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Abstract
To achieve scalability, modern Internet services often rely on distributed databases with consist-
ency models for transactions weaker than serializability. At present, application programmers
often lack techniques to ensure that the weakness of these consistency models does not violate
application correctness. We present criteria to check whether applications that rely on a database
providing only weak consistency are robust, i.e., behave as if they used a database providing seri-
alizability. When this is the case, the application programmer can reap the scalability benefits of
weak consistency while being able to easily check the desired correctness properties. Our results
handle systematically and uniformly several recently proposed weak consistency models, as well
as a mechanism for strengthening consistency in parts of an application.
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1 Introduction

To achieve scalability and availability, modern Internet services often rely on large-scale
databases that replicate and partition data across a large number of nodes and/or a wide
geographical span (e.g., [14, 20, 26, 3, 6, 4, 5, 11, 22, 27, 10]). The database clients invoke
transactions on the data at any of the nodes, and the nodes communicate changes to each
other using message passing. Ideally, we want this distributed system to provide strong guar-
antees about transaction processing, such as serializability [8]: the results of concurrently
executing a set of transactions could be obtained if these transactions were executed serially
in some order. Serializability is useful because it allows an application programmer to easily
establish desired correctness properties. For example, to check that the transactions of an
application preserve a given data integrity constraint, the programmer only needs to check
that every transaction does so when executed in isolation, without worrying about con-
currency. Unfortunately, achieving serializability requires excessive synchronisation among
database nodes, which slows down the database and even makes it unavailable if network
connections between replicas fail [17, 1]. For this reason, nowadays large-scale databases
often provide weak consistency guarantees, which allow non-serializable behaviours, called
anomalies.

As a motivating example, consider a toy on-line auction application with transactions
defined by the transactional programs in Figure 1. The program RegUser creates a new
user account. It manipulates the table USERS, whose rows contain a primary key (uId)
and a nickname. An invocation of RegUser(uname) inserts a new row in USERS only if
the nickname uname does not appear in USERS, to ensure that nicknames are unique. The
program ViewUsers can be used to view all the users. Some databases [22, 26, 3] may allow
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7:2 Robustness against Consistency Models with Atomic Visibility

RegUser(uname)
select name
from USERS
as ret_name
where name = uname;
if ret_name defined
then abort
else
insert into USERS
values (new uId, uname);

StoreBid(iid,val)
insert into BIDS
values
(new bId, iid, val);
select nbids
from ITEMS
as n where iId = iid;
update ITEMS
set nbids = n + 1
where iId = iid;

ViewItem(iid)
select *
from ITEMS as ret_item
where iId = iid;

ViewUsers()
select *
from USERS
as ret_users;

USERS(uId, name)
ITEMS(iId, desc, nbids)
BIDS(bId, iId, val)

Figure 1 SQL code and table schema for an auction application. Primary keys are underlined.

executions of RegUser and ViewUsers such as the one sketched in Figure 2(c). There two
invocations of RegUser generate the transactions T1 and T2; these write two rows of USERS,
denoted by x and y, to register the users Alice and Bob. The program ViewUsers() then is
invoked twice; the invocation in T3 sees Alice but not Bob, while the invocation in T4 sees
Bob but not Alice. This result, called a long fork anomaly, cannot be obtained by executing
the four transactions in any sequence and, hence, is not serializable.

The past few years have seen a number of proposals of new transactional consistency
models for modern large-scale databases [22, 11, 26, 3, 5], differing in how much they weaken
consistency, by exposing such anomalies, in exchange for improved performance. Unfortu-
nately, application programmers often lack techniques to ensure that the weakness of these
consistency models does not violate application correctness. This situation hinders the ad-
option of the novel consistency models by mainstream database developers and application
programmers.

One way to address this problem is using the notion of application robustness [16, 15, 9].
An application is robust against a particular weak consistency model if it behaves the same
whether using a database providing this model or serializability. If an application is robust
against a given weak consistency model, then programmers can reap the performance benefits
of using weak consistency while being able to easily check the desired correctness properties.

In this paper we develop criteria for checking the robustness of applications against three
recently proposed consistency models—causal (aka causal+) consistency (CC) [22], prefix
consistency [11] (PC) and parallel snapshot isolation [26] (PSI, aka non-monotonic snapshot
isolation [3]). As a corollary of our results, we also derive an existing robustness criterion [16]
for a classical model of snapshot isolation [6] (SI). Our criteria also handle variants of the
consistency models that allow application programmers to request that certain transactions
be executed under serializability and thereby ensure the robustness of applications that are
not robust otherwise.

We handle the above four consistency models in a uniform and systematic way by ex-
ploiting a recently proposed framework [12] for declaratively specifying their semantics (Sec-
tion 2). In particular, all of the consistency models that we consider guarantee the atomic
visibility of transactions: either all or none of the writes performed by a transaction can
be observed by other transactions. This allows us to simplify reasoning needed to establish
robustness criteria by abstracting from internals of transactions in application executions.
We first propose a dynamic robustness criterion that checks whether a given execution is
serializable (Section 3). We formulate this criterion in terms of the dependency graph of the
execution [2], describing several kinds of relationships between its transactions: an execution
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is serializable if its dependency graph contains no cycles of a certain form, which we call
critical. Criteria for robustness against different consistency models differ in which cycles
are considered critical. We then illustrate how our dynamic robustness criteria on a single
execution can be lifted to static criteria that check that all executions of a given application
are serializable (Section 4).

