hold true.

Proof. By the (inner) commuting diagram in Figure 1, Corollary 2.11 and Theorem 3.2. J

Finally, since neither !∗T factors εT nor vice versa it is not possible to derive that, in
general, strong time-abstract bisimulations are weak timed ones nor vice versa.

3.2 Finite trace equivalence
This subsection focuses on putting the language equivalence of timed systems into the lax
functorial setting. Here, we work with K = Kl(PΣ

X)- the Kleisli category for the ε-NA monad
together with the monoidal structure (×, 1). A timed coalgebra α : L→ E ⊗ L in K is a set
map α : L→ P(Στ × E × L+ {X}) and it represents an ordinary timed automaton with a
specified set of terminal states (here, this set is given by {l ∈ L | X ∈ α(l)}). Classically, its
semantics is a transition system V×L→ P(Στ ×T×V×L+{X}) over the state-space V×L,
which is obtained from α analogously to (1) taking into account the terminals [2]. Systems
of type X → PΣ

X(T×X) will be referred to as timed transition systems with accepting states
or X-TTS in short. However, from our perspective, and following the guidelines of the
setting from Section 2.2, the semantics of α is given in terms of a functor α : T∗ → K with
αt1,...,tn = αt1 ◦ . . . ◦ αtn , where αt : V × L→ PΣ

X(V × L) for (v, l) is defined by:

αt(v, l) ={(σ, v′, l′) | (σ, l′, (γ, δ)) ∈ α(l), vt = λc.v(c) + t, vt � δ, and v′ = vt[γ := 0]}
∪ if X ∈ α(l) then {X} else ∅.

Now, in order to obtain finite (weak) (un)timed trace equivalence, we will play with
the second parameter that the q-bisimulation takes implicitly into account, namely the
base category J . Here, we consider J to be different from Set. We put J to be the
Kleisli category Kl(P) for the powerset monad, as it is a subcategory of Kl(PΣ

X) with the
inclusion functor (−)] : Kl(P)→ Kl(PΣ

X) given, for any X and f : X → PY by X] = X and
f ](x) = {(τ, y) | y ∈ f(x)}. Taking the source category of behavioural morphisms to be
different from Set is akin to the classical approach towards modelling coalgebraic finite trace
equivalence in terms of bisimulation for base categories given by the Kleisli categories for a
monadic part of the type functor [12, 14].

Given a state x of a X-TTS we define the following four sets of languages it accepts:

T (x) = {(σ1, t1) . . . (σn, tn) ∈ (Στ × T)∗ | x (σ1,t1)−−−−→ . . .
(σn,tn)−−−−−→ xn and xn ↓},

UT (x) = {σ1 . . . σn ∈ Σ∗τ | ∃t1, . . . tn s.t.(σ1, t1) . . . (σn, tn) ∈ T (x)},

WT (x) = {(σ1, t1) . . . (σn, tn) ∈ (Σ× T)∗ | x (σ1,t1)====⇒ . . .
(σn,tn)====⇒ xn and xn ↓},

WUT (x) = {σ1 . . . σn ∈ Σ∗ | ∃t1, . . . tn s.t.(σ1, t1) . . . (σn, tn) ∈WT (x)}.
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I Theorem 3.4. Let α : X → P(Στ × T×X + {X}) be a X-TTS with its induced functor
denoted by α : T∗ → K. A morphism f : X → PY in Kl(P) is a idT∗-/εT-/!∗T-/!T∗-behavioural
morphism on α making f(x) = f(x′) for x, x′ ∈ X if, and only if we have respectively:

T (x) = T (x′) / WT (x) = WT (x′) / UT (x) = UT (x′) / WUT (x) = WUT (x′).

4 Conclusions

In this paper we presented a framework for modelling timed automata and showed how
behavioural equivalences of interest can be recovered in a uniform and general way. Moreover,
we were able to organise, by means of simple diagrams of monoid homomorphisms, these
equivalences in a spectrum on the base of their discriminating power—as Figure 1 exemplifies.

Lax functors are the cornerstone these results build on for they allow us to separate aspects
of the computations under scrutiny into those arising from effects (base category) and from the
environment (index category). We extended the theory of saturation [6, 8, 7] developing the
notion of general saturation for lax functors on a monoid category. Akin to saturation cf. loc.
cit., this construction offers a uniform definition of behavioural equivalences and a fine control
on the computational aspects they abstract away, being these time or unobservable moves.
Thanks to its categorical development, this framework can accommodate any computational
aspect modelled by some monoid M together with a DCpo∨-enriched, J-distributive category
K. Besides non-deterministic systems we should mention Segala, weighted, probabilistic,
nominal, and continuous systems as possible instances for K and refer the curious reader
to [6, 8]. Although the categories formed by these systems do not necessarily satisfy left
distributivity, in [6, 8] we presented a method to obtain it by moving to a richer category
and performing saturation there. This suggests that results described here should readily
generalise q-behavioural morphisms to systems which do not necessarily satisfy this paper
assumptions.

Although timed processes present some fundamental differences w.r.t. timed automata,
we mention the interesting account of these systems and their strong bisimulation by Kick
[15]. In loc. cit., time-dependent computations are modelled by a suitable comonad over Set
and then combined with other behavioural aspects by means of comonad products. Because
of technical difficulties associated with comonad products, this approach appears less flexible
when behavioural equivalences beside strong timed bisimulation are considered.

Perhaps the closest work to ours is [10] where a categorical account of timed weak
bisimulation is proposed. We remark that loc. cit. relies on open-map bisimulation and is
limited to weak timed bisimulation for timed transition systems only.

The categorical characterization of timed automata paves the way for further interesting
lines of research. One is to explore the framework expressiveness providing new instances
besides timed. Another is to extend the framework with results from the rich theory of
coalgebras such as minimization [3], determinisation [23], and up-to techniques [4]. Finally,
we believe this, and recent works like [6, 8] suggest the rich and malleable setting of lax
functors as a context where to study complex interactions of several computational aspects.
To this end, we plan to further develop the general theory of lax functors and saturation.
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