
Bounded Petri Net Synthesis from Modal
Transition Systems is Undecidable∗

Uli Schlachter

Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
D-26111 Oldenburg, Germany
uli.schlachter@informatik.uni-oldenburg.de

Abstract
In this paper, the synthesis of bounded Petri nets from deterministic modal transition systems
is shown to be undecidable. The proof is built from three components. First, it is shown that
the problem of synthesising bounded Petri nets satisfying a given formula of the conjunctive nu-
calculus (a suitable fragment of the mu-calculus) is undecidable. Then, an equivalence between
deterministic modal transition systems and a language-based formalism called modal specifica-
tions is developed. Finally, the claim follows from a known equivalence between the conjunctive
nu-calculus and modal specifications.

1998 ACM Subject Classification F.4.1 Mathematical Logic and Formal Languages

Keywords and phrases Petri net synthesis, conjunctive nu-Calculus, modal transition systems

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.15

1 Introduction

Modal transition systems are a well-known and useful method for specifying systems [18,
1, 8, 17]. Petri net synthesis, or more precisely, the problem of finding an unlabelled Petri
net implementing a given labelled transition system, has also been investigated since many
years [3]. Petri net synthesis not only yields implementations which are correct by design,
but it also allows to extract concurrency and distributability information from a sequential
specification [4, 7, 21]. Since modal transition systems are extensions of labelled transition
systems, it has been suggested to extend Petri net synthesis to cover modal transition
systems, e.g., in [9]. However, some questions that are settled in the basic net synthesis
theory are still open for such an extension. For example, the decidability status of checking
whether a bounded Petri net implementing a given modal transition system exists, has been
stated as unknown in [3].

In this paper, we give a negative answer to this question, by proving that it is undecidable
whether a given deterministic modal transition system can be implemented by a bounded
Petri net. This is done in several steps, two reductions and an equivalence. First, a counter
machine, also known as Minsky machine [20], is encoded in a specification that is interpreted
on a special class of Petri nets. The technique used in this step resembles constructions
known from other papers, for instance [15] (but in the context of labelled Petri nets). In
this first step, a variation of the model checking problem is shown to be undecidable. In a
second step, the class of Petri nets used in the first step is encoded in a second specification,
allowing the Petri net synthesis problem to be shown undecidable. In principle, the two steps

∗ This work was supported by the German Research Foundation (DFG) project ARS (Algorithms for
Reengineering and Synthesis), reference number Be 1267/15-1.

© Uli Schlachter;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

would suffice for our proof, because both specifications used in them can be represented as
deterministic modal transition systems. However, these representations are complex and
hard to understand or reason about. Therefore, in order to simplify the representations,
we add a third step using the conjunctive nu-calculus [11, 12, 13], a fragment of the modal
mu-calculus [16, 2]. The first two steps are done with the conjunctive nu-calculus and in this
third step we show the equivalence of the nu-calculus, modal specifications and deterministic
modal transition systems to derive our main result.

Section 2 introduces the bounded execution problem for two-counter machines. In sec-
tion 3, we define a class of Petri nets Nsim(b0, b1) which can simulate two-counter machines
whose counters stay below the bounds (b0, b1) ∈ N2. Section 4 characterises the reachability
graphs of Nsim(b0, b1) in a specification that is independent of b0 and b1 and derives the un-
decidability of the bounded Petri net synthesis problem for the conjunctive nu-calculus. We
then obtain the main result, the undecidability of the bounded Petri net synthesis problem
for deterministic modal transition systems, in section 5 by introducing an effective trans-
lation between deterministic modal transition systems and modal specifications, which are
known to be equivalent to the conjunctive nu-calculus [11, 13].

