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Abstract
BIP is a component-based framework for system design built on three pillars: behavior,

interaction, and priority. In this paper, we introduce first-order interaction logic (FOIL) that
extends BIP without priorities to systems parameterized in the number of components. We show
that FOIL captures classical parameterized architectures such as token-passing rings, cliques of
identical components communicating with rendezvous or broadcast, and client-server systems.

Although the BIP framework includes efficient verification tools for statically-defined sys-
tems, none are available for parameterized systems with an unbounded number of components.
On the other hand, the parameterized model checking literature contains a wealth of techniques
for systems of classical architectures. However, application of these results requires a deep under-
standing of parameterized model checking techniques and their underlying mathematical models.
To overcome these difficulties, we introduce a framework that automatically identifies paramet-
erized model checking techniques applicable to a BIP design. To our knowledge, this is the
first framework that allows one to apply prominent parameterized model checking results in a
systematic way.
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1 Introduction

Design, manufacture and verification of large scale complex hardware/software systems (e.g.,
cyber-physical systems) remains a grand challenge in system design automation [25]. To
address this challenge, the rigorous system design methodology [24] and the behaviour-
interaction-priority (BIP) framework [4] have been recently proposed. BIP comes with
a formal framework and a toolchain. The BIP framework has well-defined semantics for
modeling system behavior and architectures. The BIP toolchain supports verification of
high-level system designs and automatic system synthesis of low-level implementations from
high-level system designs.

The existing BIP tools focus on design and verification of systems with a fixed number of
communicating components [5, 22]. However, many distributed systems are designed with
parameterization in mind. For instance, the number of components in the system is not
typically fixed, but varies depending on the system setup. In this case, one talks about
parameterized verification, where the number of components is a parameter.

Model checking is a pragmatic approach to verification that has found many applications
in industry, e.g., see [19]. Many efforts were invested into extension of model checking to the
parameterized case, which led to numerous parameterized model checking techniques (see [9]
for a recent survey). Unfortunately, often parameterized model checking techniques come
with their own mathematical models, which makes their practical application difficult. To
perform parameterized model checking, the user has to thoroughly understand the research
literature. Typically, the user needs to first manually inspect the parameterized models and
match them with the mathematical formalisms from the relevant parameterized verification
techniques. Using the match, the user would then apply the decidability results (if any)
for the parameterized models, e.g., by computing a cutoff or translating the parameterized
model into the language of a particular tool for the specific architecture. Thus, there is a gap
between the mathematical formalisms and algorithms from the parameterized verification
research and the practice of parameterized verification, which is usually done by engineers
who are not familiar with the details of the research literature. In this paper, we aim at
closing this gap by introducing a framework for design and verification of parameterized
systems in BIP. With this framework, we make the following contributions:
1. We extend propositional interaction logic to the parameterized case with arithmetics,

which we call first-order interaction logic (FOIL). We build on the ideas from configuration
logic [21] and dynamic BIP [10]. FOIL is powerful enough to express architectures found in
distributed systems, including the classical architectures: token-passing rings, rendezvous
cliques, broadcast cliques, and rendezvous stars. We also identify a decidable fragment
of FOIL which has important applications in practice. This contribution is covered by
Section 3.

2. We provide a framework for integration of mathematical models from the parameterized
model checking literature in an automated way: given a parameterized BIP design, our
framework detects parameterized model checking techniques applicable to this design.
This automation is achieved by the use of SMT solvers and standard (non-parameterized)
model checkers. This contribution is covered by Sections 4 and 5.

3. We provide a preliminary prototype implementation of the proposed framework. Our
prototype tool takes a parameterized BIP design as its input and detects whether one of the
following classical results applies to this BIP design: the cut-off results for token-passing
rings by Emerson & Namjoshi [16], the VASS-based algorithms by German & Sistla [18],
and the undecidability and decidability results for broadcast systems by Abdulla et al. [1]
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and Esparza et al. [17]. More importantly, our framework is not specifically tailored to
the mentioned techniques. This contribution is covered by Sections 5 and 6.

We remark that our framework builds on the notions of BIP, which allows us to express
complex notions in terminology understood by engineers. Moreover, our framework allows
an expert in parameterized model checking to capture seminal mathematical models found
in the verification literature, e.g., [18, 17, 16, 13].

This paper is structured as follows. In Section 2, we briefly recall the BIP modeling
framework. In Section 3, we introduce our parameterized extension. In Sections 4 and 5,
we present our verification framework and the automatic system architecture identification
technique. In Section 6, we present the preliminary experiments. Section 7 closes with related
work, conclusions, and future work.

2 BIP without priorities

In this section, we review the notions of BIP [4] with the following restrictions: (i) states of
the components do not have specific internal structure; (ii) we do not consider interaction
priorities. While we believe that our approach can be extended to priorities, we leave this
for future work.

As usual, a labeled transition system is a tuple (S, s0, A,R) with a set of locations S, an
initial location s0 ∈ S, a non-empty set of actions A, and a transition relation R ⊆ S×A×S.

IDefinition 2.1 (Component type). A component type is a transition system B = 〈Q, `0,P,E〉
over the finite sets Q and P. By convention, the set of actions P is called the set of ports.

Ports form the interface of a component type. We assume that, for each location, no two
outgoing transitions from this location are labeled with the same port. We also assume that
the ports of each component type, as well as the locations, are disjoint.