2 Consistency Model Specifications

We start by recalling from [12] a formal model of database computations and the specifica-
tions of the consistency models that we handle. These specifications are declarative, which
greatly simplifies our formal development. Nonetheless, as shown in [12], the specifications
are equivalent to certain operational specifications, close to implementations.

We consider a database storing objects Obj = {x, y, . . .}, which we assume to be natural-
valued. Clients interact with the database by issuing read and write operations on the
objects, grouped into transactions. We denote each operation invocation by an event (ι, o),
where ι is an identifier from a denumerable set EventId, and o ∈ {read(x, n), write(x, n) |
x ∈ Obj, n ∈ N} describes the operation invoked and its outcome: reading a value n from an
object x or writing n to x. We range over events by e, f, g and denote the set of all events
by Event. In the following we denote irrelevant expressions by _, and write e ` write(x, n)
if e = (_, write(x, n)) and e ` read(x, n) if e = (_, read(x, n)). A binary relation < is
a strict partial order if it is transitive and irreflexive. It is total if additionally for all
elements a and b, we have a < b, b < a or a = b.

I Definition 1. A transaction T, S, . . . is a pair (E,<po), where E ⊆ Event is a finite, non-
empty set of events with distinct identifiers, and the program order <po is a total order
over E. A history H is a finite set of transactions with disjoint sets of event identifiers.
An annotated history (H, level) is a pair where H is an history and level : H → {SER,⊥}.
An execution is a triple X = ((H, level), <hb, <ar), where (H, level) is an annotated history,
<hb is a strict partial order over H, and <ar is a total order over H such that <hb ⊆ <ar.
We refer to <hb and <ar as happens-before and arbitration. J

We denote components of an execution as in X.H and use the same notation for similar
structures.

A transaction records a set of operations and the order in which the client program
invoked them. A history records transactions that committed in a finite database compu-
tation. For simplicity we elide the treatment of aborted and ongoing transactions, as well
as infinite database computations. Annotated histories enrich histories with a function level
that records which transactions the programmer requested to execute under serializability,
and which transactions under the weak consistency model offered by the underlying data-
base. Finally, executions enrich annotated histories with a happens-before order and an
arbitration order, which declaratively represent internal database processing. Intuitively,
T <hb S means that S is aware of the updates performed by T , and thus the outcome of the
operations in S may depend on the effects of T . We call transactions that are not related by
happens-before concurrent. The relationship T <ar S means that the versions of objects
written by S supersede those written by T . The constraint <hb ⊆ <ar ensures that writes
by a transaction T supersede those that T is aware of.

We use the set {CC,PC,PSI,SI,SER} to refer to the consistency models that we treat
(Section 1), and we range over this set by wm. In Figure 4 we specify these consistency
models as combination of the axioms in Figure 3, constraining executions. Formally, we let
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(a) Causality violation. (c) Long fork. Disallowed by Prefix.
Disallowed by the transitivity of <hb.

write(x, book) <po write(y, empty)

read(x, book) <po write(y, review)

read(x, empty) <po read(y, review)

T1

T2

T3

write(x,Alice)

write(y,Bob)

read(x,Alice) <po read(y,−)

read(x,−) <po read(y,Bob)

T1

T2

T3

T4

wr, x

rw, y

wr, y

rw, x

(b) Lost update. Disallowed by Conflict. (d) Write skew. Disallowed by TotalHB.
read(nbids, 0) <po write(nbids, 1)

read(nbids, 1)

read(nbids, 0) <po write(nbids, 1)

T1

T2

T3
read(−, x) <po write(Alice, y)

read(−, y) <po write(Alice, x)

rw, x rw, y

Figure 2 Non-serializable executions illustrating anomalies. Boxes represent transactions, and
thin arrows between boxes represent the happens-before relation. We omit arbitration edges to
avoid clutter. The thick arrows marked wr/rw are explained in Section 3.

∀(E,<po) ∈ H. ∀e ∈ E.∀x, n.
e ` read(x, n) =⇒ (before(e,<po,_ x) = ∅ ∨max(before(e,<po,_ x), <po) ` _(_, n)) (Int)
∀T ∈ H. ∀x, n.
T ` read(x, n) =⇒ ((before(T,<hb, write x) = ∅ ∧ n = 0) ∨

max(before(T,<hb, write x), <ar) ` _(_, n)) (Ext)
∀T, S ∈ H. (∃x. T ` write(x,_) ∧ S ` write(x,_)) =⇒ T = S ∨ T <hb S ∨ S <hb T (Conflict)
<ar ; <hb ⊆ <hb (Prefix)
∀T, S ∈ H.T = S ∨ T <hb S ∨ S <hb T (TotalHB)
∀T, S ∈ H. (level(T ) = level(S) = SER) =⇒ T = S ∨ T <hb S ∨ S <hb T (SerTotal)

Figure 3 Consistency axioms constraining an execution ((H, level), <hb, <ar).

the set of annotated histories allowed by a consistency model wm be given by hist(wm) =
{(X.H,X.level) | X |= wm}. We now explain the axioms and the anomalies that they
(dis)allow. We summarise these anomalies in Figure 2.