The nu-calculus, used in all but the last section, does not allow to express, e.g., non-
determinism or unimplementable specifications. It turns out to be well-suited for research
into Petri net synthesis from modal transition systems and was (to the author’s knowledge)
invented in [12] for the investigation of its Petri net synthesis problem. In fact, the pure
and unbounded Petri net synthesis problem for the conjunctive nu-calculus was shown to be
undecidable in [12]. Unfortunately, the approach described in [12] cannot be lifted to impure
or bounded Petri nets because it encodes the effect of transitions on individual places via
auxiliary transitions that have to be able to surpass any bounds. The effect of a transition
only characterises the transition in pure Petri nets, but not in impure nets. Instead, a new
approach for encoding Petri nets in the nu-calculus has been developed for the purpose of
our proof. In fact, the results of [12] and the present paper are incomparable: neither implies
the other.

The limitation of the expressivity of the nu-calculus tends to make it incomparable to
other fragments of the mu-calculus. For example, the mu-calculus fragment considered in
[10] has an undecidable model checking problem, while the nu-calculus is weaker and has a
decidable model checking problem, likely even in polynomial time, because of its equivalence
with deterministic modal transition systems, where model checking is possible in polynomial
time [6].

2 Preliminaries

I Definition 1. A (finite, initial) labelled transition system (lts) is a structure A = (Q,Σ,→,
q0) where Q is a finite set of states, Σ is an alphabet, →⊆ Q × Σ × Q is the transition
relation and q0 is the initial state. An arc (q, a, q′) ∈→ is written as q a−→ q′. This is
extended to words w ∈ Σ∗ via q ε−→ q and q

w−→ q′
a−→ q′′ ⇒ q

wa−−→ q′′. If some q′ ∈ Q

with q w−→ q′ exists, we write q w−→. If no such q′ exists, write q 6 w−→. The language of A is
L(A) = {w ∈ Σ∗ | q0

w−→}. A is deterministic if ∀q, q′, q′′, a : q a−→ q′∧q a−→ q′′ ⇒ q′ = q′′. Two
lts A1, A2 with Ai = (Qi,Σ,→i, q0i) are isomorphic if there exists a bijection ξ : Q1 → Q2
so that ξ(q01) = q02 and for all q, q′ ∈ Q1, a ∈ Σ: q a−→1 q

′ ⇐⇒ ξ(q) a−→2 ξ(q′).

I Definition 2. A (place-transition, initially marked, injectively labelled, arc-weighted)
Petri net is a tuple N = (P,Σ, F,M0) where P,Σ are disjoint and finite sets of places,
respectively transitions, F : ((P × Σ) ∪ (Σ × P)) → N is the flow relation and M0 is the

U. Schlachter 15:3

initial marking where a marking M is a mapping M : P → N. We call M(p) the number
of tokens on place p in M . A Petri net is pure if it satisfies ∀p ∈ P, t ∈ Σ: F (p, t) =
0 ∨ F (t, p) = 0, otherwise it is impure. The effect E(t) ∈ Zp of a transition t ∈ Σ is defined
by E(t)(p) = F (t, p) − F (p, t). A transition t ∈ Σ has no effect if E(t)(p) = 0 for all p.
A transition t ∈ Σ is enabled in marking M , written M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t). In
this situation t can fire and leads to marking M ′, written M [t〉M ′, if M ′ = M +E(t). This
is extended to sequences via M [ε〉M , and if M [u〉M ′[v〉M ′′ then M [uv〉M ′′. The set of all
markings reachable from M0 is E(N) = {M | ∃w ∈ Σ∗ : M0[w〉M}. The reachability graph
of M is the lts RG(N) = (E(N),Σ,→,M0) where → = {(M, t,M ′) | M [t〉M ′}. We call N
k-bounded if ∀M ∈ E(N), p ∈ P : M(p) ≤ k and bounded if such a k exists. The language of
a Petri net is L(N) = L(RG(N)).

The conjunctive nu-calculus is a syntactic fragment of the modal mu-calculus [16, 2]. For
example the disjunction, the negation and the least fixed point µX.β from mu-calculus
are missing. Usually, the semantics of the mu-calculus is defined as sets of states. The
language-based version used here simplifies some of the proofs in the rest of the paper. A
deterministic lts satisfies a formula β ∈ Lν in the language-based semantics if and only if
it does in state-based semantics [12]. The nu-calculus has operations similar to the modal
process logic [19] except that the nu-calculus cannot express non-determinism.