Let 〈B0, . . . ,Bk−1〉 be a tuple of component types, where each Bi is 〈Qi, `0i ,Pi,Ei〉 for i ∈
[0, k). We introduce an infinite set of components {Bi[j] | j ≥ 0} for i ∈ [0, k). A
component Bi[j] = 〈Qi[j], `0i [j],Pi[j],Ei[j]〉 is obtained from the component type Bi by
renaming the set of ports. Thus, as transition systems, Bi[j] and Bi are isomorphic. We
postulate Pi[j] ∩ Pi[j′] = ∅, for j 6= j′.

A BIP model is a composition of finitely many components instantiated from the
component types 〈B0, . . . ,Bk−1〉. To denote the number of components of each type, we
introduce a size vector N̄ = 〈N0, . . . , Nk−1〉: there are Ni components of component type Bi,
for i ∈ [0, k).

Coordination of components is specified with interactions. Intuitively, an interaction
defines a multi-party synchronization of component transitions. A BIP interaction is a finite
set of ports, which defines a possible synchronization among components.

I Definition 2.2 (Interaction). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉 , an interaction γ ⊆ {p ∈ Pi[j] | i ∈ [0, k), j ∈ [0, Ni)} is a set of
ports such that |γ ∩ Pi[j]| ≤ 1 for all i ∈ [0, k) and j ∈ [0, Ni), i.e., an interaction is a set of
ports such that at most one port of each component takes part in an interaction. If p ∈ γ,
we say that p is active in γ.

I Definition 2.3 (BIP Model). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉, a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ is a tuple 〈B,Γ〉, where B is the
set {Bi[j] | i ∈ [0, k), j ∈ [0, Ni)} and Γ is a set of interactions defined w.r.t. 〈B0, . . . ,Bk−1〉
and N̄ .
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I Definition 2.4 (BIP operational semantics). Given a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ, we
define its operational semantics as a transition system TS(〈B0, . . . ,Bk−1〉N̄,Γ) = 〈S, s0,Γ, R〉,
where:
1. The set of configurations S is defined as the Cartesian product of the sets of locations of

the components QN0
0 × · · · × QNk−1

k−1 . Given a configuration s ∈ S, we denote by s(i, j)
the jth member of the tuple defined by the ith product QNi

i where j ∈ [0, Ni).
2. The initial configuration s0 ∈ S satisfies that s0(i, j) = `0i [j] for all i ∈ [0, k) and

j ∈ [0, Ni).
3. The transition relation R contains a triple (s, γ, s′), if, for each i ∈ [0, k) and j ∈ [0, Ni),

the jth component of type i
either has an active port p ∈ γ ∩ Pi[j] and 〈s(i, j), p, s′(i, j)〉 ∈ Ei[j],
or is not participating in the interaction γ, i.e., γ ∩ Pi[j] = ∅ and s′(i, j) = s(i, j).

Intuitively, the local transitions of components fire simultaneously, provided that their
ports are included in the interaction; other components do not move.

I Example 2.5 (Milner’s scheduler). We follow the formulation by Emerson & Namjoshi [16].
A scheduler is modeled as a token-passing ring. Only the process that owns the token may
start running a new task. The component type B0 = 〈Q0, `

0
0,P0,E0〉 is given by the locations

Q0 = {S0, . . . , S4}, the initial location `00 = S0, the port types P0 = {snd, rcv, start,finish},
and the edges E0 that are shown in the figure below:

S0 S1 S2

S3

S4

start snd rcv finish

finish

rcv

A component owns the token when in the location S0, S1, or S3. In S0, a component
initiates its task by interacting on port start. The token is then sent to the component’s
right neighbor on the ring via an interaction on port snd. The component then waits until
(a) its initiated task has finished, and (b) the component has received the token again. When
both (a) and (b) have occurred, the component may initiate a new task. Note that (a) and
(b) may occur in either order.

Fix a number N0 ∈ N. The following set of interactions represents the ring structure:

Γ = {γi→j , γstart(i), γfinish(i) | 0 ≤ i < N0 and j ≡ i+ 1 mod n0}

where γi→j = {(snd, i), (rcv, j)} is the interaction passing the token from the ith component
to the next component on the ring, while the interactions γstart(i) = {(start, i)} and γfinish(i) =
{(finish, i)} allow the ith component to take the internal transitions labeled ’start’ and ’finish’
respectively. The BIP model of the Milner scheduler of size N0 is 〈B,Γ〉, where B is the set
of components {B0[j] | j ∈ [0, N0)}.

3 Parameterized BIP without priorities

Since the number of possible interactions in a parameterized system is unbounded, and
each interaction itself may involve an unbounded number of actions, the set of all possible
interactions is infinite. Hence, we need a symbolic representation of such a set. To this end,
we propose first order interaction logic—a uniform and formal language for system topologies
and coordination mechanisms in parameterized systems. Using this logic, we introduce a
parameterized extension of BIP, and show that this extension naturally captures standard
examples.
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3.1 FOIL: First order interaction logic
In this section, we fix a tuple of component types 〈B0, . . . ,Bk−1〉. For each port p ∈ Pi
of an ith component type, we introduce a unary port predicate with the same name p.
Furthermore, we introduce a tuple of constants n̄ = 〈n0, . . . , nk−1〉, which represents the
number of components of each type. We also assume the standard vocabulary of Presburger
arithmetic, that is, 〈0, 1,≤,+〉.

FOIL syntax. Assume an infinite set of index variables I. We say that ψ is a first order
interaction logic formula, if it is constructed according to the following grammar:

ψ ::= p(i) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃i :: typej : φ. ψ | ∀i :: typej : φ. ψ ,

where p ∈ P0 ∪ · · · ∪ Pk−1, i ∈ I, and φ is a formula in Presburger arithmetic over index
variables and the vocabulary 〈0, 1,≤,+, n̄〉.