Given a total order < ⊆ A × A and a set B ⊆ A, we write max(B,<) for the element
b ∈ B such that ∀a ∈ B. a ≤ b; if A = ∅, then max(B,<) is undefined. We define min in the
obvious dual manner. In the following, when we write max(B,<) or min(B,<), we assume
that they are defined. Given a partial order < ⊆ A×A and an a ∈ A, we define the downset
of a as before(a,<) = {a′ ∈ A | a′ < a}, and let before(a,<, opx) = before(a,<) ∩ {a′ ∈ A |
a′ ` op(x,_)}.

The internal consistency axiom Int ensures that, within a transaction, the database
provides sequential semantics: in a transaction (E,<po), a read event e on an object x
returns the value of the last event on x preceding e. The events on x preceding e are given
by the set before(e,<po,_ x). If in (E,<po) a read e on x is not preceded by an operation
on the same object (i.e., before(e,<po,_ x) = ∅), then its value is determined in terms of
writes by other transactions, using the external consistency axiom Ext. To formulate
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CC ≡ Int ∧ Ext ∧ SerTotal
PSI ≡ CC ∧Conflict
PC ≡ CC ∧ Prefix
SI ≡ PSI ∧ Prefix

SER ≡ Int ∧ Ext ∧TotalHB

Figure 4 Consistency model definitions.

Ext we lift the ` notation to transactions. For given T = (E,<po), x ∈ Obj and n ∈ N, we
write:

T ` write(x, n) if max({e ∈ E | e ` write(x,_)}, <po) ` write(x, n); and
T ` read(x, n) if min({e ∈ E | e ` _(x,_)}, <po) ` read(x, n).

According to Ext, if a transaction T reads an object x before writing to it, then the value
returned by the read is determined by the transactions that happen before T and that write
to x; the set of such transactions is given by before(T,<hb, write x). If this set is empty,
then T reads the initial value 0; otherwise it reads the value written by the transaction from
the set that is the last one in <ar. Ext guarantees the atomic visibility of a transaction:
either all or none of its writes can be visible to another transaction. A detailed discussion
on the matter can be found in [12, Section 3].

The axiom SerTotal formalises the additional guarantees provided to transactions that
the application programmer required to execute on serializability, as recorded by level. We
discuss this axiom in more detail below; for now we assume level = (λT.⊥) for all executions.

The axioms Int, Ext and SerTotal define causal consistency (CC) [22]. This forbids
the causality violation anomaly in Figure 2(a), where a user sees the review, but not the
book it was associated with. This anomaly is forbidden because <hb is transitive, so we
must have T1 <hb T3. Since T1 <ar T2, the writes by T2 supersede those by T1, and thus
Ext implies T3 ` read(y, review) and T3 ` read(x, book).

Causal consistency allows the lost update anomaly, illustrated by the execution in Fig-
ure 2(b). This execution may arise from the programs ViewItem and StoreBid in Figure 1,
which respectively let a user query the information about an item and bid on an item. They
access a table ITEMS, whose rows represent items and contain a primary key (iId), an item
description (desc) and the number of existing bids (nbids). The anomaly in Figure 2(b) is
caused by two invocations of the program StoreBid that generate the transactions T1 and
T2, meant to increase the number of bids of an item. The two transactions read the initial
number of bids for the item, namely 0, and concurrently modify it, resulting in one addition
getting lost. This is observed by a third transaction T3 generated by ViewItem. The lost
update anomaly is disallowed by the axiom Conflict, which guarantees that transactions
updating the same object are not concurrent. This axiom rules out any execution with the
history in Figure 2(b). We specify parallel snapshot isolation (PSI) [26] by strengthening
causal consistency with the axiom Conflict. This consistency models allows the long fork
anomaly given in Figure 2(c), which we discussed in Section 1.

We specify prefix consistency (PC) [11] and snapshot isolation (SI) [6] by strengthening
respectively CC and PSI via the axiom Prefix: if T observes S, then it also observes all
<ar-predecessors of S, which is formalised using sequential composition ; of relations. The
axiom Prefix disallows any execution with the history in Figure 2(c): T1 and T2 have to
be related by <ar one way or another; but then by Prefix, either T4 has to observe Alice
or T3 has to observe Bob. Like causal consistency, prefix consistency allows the lost update
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StoreBid(iId1,7)

ViewItem(iId1)

ViewItem(iId1)

StoreBid(iId1,10)

ret_item = (iId1, book1, 1)

ret_item = (iId1, book1, 2)

wr, ITEMS(iId1).nbids<hb wr, ITEMS(iId1).nbids;<hb

<hb

wr, ITEMS(iId1).nbids<hb

Figure 5 An execution produced by the programs in Figure 1 and its dynamic dependency
graph (the latter explained in Section 3). We assume level = (λT.⊥). We omit events inside
transactions and only show the parameters and the return values of the corresponding programs.
Since <hb ⊆ <ar, all the relevant arbitration edges coincide with the happens-before ones, and we
omit the <ar label.

anomaly in Figure 2(b). Snapshot isolation disallows it, but allows the anomaly of write
skew, illustrated by the execution in Figure 2(d). This execution could be produced by
RegUser in Figure 1. The objects x and y correspond to different rows in the table USERS.
Two invocations of RegUser generate transactions that miss each other’s writes and, as a
consequence, concurrently register two users with the same nickname.