I Definition 3 ([11, 12, 13]). Given a set of variables Var = {X1, X2, . . . } and an alphabet Σ,
the set of all formulas of the conjunctive nu-calculus is called Lν and is defined recursively as
the least set containing true, X,→a, 6→a and if β1, β2 ∈ Lν , then [a]β1, β1 ∧β2, νX.β1 ∈ Lν ,
where a ∈ Σ and X ∈ Var. A variable X ∈ Var is free in β ∈ Lν if it is not under the scope
of any νX, which is the greatest fixed point operator. The interpretation JβKval

L ⊆ L of a
formula β ∈ Lν is based on a prefix-closed language L ⊆ Σ∗ and a valuation val : Var → 2L
which assigns subsets of L to variables. JβKval

L is defined inductively over the structure of β:

JtrueKval
L = L JXKval

L = val(X)
J→aKval

L = {w ∈ L | wa ∈ L} J 6→aKval
L = {w ∈ L | wa /∈ L}

J[a]βKval
L = {w ∈ L | wa ∈ JβKval

L ∨ wa /∈ L} Jβ1 ∧ β2Kval
L = Jβ1Kval

L ∩ Jβ2Kval
L

JνX.βKval
L =

⋃
{V ⊆ L | JβKval(V/X)

L ⊇ V }

The valuation val(V/X) is defined by val(V/X)(X1) = V for X = X1 and val(V/X)(X1) =
val(X1) otherwise. We write 〈a〉β for the formula →a ∧ [a]β and by definition this means
J〈a〉βKval

L = {w ∈ L | wa ∈ JβKval
L }. For a word w = a1 . . . an ∈ Σ+ we define both 〈w〉β =

〈a1〉 . . . 〈an〉β and [w]β = [a1] . . . [an]β. Via this we can define [V]β = [v1]β∧· · ·∧ [vn]β for a
finite set V ⊆ Σ+. Because the semantics of a formula β without any free variables does not
depend on the valuation val, we simply write JβKL. A language L satisfies such a formula,
written L |= β, if and only if ε ∈ JβKL (understand this as the state reached via ε, i.e. the
initial state, satisfying the formula). For a Petri net N we define N |= β as L(N) |= β.

The operator [a]β can be interpreted as a kind of disjunction as its meaning is 〈a〉β ∨ 6→a,
so it allows a continuation of a word, but does not require it. This is the analogue of a may
arc in modal transition systems [18].

I Example 4. We consider the formula [a]→a for the languages L1 = {ε}, L2 = {ε, a} and
L3 = {ε, a, aa}. The interpretation is J[a]→aKLi

= {w ∈ Li | wa ∈ J→aKLi
∨ wa /∈ Li}.

First, we evaluate J→aKL1 = ∅, J→aKL2 = {ε}, and J→aKL3 = {ε, a}. Then, we derive
J[a]→aKL1 = ∅∪{ε} = {ε}, J[a]→aKL2 = ∅∪{a} = {a}, and J[a]→aKL3 = {ε}∪{aa} = {ε, aa}.
The results are L1 |= [a]→a, L2 6|= [a]→a and L3 |= [a]→a. An intuitive understanding of

CONCUR 2016

15:4 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

[a]→a is: If a ∈ L, then aa ∈ L. However, this formula only checks the beginning of words
and is not influenced by a elsewhere, since, for example, {ε, b, ba} |= [a]→a for the same
reasons as L1 |= [a]→a.

For an example exhibiting a fixed point operator, consider νX1.→a ∧ [a]X1. We begin
evaluating the subformula →a ∧ [a]X1. The first part requires a ∈ L. The second part
states that if a ∈ L (which is true by the first part), then a ∈ val(X1) where X1 is bound
by the fixed point operator. For an intuitive understanding, we can substitute →a ∧ [a]X1
for X1 and get the formula →a ∧ [a](→a ∧ [a]X1). Now we see that also aa ∈ L is required.
Substituting X1 many times results in the ‘infinite formula’→a∧[a](→a∧[a](→a∧[a](. . .))).
An example for a language which satisfies this formula is produced by the regular expression
a∗. Our formula is equivalent to νX1.〈a〉X1 by the definition of 〈a〉β.