Informally, the syntax Q i :: typej : φ. ψ, where Q ∈ {∃,∀}, restricts the index variable i
to be associated with the component type Bj . Notice, however, that this syntax does not
enforce type correctness of ports. For instance, one can write a formula ∃i :: typej : p(i) with
some p 6∈ Pj . While this formula is syntactically correct, it is not in line with Definition 2.2
of interaction given in Section 2. To this end, we say that a FOIL formula is natural, if for
each of its subformulae Q i :: typej : φ. ψ(i), for Q ∈ {∃,∀}, and every atomic formula p(i)
of ψ, it holds that p ∈ Pj . From here on, we assume FOIL formulae to be natural. We write
∃i :: typej . ψ as a shorthand for ∃i :: typej : true. ψ.

FOIL semantics. We give the semantics of a FOIL formula by means of structures. A
first-order interaction logic structure (FOIL structure) is a pair ξ = (N, αξ): the set of natural
numbers N is the domain of ξ, while αξ is the interpretation of all the predicates and of the
constants n̄. The symbols 0, 1, ≤, and + have the natural interpretations over N.

A valuation σ is a function σ : I → N. We denote by σ[x 7→ j] the valuation obtained
from σ by mapping the index variable x to the value j. Assignments are used to give values to
free variables in formulae. For a FOIL structure ξ and a valuation σ, the semantics of FOIL
is formally given as follows (the semantics of Boolean operators and universal quantifiers is
defined in the standard way):

ξ, σ |=FOIL p(i) iff αξ(p) is true on σ(i)
ξ, σ |=FOIL ∃i :: typej : φ. ψ iff there is l ∈ [0, αξ(nj)) such that

ξ, σ[i 7→ l] |=FO φ and ξ, σ[i 7→ l] |=FOIL ψ

where |=FO to denotes the standard ’models’ relation of first-order logic.
Finally, for a FOIL formula ψ without free variables and a structure ξ, we write ξ |=FOIL ψ,

if ξ, σ0 |=FOIL ψ for the valuation σ0 that assigns 0 to every index i ∈ I.1

Decidability. It is easy to show that checking validity of a FOIL sentence2 is undecidable,
and that FOIL contains an important decidable fragment:

I Theorem 3.1 (Decidability of FOIL). The following results about FOIL hold:

1 Since ψ has no free variables, our choice of σ0 is arbitrary: for all σ we have ξ, σ |=FOIL ψ if and only if
ξ, σ0 |=FOIL ψ.

2 A FOIL formula with no free variables is called a sentence. A sentence is valid if it is satisfied by all
structures.
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(i) Validity of FOIL sentences is undecidable.
(ii) Validity of FOIL sentences in which all additions are of the form i+ 1 is decidable.

Proof. (i) FOIL contains Presburger arithmetic with unary predicates, which is known to
be as strong as Peano arithmetic [20]. Hence, satisfiability and validity of FOIL formulae are
undecidable.

(ii) The formula j = i + 1 is definable in FOIL by i ≤ j ∧ j 6= i ∧ ψconsecutive(i, j),
where ψconsecutive(i, j) = ∀` :: typet. (j ≤ ` ∧ ` ≤ i) → (` = i ∨ ` = j), where t is the type
of i and j. Hence, we can rewrite any FOIL sentence ψ in which all additions are of the
form i + 1 as an equi-satisfiable first-order logic sentence ψ′ without using addition (+).
The sentence ψ′ belongs to S1S, the monadic second order theory of (N, 0, 1,≤), which is
decidable, see [27]. J

In the following, we restrict addition to the form i+ 1, and thus stay in the decidable
fragment.

3.2 Interactions as FOIL structures
In contrast to Definition 2.2 of a standard interaction, which is represented explicitly as
a finite set of ports, we use first order interaction logic formulae to define all the possible
interactions in parameterized systems. Our key insight is that each structure of a formula
uniquely defines at most one interaction, and the set of all possible interactions is the union
of the interactions derived from the structures that satisfy the formula.

Intuitively, if p(j) evaluates to true in a structure ξ, then the jth instance of the respective
component type—uniquely identified by the port p—takes part in the interaction identified
with ξ. Thus, we can reconstruct a standard BIP interaction from a FOIL structure by
taking the set of ports, whose indices are evaluated to true by the unary predicates. Formally,
given a FOIL structure ξ = (N, αξ), we define the set γξ = {(p, j) | i ∈ [0, k), p ∈ Pi, j ∈
[0, αξ(nj)), αξ(p)(j) = true}. In the following, the notation (p, j) denotes the port p of the
jth component of the type Bi with p ∈ Pi.

Notice that γξ does not have to be an interaction in the sense of Definition 2.2. Indeed,
one can define ξ whose set γξ includes two ports of the same component. We say that ξ
induces an interaction, if γξ is an interaction in the sense of Definition 2.2.

I Definition 3.2 (Parameterized BIP Model). A parameterized BIP model is a tuple
〈�, n̄, ψ, ε〉, where � = 〈B0, . . . ,Bk−1〉 is a tuple of component types, ψ is a sentence
in FOIL over port predicates and a tuple n̄ = 〈n0, . . . , nk−1〉 of size parameters, and ε is a
linear constraint over n̄.