We define serializability (SER) using the axiom TotalHB, which requires happens-
before to be total. It disallows any execution with one of the histories in Figure 2.

Finally, the consistency models we consider include the axiom SerTotal, which requires
happens-before to be total on transactions that the programmer marked as serializable.
For example, in a database providing CC, the history in Figure 2(c) can be disallowed by
letting level(T1) = level(T2) = SER and level(T3) = level(T4) = ⊥. This is because then
SerTotal forces T1 and T2 to be related by happens-before, and therefore either T3 or
T4 has to observe both T1 and T2. We can disallow the history in Figure 2(b) by letting
level(T1) = level(T2) = SER and level(T3) = ⊥.

As the last example, we consider the execution X in Figure 5, which is produced on a
PSI database by the programs StoreBid and ViewItem in Figure 1: X |= PSI. In X the
two transactions due to StoreBid submit bids for an item iId1: one bid of 7 dollars and one
bid of 10 dollars. The other two transactions due to ViewItem query the state of the item.
The query on the left sees the bid of 7, but not that of 10. The query on the right sees
both bids. It is easy to check that the history of this execution is serializable. As a matter
of fact, the results we develop in the following sections let us show that any execution
produced by the programs StoreBid and ViewItem under PSI has a serializable history.
Hence, a database can process the corresponding transactions using the PSI concurrency
control without exposing any anomalies to its users.

3 Dynamic Robustness Criteria

Our first goal is to define criteria to check whether a single execution X in one of the
consistency models that we consider has a serializable history: X.H ∈ hist(SER). From
these dynamic robustness criteria, in the next section we derive static criteria to check
whether this is the case for all executions of a given application.

Our dynamic criteria are formulated in terms of dependency graphs, widely used in the
database literature [2]. Let the set of labels L be defined as follows: D = {(wr, x), (ww, x) |
x ∈ Obj}, L = D ∪ {(rw, x) | x ∈ Obj}. We use λ to range over L and s, t to range over
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L?. A graph G is a pair (H,−−→), where H ∈ Hist and −−→ ⊆ H × L × H. We write
T

λ−−→ S ∈ G in place of (T, λ, S) ∈ −−→. We also use some graph-theoretic notions. A path
π in G is a non-empty finite sequence of edges T0

λ0−−→ T1
λ1−−→ . . .

λn−1−−−−→ Tn. In this case
we write π ∈ G. The path is a cycle if T0 = Tn, and it is a simple cycle if all other pairs of
transactions on it are distinct. We also write T λ−−→ S ∈ π to mean that the edge T λ−−→ S

appears in the path π. Given a graph G = (H,−−→), we denote by s−−−→+ the least relation
such that
(i) T λ−−→+ S if T λ−−→ S ∈ G; and
(ii) T λs−−−→+ S whenever T λ−−→ T ′ ∈ G and T ′ s−−→+ S for some T ′ ∈ H.
We denote with s−−→? the reflexive closure of s−−→+, so that T ε−→? T for every T ∈ H. We
now define a map from executions into dependency graphs.

I Definition 2. The dynamic dependency graph of an execution X = ((H,_), <hb, <ar)
is DDG(X) = (H,−−→), where for every x ∈ Obj the relation −−→ contains the following
triples:
read-dependency: T wr, x−−−−→ S if S ` read(x,_) and T = max(before(S,<hb, write x), <ar);
write-dependency: T ww, x−−−−→ S if T ` write(x,_), S ` write(x,_) and T <ar S;
anti-dependency: T rw, x−−−−→ S if T 6= S and either

(i) T ` read(x,_), S ` write(x,_) and before(T,<hb, write x) = ∅, or
(ii) T ′ wr, x−−−−→ T and T ′ ww, x−−−−→ S for some T ′ ∈ H. J

Thus, T wr, x−−−−→ S means that S reads T ’s write to x (cf. Ext in Figure 3), and T ww, x−−−−→ S

means that S overwrites T ’s write to x. The relation T rw, x−−−−→ S means that S overwrites
the write to x read by T (the initial value of an object is overwritten by any write to this
object). In Figures 2(c), 2(d) and 5 we draw the dependency graphs with thick edges.

Dependency graphs provide a way to show that executions have serializable histories [2].

I Lemma 3. For every X, if X |= Int∧Ext and DDG(X) is acyclic, then X.H ∈ hist(SER).

For instance, the history in Figure 5 is serializable. The graphs of the executions in Fig-
ure 2(c, d) contain cycles and, in fact, the histories of these executions are not serializable.

As we now show, to ensure that the history of an execution X arising from a particular
consistency model is serializable, it is enough to check that DDG(X) does not contain cycles
of a particular form, which we call critical. This more precise characterisation is instrumental
in obtaining our static robustness criteria (Section 4).

A path π in a dynamic dependency graph G is chord-free if, whenever u s−−−→+ v ∈ π
for some s ∈ Ln with n ≥ 2, we have ¬(u _−−−→ v ∈ G). A path π is rw-minimal if,
whenever u rw,_−−−−→ v ∈ π and u λ−−→ v ∈ G, we have λ = (rw,_). The last notion forces us
exclude an rw edge from π if there is another option.