As another example, consider β = νX1.→b∧〈a〉X1 and the regular language L = L(a∗(b+
ε)). In this setting, L |= β. This language is prefix-closed, as required for JβKL to be defined.

I Definition 5. A two-counter machine [20] is a tuple C = (`, γ) where ` ∈ N is the number
of states and γ : {1, . . . , `} → Γ` maps states to instructions. Every instruction γ(k) ∈ Γ` has
one of three possible forms; γ(k) = INCi k′, γ(k) = DECi k′ ELSE k′′ or γ(k) = HALT where
i ∈ {0, 1} and k′, k′′ ∈ {1, . . . , `}. The first instruction increments counter i and switches
to state k′. The second instruction decrements counter i if possible and then switches to
state k′. Otherwise, it switches to state k′′. A configuration is a tuple c = (k, (j0, j1))
where k ∈ {1, . . . , `} is the current state and j0, j1 ∈ N are the values of the counters. An
execution of C is a sequence of configurations which begins with (1, (0, 0)) and a configuration
c = (k, (j0, j1)) is followed by c′ = (k′, (j′0, j′1)) if γ(k) 6= HALT and:

If γ(k) = INCi k′′, then k′ = k′′, j′i = ji + 1 and j′1−i = j1−i.
If γ(k) = DECi k′′ ELSE k′′′, then either ji = 0 and c′ = (k′′′, (j0, j1)) or ji 6= 0, k′ = k′′,
j′i = ji − 1 and j′1−i = j1−i.

The execution of C is unique, hence two-counter machines are deterministic. We say that C
halts if a configuration with an instruction HALT is reached. An execution is called bounded
by (b0, b1) if all of its configurations (k, (j0, j1)) satisfy j0 ≤ b0 and j1 ≤ b1. It is called
bounded if such (b0, b1) exist.

The bounded execution problem for C is to decide if the execution of the two-counter machine
C is bounded. This problem is undecidable, because two-counter machines have the same
computational power as Turing machines and solving this problem would allow to decide
the halting problem.

3 Simulating Two-Counter Machines with Petri nets

This section introduces a family of bounded Petri nets Nsim(b0, b1) with transitions Σ =
{�,�,�,�,�,�} and parameters b0, b1 ∈ N. They are defined such that a two-counter
machine C can be simulated on the reachability graph of such a net via a formula ΦC of the
conjunctive nu-calculus if and only if its execution is bounded (lemma 10).

A prototypical member of the class Nsim(b0, b1) is depicted in Figure 1. The Petri
nets from this class can simulate two bounded counters. The values of the counters are the
number of tokens on p0, respectively p1. Each counter has an initial value of zero, a capacity
of b0, resp. b1 (this is because the complement places pi have bi tokens initially), and can be
incremented, decremented and tested for zero via transitions �, � and � (resp. �, � and �).
Every reachable marking M satisfies, by the structure of the net, M(p0) +M(p0) = b0 and
M(p1) + M(p1) = b1. As an example of the behaviour of these Petri nets, the reachability
graph RG(Nsim(2, 3)) is shown in Figure 1.

U. Schlachter 15:5

p0
�

�
b0

p0

�

p1
�

�
b1

p1

�

b0

b0

b1

b1

� �

� �

�

� �

� �

�

� �

� �

�

� �

� �

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

init

Figure 1 The family of nets Nsim(b0, b1) with b0, b1 ∈ N is depicted on the left. On the right, the
reachability graph of Nsim(2, 3) is shown and the firing sequence ���������� is highlighted.

I Lemma 6. For t ∈ Σ = {�,�,�,�,�,�} and M ∈ E(Nsim(b0, b1)): M [t〉M ′ iff:
For t = � we have M ′(p0) = M(p0) + 1 ≤ b0 and M ′(p1) = M(p1).
For t = � we have M ′(p0) = M(p0)− 1 ≥ 0 and M ′(p1) = M(p1).
For t = � we have M ′ = M and M(p0) = 0.
Analogously for t ∈ {�,�,�} (the second counter).