The tuple n̄ consists of the size parameters for all component types, and the constraint
ε restricts these parameters. For example, the formula (n0 = 1) ∧ (n1 ≥ 10) requires every
instance of a parameterized BIP model to have only one component of the first type and at
least ten components of the second type. The FOIL sentence ψ restricts both the system
topology and the communication mechanisms, see Example 3.4.

I Definition 3.3 (PBIP Instance). Given a parameterized BIP model 〈�, n̄, ψ, ε〉 and a size
vector N̄ , a PBIP instance is a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ = 〈B,Γ〉, where B and Γ are
defined as follows:
1. the numbers N̄ satisfy the size constraint ε,
2. the set of components B is {Bi[j] | i ∈ [0, k) and j ∈ [0, Nj)}, and
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3. the set of interactions Γ consists of all interactions γξ induced by a FOIL structure ξ such
that the size parameters n̄ are interpreted in ξ as N̄ , and ξ satisfies ψ, i.e. αξ(n̄) = N̄

and ξ |=FOIL ψ.

In the rest of this section, we give three examples that show expressiveness of parameterized
BIP.

I Example 3.4 (Milner’s scheduler revisited). The parameterized BIP model of Milner’s
scheduler is 〈〈B0〉, 〈n0〉, ψ, true〉, where B0 is from Example 2.5 and ψ = ψtoken ∨ ψinternal
defined as follows. The formula ψtoken defines the token-passing interactions and the formula
ψinternal defines the internal interactions of starting or finishing a task:

ψtoken = ∃i, j :: type0 : j = (i+ 1) mod n0. snd(i) ∧ rcv(j) ∧ ψonly(i, j)
ψonly(i, j) = ∀` :: type0 : ` 6= i ∧ ` 6= j. ¬snd(`) ∧ ¬rcv(`) ∧ ¬start(i) ∧ ¬finish(i)
ψinternal = ∃i :: type0. ψonly(i, i) ∧ (start(i) ∨ finish(i))

The formula ψtoken does not have free variables and holds for a structure ξ, if the
induced interaction γξ is a send-receive interaction along some edge i → j of the ring,
where j = (i+ 1) mod n0. In fact, j = (i+ 1) mod n0 is just a shorthand for the formula:
(i+ 1 < n0∧ j = i+ 1)∨ (i+ 1 = n0∧ j = 0). The formula ψonly(i, j) excludes any component
other than i and j from participating in the interaction. (If i = j then all components other
than i are excluded.) The formula ψinternal enables the transitions labeled with ’start’ and
’finish’, in which only one component changes its location.

Observe that the semantics of FOIL forces the quantified variables i, j, ` to be in the
range from 0 to N0 − 1. Hence, we omit explicit range constraints. For instance, ψtoken is
equivalent to the formula:

∃i, j :: type0 : 0 ≤ i, j < n0 ∧ (j = (i+ 1) mod n0). snd(i) ∧ rcv(j) ∧ ψonly(i, j)

The set of FOIL structures ξ that satisfy ψ induces the same set of interactions Γ as in
Example 2.5. While Example 2.5 defines the set Γ explicitly for any fixed value N0, in the
parameterized setting the interactions are defined uniformly by a single FOIL formula ψ, for
all values of N0.

In this example we do not restrict the initial locations so that exactly one process owns
the token in the initial configuration. This delicate issue is resolved in Section 5.4.

I Example 3.5 (Broadcast in a star). Let 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉 be a parameterized BIP
model with two component types and the size constraint ε ≡ (n0 = 1). We also assume
that component type B0 (resp. B1) has only one port send (resp. receive), i.e., P0 = {send}
and P1 = {receive}. The FOIL formula ψ = ∃i :: type0. send(i) specifies broadcast from the
component B0[0], the center of the star, to the leaves of type B1. The set of interactions
defined by ψ consists of all sets of ports of the form {(send, 0)} ∪ {(receive, d) | d ∈ D)} for
all D ⊆ [0, n1), including the empty set D = ∅.

I Example 3.6 (Barrier). Consider a barrier synchronization protocol, cf. [9, Example 6.6].
The component type B0 is as shown below:

master
neutral

slave

loopM loopN loopS
exit

go exit

follow

The location neutral is the initial location. A synchronization episode consists of three
stages:

CONCUR 2016
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(i) First, a single component enters the barrier by moving to master.
(ii) Then, each of the others components moves to slave.
(iii) Finally, the master triggers a broadcast and all components leave the barrier by moving

to neutral.
The parameterized BIP model of the barrier synchronization protocol is 〈〈B0〉, 〈n0〉, ψ, true〉,
where ψ = ψgo ∨ ψfollow ∨ ψexit, and the following formulae ψgo, ψfollow, and ψexit describe
the interactions of stages (i), (ii), and (iii) respectively:

ψgo = ∃i :: type0. go(i) ∧ ∀j :: type0 : i 6= j. loopN (j)
ψfollow = ∃i, j :: type0. follow(i) ∧ loopM (j)∧

∀` :: type0 : i 6= `. loopM (`) ∨ loopN (`) ∨ loopS(`)
ψexit = ∀i :: type0. exit(i)

All three formulae enforce progress by requiring at least one process to change its state.

4 Parameterized model checking

In this section, we review the syntax and semantics of the indexed version of CTL∗, called
ICTL?, which is often used to specify the properties of parameterized systems [9]. Though
we use indexed temporal logics to define the standard parameterized model checking problem,
these logics are not the focus of this paper. Further, we introduce the parameterized model
checking problem for parameterized BIP design, and show its undecidability.