I Definition 4. Given an execution X, an edge T λ−−→ S ∈ DDG(X) is unprotected if
either X.level(T ) 6= SER or X.level(S) 6= SER. A cycle π ∈ DDG(X) among transactions
T0, T1, . . . , Tn (where T0 = Tn) that is simple, chord-free and rw-minimal is:
CC-critical, if π contains an unprotected edge Ti

rw,_−−−−→ Ti+1 and an unprotected edge
Tj

λ−−→ Tj+1 with i 6= j and λ ∈ {(ww,_), (rw,_)};
PC-critical, if π contains an unprotected edge Ti

rw,_−−−−→ Ti+1 and at least two adjacent
unprotected edges with labels in {(ww,_), (rw,_)};

PSI-critical, if:
1. π contains at least two unprotected rw edges; and

CONCUR 2016
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2. for every Ti
rw, x−−−−→ Ti+1, Tj

rw, y−−−−→ Tj+1 ∈ π, if i 6= j, then x 6= y;
SI-critical, if:

1. π contains at least two adjacent unprotected rw edges; and
2. for every Ti

rw, x−−−−→ Ti+1, Tj
rw, y−−−−→ Tj+1 ∈ π, if i 6= j, then x 6= y. J

The graphs of the executions in Figure 2 (with level = (λT.⊥)) contain critical cycles: (c)
contains a PSI-critical cycle, and (d) contains an SI-critical cycle.

I Theorem 5. For every wm and X, if X |= wm, then DDG(X) contains a cycle if and
only if it contains a wm-critical cycle.

From Theorem 5 and Lemma 3 we obtain our dynamic robustness criterion.

I Corollary 6. For every wm and every X, if X |= wm and DDG(X) contains no wm-critical
cycle then X.H ∈ hist(SER).

We note that the above robustness criterion for SI is a variant of an existing one [16, 15].
In our setting, it is just a consequence of our novel criterion for PSI.

To prove Theorem 5 we show how the axioms in Figure 3 impact the properties of edges
and paths in dependency graphs. First, observe that there is a relation between wr,ww edges
and the orders <hb and <ar: for every X and every T, S ∈ X.H, the definitions ensure that

T
wr,_−−−−→ S ∈ DDG(X) =⇒ T <hb S;

(T wr,_−−−−→ S ∈ DDG(X) ∨ T ww,_−−−−→ S ∈ DDG(X)) =⇒ T <ar S;
(X |= Conflict ∧ T ww,_−−−−→ S ∈ DDG(X)) =⇒ T <hb S.

These implications let us show that, under certain conditions, if two transactions in a de-
pendency graph are connected by a path, then they are also related by happens-before or
arbitration.

I Lemma 7. For any X, s ∈ L+ and T s−→+ S ∈ DDG(X), if X |= SerTotal then:
1. if all the rw and ww edges in T

s−→+ S are protected then T <hb S;
2. if all the rw edges in T

s−→+ S are protected then T <ar S;
3. if X |= Conflict and all the rw edges in T

s−→+ S are protected then T <hb S.

The following lemma shows that, if T rw, x−−−−→ S, then T cannot happen-before S: in this
case T would have to read a value at least as up-to-date as that written by S, contradicting
the definition of anti-dependencies.

I Lemma 8. ∀X.∀x ∈ Obj.∀T, S ∈ X.H. T rw, x−−−−→ S ∈ DDG(X) =⇒
S 66hb T ∧ T ` read(x,_) ∧ S ` write(x,_).

Proof of Theorem 5. The if implication is obvious, so let us prove the only if implication.
Suppose that the graph DDG(X) contains a cycle π′. From π′ we can easily build a cycle

π = T0
λ0−−→ T1

λ1−−→ . . .
λn−1−−−−→ Tn (where T0 = Tn, n ≥ 2) (1)

in DDG(X) that is simple, chord-free and rw-minimal. The argument now is a case analysis
on the wm. Here we consider only CC and PSI and defer the full proof to [7].

Case of wm = CC. Lemma 7(2) implies that π contains at least one unprotected rw
edge, for otherwise T0 <ar T0, contradicting the irreflexivity of X.<ar. Let this edge be
Ti

rw,_−−−−→ Ti+1. Then Lemma 8 ensures that Ti+1 6<hb Ti. Since π contains the non-empty
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path Ti+1
_−−→+ Ti, Lemma 7(1) implies that on this path there is at least one unprotected

edge Tj
λ−−→ Tj+1 with λ ∈ {(ww,_), (rw,_)} and i 6= j. It follows that π is CC-critical.

Case of wm = PSI. First we prove that the cycle π contains at least two unprotected
edges rw edges. Since X |= PSI, we know that X |= CC. Thus, the previous argument
ensures that the cycle π contains at least one unprotected rw edge, say Ti

rw, x−−−−→ Ti+1.
Suppose that π contains exactly one such edge. Since X |= Conflict, Lemma 7(3) now
ensures Ti+1 <hb Ti. But by Lemma 8, Ti

rw, x−−−−→ Ti+1 implies Ti+1 6<hb Ti. The resulting
contradiction shows that π must contain at least two unprotected rw edges.