Proof. This lemma follows from the structure and behaviour of each net Nsim(b0, b1). J

We define a formula ΦC describing a two-counter machine C. By exploiting the structure of
Nsim(b0, b1), such a formula is satisfied on Nsim(b0, b1) iff the execution of C is bounded.

I Definition 7. Given a two-counter machine C = (`, γ), the formula Φk for a state k ∈
{1, . . . , `} in the variables X1 to X` is defined by:

Φk =

〈�〉Xk′ if γ(k) = INC0 k
′

〈�〉Xk′ if γ(k) = INC1 k
′

[�]Xk′ ∧ [�]Xk′′ if γ(k) = DEC0 k
′ ELSE k′′

[�]Xk′ ∧ [�]Xk′′ if γ(k) = DEC1 k
′ ELSE k′′

true if γ(k) = HALT

Consider the equation system Xi = Φi(X1, . . . , X`) for i ∈ {1, . . . , `} where the Φk =
Φk(X1, . . . , X`) are as defined above and the syntax β(X) is used to clarify free variables.
The Gaussian elimination principle (see, e.g., [2]), constructs for each k a formula Ψk repres-
enting a greatest fixed point solution of Xk in this system. For example, a variable Xk cur-
rently defined as Xk = β(Xk) is eliminated by replacing Xk = β(Xk) with Ψk = νXk.β(Xk)
and substituting Xk in all other formulas with νXk.β(Xk). In this way, all variables are
eliminated. Since the starting state of C is state 1, define ΦC := Ψ1.

Intuitively we can understand that Φk is fulfilled if the behaviour of state k can be simulated.
The free variables are used to connect the formulas with each other. For the increment
operation, the corresponding event has to be possible and afterwards the following state
should be simulated. The decrement operation is more complicated, because there are
two possibilities for the following state. To implement this, the structure of Nsim(b0, b1) is
exploited. In every reachable marking, exactly one of the transitions � and � (resp. � and
�) is enabled. Thus, the [a]-operator can be used to express this choice. The increment
operation uses the 〈a〉-operator instead, which will make the simulation fail if a counter
needs to be incremented beyond the bound b0 or b1 of Nsim(b0, b1) (because this transition
is disabled).

CONCUR 2016

15:6 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

The following examples show the construction and the Gaussian elimination principle:

I Example 8. We will construct ΦC for the two-counter machine C = (5, γ) with:

γ(1) = INC0 2 γ(3) = DEC0 2 ELSE 4 γ(5) = HALT

γ(2) = INC1 3 γ(4) = DEC1 3 ELSE 5

This machine begins by incrementing its first counter once (instruction 1). In a loop, it then
increments the second counter and decrements the first (instructions 2–3). When the first
counter reaches zero, another loop is done decrementing the second counter (instructions
3–4). Its execution and the corresponding operations are:

(1, (0, 0)) �−→ (2, (1, 0)) �−→ (3, (1, 1)) �−→ (2, (0, 1)) �−→ (3, (0, 2)) �−→ (4, (0, 2)) �−→

(3, (0, 1)) �−→ (4, (0, 1)) �−→ (3, (0, 0)) �−→ (4, (0, 0)) �−→ (5, (0, 0))

This execution is bounded by (1, 2), but also by (2, 3). The formulas for each state are
shown in the following system, where a solution for X1 is needed for ΦC :

X1 = 〈�〉X2 X2 = 〈�〉X3 X3 = [�]X2 ∧ [�]X4 X4 = [�]X3 ∧ [�]X5 X5 = true

The Gaussian elimination principle now eliminates variables. We begin by substituting
the only uses of X5 and X4 with their definitions. This produces X4 = [�]X3 ∧ [�]true
and X3 = [�]X2 ∧ [�]([�]X3 ∧ [�]true). The variable X3 is eliminated by substituting
νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true) (note the added νX3 in front of the value of X3). This
yields X2 = 〈�〉(νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true)). Continuing by substituting X2 and
eliminating X1 produces the result:

ΦC = Ψ1 = 〈�〉(νX2.〈�〉(νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true)))

As we saw above, the execution of C is bounded by (2, 3). The reader may verify that
Nsim(2, 3) |= ΦC due to ���������� being in L(Nsim(2, 3)) (compare Figure 1), which
is the word representing the correct execution of C.