Syntax. For a set of index variables I, the ICTL? state and path formulae follow the
grammar:

θ ::= true | at(q, i) | ¬θ | θ1 ∧ θ2 | ∃i :: typej : φ. θ | ∀i :: typej : φ. θ | Eϕ | Aϕ , (state formulae)
ϕ ::= θ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 . (path formulae)

where q ∈
⋃

0≤j<k Qj is a location, i ∈ I is an index, and φ is a formula in Presburger
arithmetic over size variables n̄ and index variables from the set I.

Semantics. Fix a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ and its transition system M = 〈S, s0,Γ, R〉
= TS(〈B0, . . . ,Bk−1〉N̄,Γ) as per Definition 2.4. To evaluate Presburger formulae, we use the
first-order structure PA =

〈
N, 0, 1,≤,+, N̄

〉
. The semantics of ICTL? formulae is defined

inductively using M and PA. We only briefly discuss semantics to highlight the role of
quantifiers in indexed temporal logics. For further discussions, we refer the reader to the
textbook [12].

State formulae are interpreted over a configuration s and a valuation of index variables
σ : I → N (the semantics of Boolean operators and universal quantifiers is defined in the
standard way):

M, s, σ |=ICTL? at(q, i) iff q = s(j, σ(i)), where q ∈ Qj

M, s, σ |=ICTL? ∃i :: typej : φ. θ iff PA, σ[i 7→ l] |=FO φ and M, s, σ[i 7→ l] |=ICTL? θ hold,
for some l ∈ [0, Nj)

M, s, σ |=ICTL? Eϕ iff M,π, σ |=ICTL? ϕ for some infinite path π starting from s

Path formulae are interpreted over an infinite path π, and the valuation function σ as
follows (the semantics for Boolean operators and temporal operators F and G is defined in
the standard way):

M,π, σ |=ICTL? θ iff M, s, σ |=ICTL? θ, where s is the first configuration of the path π
M, π, σ |=ICTL? Xϕ iff M,π1, σ |=ICTL? ϕ

M,π, σ |=ICTL? ϕ1Uϕ2 iff ∃j ≥ 0. M, πj , σ |=ICTL? ϕ2 and ∀i < j. M, πi, σ |=ICTL? ϕ1,
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where πi is the suffix of the path π starting with the ith configuration.
Finally, given a formula ϕ without free variables, we say that M satisfies ϕ, written

as M |=ICTL? ϕ, if M, s0, σ0 |=ICTL? ϕ for the valuation σ0 that assigns zero to each index
from the set I. The choice of σ0 is arbitrary, as for all σ, it holds that M, s0, σ |=ICTL? ϕ if
and only if M, s0, σ0 |=ICTL? ϕ.

Now we are in the position to formulate the parameterized model checking problem for
BIP:

I Problem 4.1 (Parameterized model checking). The verification problem for a parameterized
BIP model 〈�, n̄, ψ, ε〉 and an ICTL? state formula θ without free variables, is whether every
instance 〈B0, . . . ,Bk−1〉N̄,Γ satisfies θ.

Not surprisingly, Problem 4.1 is undecidable in general. For instance, one can use the
proof idea [16] to obtain the following theorem. We do not give a detailed proof here: to a
large extent, it repeats the encoding of a unidirectional token ring, which we discuss later in
Section 5.4.

I Theorem 4.2 (Undecidability). Given a two-counter machine M2, one can construct an
ICTL?-formula G¬halt and a parameterized BIP model B = 〈�, n̄, ψ, ε〉 that simulates M2
and has the property: M2 does not halt if and only if 〈B0, . . . ,Bk−1〉N̄,Γ |= G¬halt for all
instances of B.

5 Identifying the architecture of a parameterized BIP model

In the non-parameterized case, knowing the architecture is not crucial, as there are model
checking algorithms that apply in general to arbitrary finite transition systems. However, the
architecture dramatically affects decidability of parameterized model checking. Architecture
identification plays an important step in our verification framework. In this section, we show
how to identify system architectures automatically, and present applications to verification.

Our framework. For the sake of exposition, we assume that parameterized BIP models
have only one component type. Our identification framework extends easily to the general
case.

Given an architecture A, e.g., the token ring architecture, an expert in parameterized
model checking creates formula templates in FOIL (FOIL-templates) and in temporal logic
(TL-templates). FOIL-templates describe the system topology and communication mechanism
for the architecture A. TL-templates describe the behaviour of the component type required
by the architecture A, e.g., in a token ring, a component which does not have the token
cannot send the token. These templates are designed once for all parameterized BIP models
compliant with A. In the sequel, TL-templates are only used for token rings, thus we omit
them from the discussion of other architectures.

Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉—not necessarily compliant with the
architecture A—the templates for the architecture A are instantiated to FOIL formulae
ϕFOIL

1 , . . . , ϕFOIL
m , and temporal logic formulae ϕTL

1 , . . . , ϕ
TL
` . The FOIL formulae guarantee

that the set of interactions expressed by the FOIL formula ψ adheres to A. The temporal
logic formulae guarantee that the behaviour of the component type B adheres to A. The
identification criterion is as follows: if ϕFOIL

1 ∧ · · · ∧ ϕFOIL
m is valid and B |=TL ϕ

TL
1 ∧ · · · ∧ ϕTL

`

holds, then the parameterized model 〈〈B〉, 〈n〉, ψ, ε〉 is compliant with the architecture A. In
practice, we use an SMT solver to check validity of the FOIL formulae and a model checker
to check that the component type B satisfies the temporal formulae.
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In the rest of this section we construct FOIL-templates and TL-templates for well-
known architectures: cliques of processes communicating via broadcast, cliques of processes
communicating via rendezvous, token rings, and server-client systems in which processes are
organized in a star and communicate via rendezvous. We show that the provided templates
identify the architectures in a sound way.