Now we have to prove

∀Ti
rw, x−−−−→ Ti+1, Tj

rw, y−−−−→ Tj+1 ∈ π. i 6= j =⇒ x 6= y. (2)

Suppose that π does not satisfy (2). Then, as <ar is total, Definition 2 guarantees that we
have either Ti+1

ww,x−−−−→ Tj+1 or Tj+1
ww,x−−−−→ Ti+1. Since π is a simple cycle, in the first

case we contradict either that π is chord-free or that π is rw-minimal. In the second case,
we have either (a) Tj+1 = Ti or (b) Tj+1 6= Ti. If (a) holds, then we contradict that π is
rw-minimal, because Ti

rw,_−−−−→ Ti+1 ∈ π and Ti
ww,_−−−−→ Ti+1. If (b) holds, then the sub-path

Tj+1
s−→+ Ti+1 of π contains at least two edges and it is chord-free by construction. But

this contradicts Tj+1
ww,x−−−−→ Ti+1. It follows that π satisfies (2) above, and thus it is a

PSI-critical cycle. J

4 Static Robustness Criteria

We now illustrate how the dynamic robustness criteria (Corollary 6) can be lifted to static
criteria, which allow programmers to analyse the behaviour of their applications and which
can serve as a basis for static analysis tools.

We define an application A by a set of transactional programs fi, giving the code
of its transactions: A = {f1, . . . , fn} (e.g., see Figure 1). As is standard in the database
literature [16], this abstracts from the rest of the application logic to focus on the parts
that directly interact with the database. We call a pair I = (f,v) of a program and a
vector of its actual parameters a program instance. An application instance I is a
set of program instances, and an annotated application instance is a pair (I, levelS),
where levelS : I → {SER,⊥} defines which programs the programmer requested to execute
under serializability. We first formulate criteria for checking the robustness of a particular
annotated application instance, resulting from running a set of transactional programs with
given parameters. We then sketch how these criteria can be generalised to whole applications.

We aim to illustrate the ideas for lifting dynamic robustness criteria to static ones in
the simplest form. To this end, we abstract from the syntax of the programming language
and assume that we are only given approximate information about the set of objects read
or written by each transactional program. Namely, we assume a function rwsets that maps
every program instance I to a triple rwsets(I) = (R3,W3,W2). Informally, R3 and W3

are the sets of all the objects that may be read or written in some execution of I, and W2

is a set of the objects that must be written in any execution of I, with the proviso that
W2 ⊆W3. For instance, for I = (StoreBid, 〈iId1, 7〉) (Figure 1) we have

rwsets(I) = ({ITEMS(iId1).nbids}, {ITEMS(iId1).nbids,BIDS(∗).∗}, {ITEMS(iId1).nbids})

where ∗ means “all fields” or “all rows”.
To formalise the meaning of the read/write sets, we define a relation that determines if a

history can be produced by a given I. We let T  I for rwsets(I) = (R3,W3,W2), if:

CONCUR 2016
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RegUser(Alice) ViewItem(iId1)

StoreBid(iId1, 7)

StoreBid(iId1, 10)
ww=ww, ITEMS(iIdi).nbids
wr =wr, ITEMS(iIdi).∗; wr,BIDS(∗).∗
rw =rw, ITEMS(iIdi).∗; rw,BIDS(∗).∗

rw,USERS(∗).∗; wr,USERS(∗).∗; ww,USERS(∗).∗ wr rw

wr

rw

ww

ww

ww

ww,BIDS(∗).∗

ww,BIDS(∗).∗

Figure 6 The static dependency graph SDG(I) of the application instance I defined in (3). We
draw may edges with dashed arrows, and must edges with solid arrows.

(i) T ` write(x,_) =⇒ x ∈W3;
(ii) T ` read(x,_) =⇒ x ∈ R3;
(iii) x ∈W2 =⇒ T ` write(x,_).

We lift the relation  to annotated histories and annotated application instances:

(H, level)  (I, levelS) ⇐⇒ ∀T ∈ H.∃I ∈ I. T  I ∧ levelS(I) = level(T ).

Note that the definition of  allows multiple transactions in H to be associated to a single
I in I. For example, we have (H, (λT.⊥))  (I, (λI.⊥)) for the history H in Figure 5 and

I = {(RegUser,Alice), (ViewItem, iId1), (StoreBid, 〈iId1, 7〉), (StoreBid, 〈iId2, 10〉)}. (3)

We formulate our robustness criteria by adapting modal transition systems [21].

I Definition 9. The static dependency graph of an application instance I is a triple
SDG(I) = (I, > ,←−→), where the relations > and ←−→ are defined as follows. For
every I, J ∈ I, if rwsets(I) = (W3

I , R
3
I ,W

2
I ) and rwsets(J) = (W3

J , R
3
J ,W

2
J ), then:

I
wr, x

> J ⇐⇒ x ∈W3
I ∩R

3
J ; I

ww, x
> J ⇐⇒ x ∈W3

I ∩W
3
J ;

I
rw, x

> J ⇐⇒ x ∈ R3
I ∩W

3
J ; I

ww,x←−−→ J ⇐⇒ x ∈W2
I ∩W2

J .

Figure 6 shows the static dependency graph of the I in (3). Informally, the edges of
the static dependency graph SDG(I) describe possible dependencies between transactions
in executions produced by I: an edge I λ

> J represents a dependency that may exist, and
an edge I λ←→ J a dependency that must exists. Formally, given an annotated application
instance (I, levelS), we say that the pair (DDG(X), X.level) is over-approximated by the
pair (SDG(I), levelS), written (DDG(X), X.level)�(SDG(I), levelS), if for some total function
f : X.H → I we have:
1. ∀T λ−−→ S ∈ DDG(X). f(T ) λ

> f(S) ∈ SDG(I);
2. ∀I λ←→ J ∈ SDG(I).
∀T ∈ f−1(I).∀S ∈ f−1(J). T λ−−→ S ∈ DDG(X) ∨ S λ−−→ T ∈ DDG(X); and

3. level(T ) = levelS(f(T )).