I Example 9. An example for a machine which has a bounded execution, but does not halt,
is the machine C′ = (1, γ′) with γ′(1) = DEC0 1 ELSE 1. This machine loops in its initial
configuration. Its formula is ΦC′ = νX1.[�]X1 ∧ [�]X1. Here we have Nsim(0, 0) |= ΦC′ and
the ‘infinite word’ representing a correct simulation is �ω. If we modify this machine by
setting γ′(1) = INC0 1, we get ΦC′ = νX1.〈�〉X1. This machine’s unbounded execution is
represented by �ω. No instance of Nsim(b0, b1) allows an infinite sequence of increments.

I Lemma 10. The execution of a two-counter machine C is bounded by (b0, b1) ∈ N× N if
and only if Nsim(b0, b1) |= ΦC.

Proof sketch. An analogous result was shown in [12]. The main difference is in the defini-
tions of Nsim(b0, b1) and Φk, so that we can incorporate impure Petri nets.

We can define words wi ∈ Σ∗ that contain the operations done to reach the i-th con-
figurations in C’s execution. Assuming C is bounded, by induction it follows from lemma 6
that all wi ∈ L := L(Nsim(b0, b1)). These words can be grouped into sets Vk containing for a
state k all words wi where the i-th configuration is in state k. Show that JΦkKval

L ⊇ Vk holds
for val defined by val(Xi) = Vi. By standard fixed point theory it follows that these values
are contained in the unique greatest fixed point and so w1 = ε ∈ V1 ⊆ JΦ1Kval

L ⊆ JΦCKL,
which was to show.

U. Schlachter 15:7

Reachable markings of Nsim(b0, b1) are related to counter values in an obvious way.
Assuming ε ∈ JΦCKL, it can be shown via lemma 6 that the words wi as defined above reach
markings corresponding to the i-th configuration. Thus, ΦC follows the operations done
by C and since in Nsim(b0, b1) only bounded markings are reachable, the execution of C is
bounded by the same numbers. J

Because the bounded execution problem is undecidable, we obtain:

I Corollary 11. Given C, it is undecidable if ∃b0, b1 ∈ N such that Nsim(b0, b1) |= ΦC.

4 Undecidability of Petri Net Synthesis from the Nu-calculus

This section characterises the reachability graph of Petri nets Nsim(b0, b1) via a formula
ΦNsim independent of b0 and b1. Our goal is to show that, given a formula β ∈ Lν , the
existence of a bounded Petri net satisfying β is undecidable. For this, we first want to
show that if a bounded Petri net satisfies ΦNsim ∧ ΦC , then there are numbers b0, b1 so
that Nsim(b0, b1) |= ΦC . The undecidability then follows via corollary 11. In the following
sections, various parts of ΦNsim are introduced. Section 4.3 then shows the result sketched
above.

4.1 Auxiliary Formulas
We begin with a formula that signifies that a word w ∈ Σ∗ can be fired infinitely often:

NoEffect(w) = νX1.(〈w〉X1)

I Lemma 12. N |= NoEffect(w) for a bounded Petri net N if and only if M0[w〉M0.