5.1 The common templates for BIP semantics
As we discussed in Section 3.2, not every FOIL structure induces a BIP interaction. We show
that one can write a FOIL-template that restricts FOIL structures to induce BIP interactions.
The following template ηFOIL

interaction(P0) expresses that there is no component with more than
one active port: ∀j :: type0.

∧
p,q∈ P0, q 6=p ¬p(j) ∨ ¬q(j)

As expected, the template ηFOIL
interaction(P0) restricts FOIL structures to BIP interactions:

I Proposition 5.1. Let P0 be a set of ports, and η be the instantiation of ηFOIL
interaction with P0.

A FOIL structure ξ satisfies η if and only if ξ induces an interaction.

To express that a component has at least one active port, we introduce template
active(j) ≡

∨
p∈P0

p(j). To simplify notation, parameterization of active(j) by P0 is omitted.

5.2 Pairwise rendezvous in a clique
In a BIP model, components are said to communicate by binary rendezvous, if all the
allowed interactions consist of exactly two ports. The communication is said to be by
pairwise rendezvous, if there is a binary rendezvous between every two components. Pairwise
rendezvous has been widely used as a basic primitive in the parameterized model checking
literature, e.g., in [18, 3].

FOIL-templates. We construct a template using two formulae ηFOIL
≤2 (P0) and ηFOIL

≥2 (P0):

The formula ηFOIL
≤2 (P0) expresses that every interaction has at most two ports:

∀i, j, ` :: type0. active(i) ∧ active(j) ∧ active(`)→ i = j ∨ j = ` ∨ i = `.
The formula ηFOIL

≥2 (P0) expresses that every interaction has at least two ports:
∃i, j :: type0 : i 6= j. active(i) ∧ active(j).

We show that the combination of ηFOIL
interaction , ηFOIL

≥2 , and ηFOIL
≤2 defines pairwise rendezvous

communication in cliques of all sizes:

I Theorem 5.2. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ) is valid, then for every instance BN,Γ, the

following holds:
1. every interaction is of size 2, that is, |γ| = 2 for γ ∈ Γ, and
2. for every pair of indices i and j such that 0 ≤ i, j < N and i 6= j and every pair of ports

p, q ∈ P0, there is a FOIL structure ξ such that ξ |=FOIL ψ ∧ p(i) ∧ q(j).

Proof. Fix an instance BN,Γ of 〈〈B〉, 〈n〉, ψ, ε〉.
To show Point 1, fix an interaction γ of BN,Γ. By Definition 3.3, there is a FOIL

structure ξ such that ξ |=FOIL ψ and γ = γξ. As ξ induces an interaction, by Proposition 5.1,
we immediately have that γξ satisfies the instantiation of ηFOIL

interaction. Hence, since (ψ ∧
ηFOIL

interaction)↔ (ηFOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2 ) is valid we conclude that ξ also satisfies ηFOIL

≥2 ∧ηFOIL
≤2 .

This immediately gives us the required equality |γξ| = 2.
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To show Point 2, fix a pair of indices i and j such that 0 ≤ i, j < N and i 6= j

and a pair of ports p, q ∈ P0. The set γ = {(p, i), (q, j)} is an interaction. Obviously,
one can construct a FOIL structure ξ that induces γ. Since i 6= j and |γξ| = 2, it holds
that ξ |=FOIL η

FOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2 . Thus, since (ψ∧ηFOIL

interaction)↔ (ηFOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2 )

is valid, it follows that ξ |=FOIL ψ. From this and that ξ induces the interaction γ, we conclude
that ξ |=FOIL ψ ∧ p(i) ∧ q(j). J

In Theorem 5.2, the right-hand side of the equivalence does not restrict which pairs of
ports may interact, e.g., it does not require the ports to be the same. Thus, if ψ is more
restrictive than the right-hand side of the equivalence, validity will not hold. Obviously, one
can further restrict the equivalence to reflect additional constraints on the allowed pairs of
ports. Moreover, one may restrict which ports are required by the template to communicate
via pairwise rendezvous for compositionality, e.g. to allow other ports to participate in other
communication primitives and in internal transitions. (One may augment or restrict the
templates of all the architectures below similarly.)

Applications. Theorem 5.2 gives us a criterion for identifying parameterized BIP models,
where all processes may interact with each other using rendezvous communication. To verify
such parameterized BIP models, we can immediately invoke the seminal result by German &
Sistla [18, Sec. 4]. Their result applies to specifications written in indexed linear temporal
logic without the operator X .

More formally, we say that an ICTL? path formula χ(i) is a 1-LTL\X formula, if χ has only
one index variable i and χ does not contain quantifiers ∃, ∀, A , E , nor temporal operator X .
Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉 and a 1-LTL\X formula χ, one can check in
polynomial time, whether every instance BN, Γ satisfies the formula E ∃i :: type0 : true. χ(i).

5.3 Broadcast in a clique
In BIP, components communicate via broadcast, if there is a “trigger” component whose
sending port is active, and the other components either have their receiving port active, or
have no active ports. In this section, we denote the sending port with send and the receiving
port with receive. Our results can be easily extended to treat multiple sending and receiving
ports. In a broadcast step, all the components with the active ports make their transitions
simultaneously. Broadcasts were extensively studied in the parameterized model checking
literature [17, 23].