I Lemma 10. ∀X.∀(I, levelS). (X.H,X.level)  (I, levelS) =⇒
(DDG(X), level) � (SDG(I), levelS).

We now formulate our static robustness criteria by using the same notions of paths and
cycles for static dependency graphs as for dynamic ones (Section 3). Given a pair (I, levelS)
and a cycle in π ∈ SDG(I) among program instances I0, I1, . . . , In (where I0 = In), we
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say that an rw edge Ii
rw, x

> Ii+1 ∈ π is critical in π, if for all Il, Im in π such that
l 6= m and for all t, t′ ∈ D? such that Il

t
> ? Ii ∈ π and that Ii+1

t′
> ? Im ∈ π, we

have ¬(Il
ww,_←−−−→ Im). For example, the graph in Figure 6 contains the following cycle π, in

which the left-most rw edge is critical, while the right-most rw edge is not critical:

ViewItem(iId1) StoreBid(iId1, 7) ViewItem(iId1) StoreBid(iId1, 7) ViewItem(iId1)
rw wr rw wr

ww

(4)

I Definition 11. Given a pair (I, levelS), an edge Ii
λ

> Ii+1 ∈ SDG(I) is unprotected if
either levelS(Ii) 6= SER or levelS(Ii+1) 6= SER. A cycle π ∈ SDG(I) among program instances
I0, I1, . . . , In (where I0 = In) is:
CC-critical, if π contains an unprotected edge Ii

rw, _
> Ii+1 and an unprotected edge

Ij
λ

> Ij+1 with i 6= j and λ ∈ {(ww,_), (rw,_)};
PC-critical, if π contains an unprotected edge Ii

rw, _
> Ii+1 and at least two adjacent

unprotected edges with labels in {(ww,_), (rw,_)}. ;
PSI-critical, if:

1. π contains at least two unprotected critical rw edges; and
2. for every Ii

rw, x
> Ii+1, Ij

rw, y
> Ij+1 ∈ π, if i 6= j, then x 6= y;

SI-critical, if:
1. π contains at least two adjacent unprotected critical rw edges; and
2. for every Ii

rw, x
> Ii+1, Ij

rw, y
> Ij+1 ∈ π, if i 6= j, then x 6= y. J

Note that, unlike a critical cycle in a dynamic dependency graph (Definition 4), a critical
cycle in a static graph does not have to be simple. The following lemma states that �
preserves critical cycles.

I Lemma 12. For every wm, (G, level) and (F, levelS) such that (G, level) � (F, levelS), if G
contains a wm-critical cycle, then F contains a wm-critical cycle.

Lemmas 10 and 12 (which are proven in [7]) and Corollary 6 establish our static criteria.

I Theorem 13. For every (H, level), (I, levelS) and wm, if SDG(I) contains no wm-critical
cycles and (H, level) ∈ hist(wm), then whenever (H, level)  (I, levelS), we have H ∈
hist(SER).

For example, let levelS = (λI.⊥) and consider I defined by (3). The corresponding
static dependency graph in Figure 6 contains PSI-critical cycles, one of which is obtained by
following twice the loop RegUser(Alice) rw,USERS(_).name

> RegUser(Alice). Indeed, as we
explained in Section 2, the annotated instance (I, levelS) is not robust against PSI, because
it can produce the write skew anomaly in Figure 2(d). Now let level′S(RegUser,Alice) = SER
and level′S(_) = ⊥ otherwise. Figure 6 contains the static dependency graph corres-
ponding to the annotated instance (I, level′S). This graph does not contain PSI-critical
cycles. To see why, observe that in the graph there are only two kinds of cycles: the
ones due to the self-loop on the node RegUser(Alice), and the ones that connect nodes in
{StoreBid(iId1, 7), StoreBid(iId1, 10), ViewItem(iId1)}. The cycles of the first kind con-
tain only protected rw edges thanks to level′S, while the cycles of the second kind contain at
most one critical rw edge, as sketched in (4) above. It follows that no cycle is PSI-critical,
and thus by executing only the RegUser transaction on serializability, we make I robust.
However, the graph contains a CC-critical cycle, namely the one shown in (4) above. It is
CC-critical for its two rw edges are unprotected. As we explained in Section 2, under CC I
may produce the lost update anomaly in Figure 2(b), and it is unsafe to run I over a CC
database.

CONCUR 2016
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RegUser(uname)

ViewUsers()

ViewItem(iid′) StoreBid(iid′′, val)

rw,USERS(∗).∗; wr,USERS(∗).∗; ww,USERS(∗).∗; true

wr,USERS(∗).∗;
true

rw,USERS(∗).∗;
true wr, ITEMS(iid′).nbids;

iid′ = iid′′

rw, ITEMS(iid′).nbids;
iid′ = iid′′ ww; ITEMS(iid′).nbids;

iid′ = iid′′

ww;BIDS(∗).∗;
true

Figure 7 The summary dependency graph SDG(A), where A contains all the transactional
programs in Figure 1.