One way to enforce all the processes to receive a broadcast, if they are ready to do so, is
to use priorities in BIP: an interaction has priority over any of its subsets. In this paper,
we consider BIP without priorities. In this case, one can express broadcast by imposing
the following restriction on the structure of the component type B: every location has a
transition labeled with the port receive. This restriction enforces all interactions to involve all
the components, though some of the components may not change their location by firing
a self-loop transition. This requirement can be statically checked on the transition system
of B, and if the component type does not fulfill the requirement, it is easy to modify the
component type’s transition system by adding required self-loops.

FOIL-templates. First, we define the formula ηFOIL
bcast(P0), which guarantees that every

interaction includes one sending port by one component and the receiving ports of the other
components:

∃i :: type0. send(i) ∧ ∀j :: type0 : j 6= i. receive(j)

CONCUR 2016
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We show that the combination of ηFOIL
interaction and ηFOIL

bcast defines broadcast in cliques of all
sizes:

I Theorem 5.3. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

bcast) is valid, then for every instance BN,Γ, the following
holds:
1. every interaction consists of one send port and N − 1 receive ports.
2. for every index c, such that 0 ≤ c < N , there is a FOIL structure ξ satisfying the

following:
ξ |=FOIL ψ ∧ send(c) ∧ ∀j :: type0 : j 6= c. receive(j).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Applications. Theorem 5.3 gives a criterion for identifying parameterized BIP models in
which all components may send and receive broadcast. Its implications are two-fold. First,
it is well-known that parameterized model checking of safety properties is decidable [1] (cf.
the discussion in [17]), and there are tools for well-structured transition systems applicable
to model checking of parameterized BIP. Second, parameterized model checking of liveness
properties is undecidable [17]. From the user perspective, this indicates the need to construct
abstractions, or to use semi-decision procedures.

Identifying sending and receiving ports. Now we illustrate how to automatically detect
the sending and receiving ports in a parameterized BIP model. We say that a port p ∈ P0 in
the component type may be a sending port, if in every interaction exactly one component
uses this port. Similarly, we say that a port q ∈ P0 in the component type may be a receiving
port, if in every interaction all but one component use this port. Intuitively, we have to
enumerate all port types and check whether they are acting as sending ports or receiving
ports. Formally, to find whether p is a potential sending port and q is a potential receiving
port, we check whether the following is valid:

ψ ∧ ηFOIL
interaction ∧ ∃i :: type0.

(
p(i) ∨ q(i)

)
→
(
∃i :: type0. p(i) ∧ ∀j :: type0 : j 6= i. q(j)

)

5.4 Token rings
Token ring is a classical architecture: (i) all processes are arranged in a ring, (ii) the ring
size is parameterized but fixed in each run, and (iii) one component owns the token and
can pass the token to its neighbor(s). It is easy to express token-passing with rendezvous,
so we re-use the templates from Section 5.2. We assume that there is a pair of ports: the
port send giving away the token and the port receive accepting the token. We do not allow
the token to change its type, as the parameterized model checking problem is undecidable in
this case [26, 16]. Nevertheless, it is easy to extend our results to multiple token types. Here
the token is passed in one direction, that is, every component may only receive the token
from one neighbor and may only send the token to its other neighbor.

TL-templates. Following the standard assumption [16], we require that every process sends
and receives the token infinitely often. We encode this requirement as a local constraint in a
form of an LTL formula that is checked against the component type (and not against a BIP
instance):

G
(
receive→ X (¬receive U send)

)
∧G

(
send→ X

(
¬send U receive)

)
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The left conjunct forces a component that has the token to eventually send it. The right
conjunct prevents a component from sending the token twice before receiving it back.

FOIL-templates. We extend the pairwise rendezvous templates with a formula ηFOIL
uniring(P0)

that restricts the interactions to be performed only among the neighbors in one direction:

∃i, j :: type0. (j = (i+ 1) mod n0). send(i) ∧ receive(j)

The modulo notation “j = (i+ 1) mod n0” can be seen as syntactic sugar, as it expands
into (i = n0 − 1→ j = 0) ∧ (i < n0 − 1→ j = i+ 1).

I Theorem 5.4. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

uniring) is valid, then every instance BN,Γ
satisfies:
1. every interaction γ ∈ Γ is of the form {send(c), receive(d)} for some indices c and d such

that 0 ≤ c, d < N and d = (c+ 1) mod N , and
2. for every index c such that 0 ≤ c < N and the index d = (c+ 1) mod N , there is a FOIL

structure ξ such that ξ |=FOIL ψ ∧ send(c) ∧ receive(d).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Distributing the token. The token ring architecture assumes that initially only one com-
ponent has the token. Emerson & Namjoshi [16] assumed that the token was distributed
using a “daemon”, but this primitive is obviously outside of the token ring architecture. Our
framework encompasses token distribution. To this end, we restrict the transition system of
the component as follows:

We assume that the location set Q0 of the component type B0 is partitioned into two
sets: Qtok0 is the set of locations possessing the token, and Qntok0 is the set of locations
without the token. The initial location does not possess the token: `0 ∈ Qntok0 .
We assume that there are two auxiliary ports called master and slave that are only used
in a transition from the initial location `0. There are only two transitions involving `0:
the transition from `0 to a location in Qtok0 that broadcasts via the port master , and the
transition from `0 to a location in Qntok0 that receives the broadcast via the port slave. The
broadcast interaction can be checked with the constraints similar to those in Section 5.3.