Analysing Whole Applications. The static criteria in Theorem 13 allow a programmer to
analyse the robustness of a given application instance. Analysing an application completely
using the theorem requires considering an infinite number of its instances, a task best done by
an automatic static analysis tool. We now sketch how ideas from abstract interpretation [13,
25] can be used to finitely represent and analyse the set of all instances of an application.
In the future, this can pave the way to automating our robustness criteria in static analysis
tools. Due to space constraints, we only present the concepts by an example.

We associate an application A with a summary dependency graph SDG(A) that
summarises the static graphs of all the instances of A. In Figure 7 we show the summary
dependency graph SDG(A) for the application in Figure 1. Every program in A yields a
summary node in the graph SDG(A), representing all instances of the program. Every
edge in SDG(A) is a summary edge, summarising the possible dependencies between the
corresponding programs. It is annotated by a constraint relating the actual parameters of
the incident programs between which the dependency exists. For example, the summary
edge from ViewItem to StoreBid in Figure 7 means that for every instance I of A we have
StoreBid(iId1,_) rw, x

> ViewItem(iId2) in SDG(I) iff
x ∈ {BIDS(∗).iId,BIDS(∗).val, ITEMS(iId1).nbids} and iId1 = iId2. Similarly, the ww
edge incident to StoreBid means that we have StoreBid(iId1,_) ww, x←−−−→ StoreBid(iId2,_)
in SDG(I) iff x = ITEMS(iId1).nbids and iId1 = iId2.

Definition 11 carries over to summary graphs of applications by taking into account the
constraints on summary edges when checking whether a given rw edge is critical in a given
cycle π, and whether the objects that appear on the rw edges of π are different. For example,
consider the following cycle in the graph in Figure 7:

StoreBid(iid1, val) ViewItem(iid2) StoreBid(iid3, val)

wr, ITEMS(iid2).nbids;
iid2 = iid1

rw, ITEMS(iid2).nbids;
iid2 = iid3

We consider the rw edge on this cycle not critical. This is because the constraints on the
edges in the cycle imply iid1 = iid3, which satisfies the constraint on the must ww edge
between StoreBid programs in Figure 7. For any annotated instance (I, levelS) of the
application A in Figure 1, using the adjusted Definition 11 we can check that, if levelS maps
the instances of RegUser and ViewUser in I to SER, then (I, levelS) is robust against PSI1.

1 Marking ViewUser as SER is actually unnecessary to make this application robust under PSI, because
the graph SDG(A) contains an edge ViewUser() rw,USERS(∗).∗

> RegUser(uname) which does not exist
in the dependency graph of any execution of A. This can be addressed by a more precise static analysis.
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5 Related Work

In the setting of databases, application robustness was first investigated by Fekete et al. [16],
who proposed a criterion for robustness against snapshot isolation (SI) [6]. Fekete then
extended the criterion to SI databases allowing the programmer to request serializability for
certain transactions [15], a mechanism that we also consider. Our criterion is formulated in
a way similar to that of Fekete et al., using dependency graphs [2]. However, in contrast to
their work, we consider more subtle models of parallel snapshot isolation, prefix consistency
and causal consistency, which allow more anomalies than SI. The method we use is also
different from that of Fekete et al. They consider an operational specification of SI [6],
which makes the proof of the robustness criterion highly involved. In contrast, we benefit
from using declarative specifications that achieve conciseness by exploiting atomic visibility
of transactions [12]. This allows us to come up with robustness criteria more systematically.

Robustness has also been investigated for applications running on weak shared-memory
models of common multiprocessors and programming languages (e.g., [9]). However, this
line of work has not considered applications using transactions. Transactions complicate the
consistency model semantics, which makes establishing robustness criteria more challenging.

Serializability of transactions in an application simplifies establishing its correctness prop-
erties, but is not necessary for this. Thus, an alternative approach to establishing application
correctness is to prove its desired properties directly, without requiring the transactions to
produce only serializable behaviours. Corresponding methods have been proposed for ANSI
SQL isolation levels and SI by Lu et al. [23], and for PSI and some of other recent models by
Gotsman et al. [18]. Such methods are complementary to ours: the conditions they require
can be satisfied by more applications, but are more difficult to check than robustness.

6 Conclusion

In this paper we have made the first steps towards understanding the impact of recently-
proposed transactional consistency models for large-scale databases on the correctness prop-
erties of applications using them. To this end, we have proposed criteria for checking when
an application using a weak consistency model exhibits only strongly consistent behaviours.
This enables programmers to check that application correctness will be preserved for a par-
ticular choice of a consistency model or transactions to be executed under serializability.

The robustness result of Fekete et al. for SI has previously given rise to automatic
tools for statically detecting anomalies in applications [19]. Our work could form a basis for
similar advances in databases providing weaker consistency models. Our dynamic robustness
criteria are also of an independent interest: apart from serving as a basis for static analysis,
such criteria can be used to optimise run-time monitoring algorithms [24, 28].

In establishing our robustness criteria, we have followed a systematic approach that
exploits axiomatic specifications [12]: using the axioms of a consistency model, we have
characterised the cycles allowed in dependency graphs of executions on the model, and
exploited the characterisations to provide sound static analysis techniques. We hope that
this method will be applicable to other consistency models being proposed for large-scale
databases.
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