Applications. Theorem 5.4 gives us a criterion for identifying parameterized BIP models
that express a unidirectional token ring. This criterion has a great impact: one can apply
non-parameterized BIP tools to verify parameterized BIP designs expressing token rings.
As Emerson & Namjoshi showed in their celebrated paper [16], to verify parameterized
token rings, it is sufficient to run model checking on rings of small sizes. The bound on the
ring size—called a cut-off—depends on the specification and typically requires two or three
components.

5.5 Pairwise rendezvous in a star
In a star architecture, one component acts as the center, and the other components commu-
nicate only with the center. The components communicate via rendezvous (considered in
Section 5.2). This architecture is used in client-server applications. Parameterized model
checking for the star architecture was investigated by German & Sistla [18]. We assume
that a parameterized BIP model contains two component types: B0 with only one instance,
and B1 that may have many instances.
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Table 1 Experimental results of identifying architecture models. The column “Outcome” indicates,
whether the benchmark was recognized to have the given architecture (positive), or not (negative).
The experiments were performed on a 64-bit Linux machine with 2.8GHz × 4 CPU and 7.8GiB
memory.

Benchmark Architecture model Outcome Time (sec.) Memory (MB)
Milner’s scheduler uni-directional token ring positive 0.068 ≤ 10
Milner’s scheduler broadcast in clique negative 0.016 ≤ 10
Semaphore pairwise rendezvous in star positive 0.096 ≤ 10
Semaphore pairwise rendezvous in clique negative 0.084 ≤ 10
Barrier broadcast in clique positive 0.028 ≤ 10
Barrier pairwise rendezvous in star negative 0.008 ≤ 10

FOIL-templates. The requirements of rendezvous communication are defined in Section 5.2.
We add the restriction ηFOIL

center that the center is involved in every interaction:
∃i :: type0. active0(i). By restricting ε to have only one instance of type B0, we arrive
at Theorem 5.5, which to a large extent is a consequence of Theorem 5.2.

I Theorem 5.5. Given a two-component parameterized BIP model 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉,
if (ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

center) and ε ↔ (n0 = 1) are both valid,
then every instance 〈B0,B1〉〈N0, N1〉,Γ admits only the rendezvous interactions with the center,
i.e., the only component of type B0.

Applications. Theorem 5.5 gives us a criterion for identifying parameterized BIP models,
where the user processes communicate with the coordinator via rendezvous. To verify such
parameterized BIP models, we can immediately invoke several results by German & Sistla [18,
Sec. 3]. First, one can analyze such parameterized BIP models for deadlocks, which is of
extreme importance to the practical applications of BIP. Second, the results [18] reduce
parameterized model checking to reachability in Petri nets, which allows one to use the
existing tools for Petri nets.

6 Prototype implementation and experiments

We have implemented a prototype of the framework introduced in Section 5. This prototype
uses the following architecture templates: (a) pairwise rendezvous and broadcast in cliques,
(b) token rings, (c) and pairwise rendezvous in stars. As described in Section 5 (see our
framework), given a parameterized BIP model, the tool constructs a set of FOIL formulae and
a set of temporal formulae. The parameterized BIP model follows a predefined architecture,
if the FOIL formulae are valid and the component types satisfy the temporal formulae. Our
implementation uses nuXmv [11] to check temporal formulae and Z3 [14] to check validity of
first-order formulae. FOIL formulae are translated to first-order formulae by guarding the
range of quantification explicitly, e.g. ∃i :: type0. θ is substituted with ∃i. 0 ≤ i < n0 ∧ θ. To
deal with quantifiers, we run a customized solver with tactic ’qe’ (i.e. quantifier elimination).
The implementation and benchmarks are available at http://risd.epfl.ch/parambip.

Table 1 summarizes our experiments with three benchmarks. We conducted each exper-
iment using two kinds of templates: the expected architecture of the benchmark, and an
architecture different from the expected one. In all cases, the architectures were identified
as expected. Our preliminary results demonstrate both correctness and efficiency of our
approach.

http://risd.epfl.ch/parambip
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7 Related work and conclusions

We have shown that our framework encompasses several prominent parameterized model
checking techniques. To our understanding, the other seminal results can be integrated into
our framework: the cut-off results for disjunctive and conjunctive guards [15], network de-
composition techniques [13, 3], and techniques based on well-structured transition systems [1]
and monotonic abstraction [2].

First-order interaction logic extends propositional interaction logic [6, 7], which was
also extended by Dy-BIP [10] and configuration logic [21]. Dy-BIP extends propositional
interaction logic with quantification to define interaction topology independent of the number
of component instances. It uses dedicated history variables to break the symmetry and
specify that, throughout the system execution, successive interactions happen among the
same components. Dy-BIP does not have a mechanism, such as indexing, to statically
distinguish instances of the same component type. Hence, many architectures, e.g., token
rings, cannot be expressed. Configuration logic uses higher-order formulae to represent sets
of topologies. It does not use indexing either, thereby requiring the second-order extension
to express simple architectures such as token rings and linear architectures. Finally, no
decidability results or decision procedures have been proposed for the configuration logic yet.

In the future, we will study second-order extensions of FOIL to express more complex
architectures such as server-client whose coordinator is chosen non-deterministically. In
the long term, we plan to implement a tool that integrates multiple parameterized model
checking techniques and uses our framework to guide the verification of parameterized BIP
designs. FOIL can also be seen as a specification language for BIP interactions and used
for their synthesis similarly to [7]. Finally, it is worth investigating, whether FOIL can be
extended to include priorities as in [8].
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