Proof. By definition JNoEffect(w)KL =
⋃
{V ⊆ L | {v ∈ L | vw ∈ V } ⊇ V }. This means

it is the largest subset W of L that satisfies v ∈ W ⇒ vw ∈ W . Thus, the premise
ε ∈ JNoEffect(w)KL is equivalent to {w}∗ ⊆ JNoEffect(w)KL. Since always JβKL ⊆ L, we
derive {w}∗ ⊆ L. In any bounded Petri net it holds that {w}∗ ⊆ L iff M0[w〉M0. J

By M0[aa′〉M0 ⇒M0 = M0 +E(a) +E(a′), we get that Inv(a, a′) expresses that transitions
a, a′ ∈ Σ have opposite effects:

Inv(a, a′) = NoEffect(aa′)

I Corollary 13. N |= Inv(a, a′) for a bounded Petri net N if and only if M0[aa′〉 and
E(a) = −E(a′).

Next, we define a formula that requires some formula β to hold globally. Here, X1 is a fresh
variable which does not appear in β.

Global(β) = νX1.([Σ]X1 ∧ β)

I Lemma 14. ε ∈ JGlobal(β)Kval
L if and only if L = JβKval

L .

Proof. We begin with J[Σ]X1 ∧ βKval
L = {w ∈ JβKval

L | ∀a ∈ Σ: wa ∈ val(X1) ∨ wa /∈ L}.
The fixed point produces JGlobal(β)Kval

L = {w ∈ JβKval
L | ∀a ∈ Σ: wa ∈ L ⇒ wa ∈ JβKval

L } =
{w ∈ JβKval

L | ∀u ∈ Σ∗ : wu ∈ L ⇒ wu ∈ JβKval
L }. The following implications follow:

ε ∈ JGlobal(β)Kval
L ⇒ L = JβKval

L ⇒ L = JGlobal(β)Kval
L ⇒ ε ∈ JGlobal(β)Kval

L . J

CONCUR 2016

15:8 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

a

bb′a′b
a

start

Figure 2 Illustration for Swph(a, b, a′, b′). Whenever the dashed arcs are present, the solid arcs
are required. The interpretation begins in the upper left corner.

Next we define formulas which require two events to be swappable in the language, using
events with opposite effects to ‘undo’ the firing of a transition. Swapping ab into ba is
expressed by Swph and the opposite direction is added by Swp. This is extended to all
combinations of the four events a, b, a′ and b′ by Swap. Figure 2 illustrates Swph(a, b, a′, b′).

Swph(a, b, a′, b′) = Global([a][b]〈b′〉〈a′〉〈b〉〈a〉true)
Swp(a, b, a′, b′) = Swph(a, b, a′, b′) ∧ Swph(b, a, b′, a′)

Swap(a, b, a′, b′) = Swp(a, b, a′, b′) ∧ Swp(a, b′, a′, b) ∧ Swp(a′, b, a, b′) ∧ Swp(a′, b′, a, b)

I Lemma 15. Let N be a Petri net with E(a) = −E(a′) and E(b) = −E(b′). Then
N |= Swp(a, b, a′, b′) if and only if ∀w ∈ L(N) : wab ∈ L(N) ⇐⇒ wba ∈ L(N).

Proof. First, we have ε ∈ JSwph(a, b, a′, b′)KL iff for all wab ∈ L also wabb′a′ba ∈ L by the
definition of the semantics and by lemma 14. Since a and a′ (and b and b′) have opposite
effects, this can be restated as: For all reachable markings M , we have M [ab〉 ⇒ M [ba〉.
This shows both directions of the lemma. J

I Corollary 16. For a net N with E(a) = −E(a′) and E(b) = −E(b′), N |= Swap(a, b, a′, b′)
if and only if ∀c ∈ {a, a′}, d ∈ {b, b′}, w ∈ L(N) : wcd ∈ L(N) ⇐⇒ wdc ∈ L(N).

4.2 Characterisation of our Class of Nets via the Nu-Calculus
We will characterise Nsim(b0, b1) by a formula ΦNsim = ΦE∧Φswap∧Φ1

dec∧Φ2
dec∧Φdep∧Φzero.

With ΦE, we will restrict the effects of transitions, Φswap requires swaps to be possible, and
Φ1
dec forbids the decrement of a counter with value zero. The formula Φ2

dec requires a counter
decrement to be possible after every increment and the formula Φdep ensures that counters
are independent. The correct behaviour of the zero-test event is required by Φzero.

ΦE = Inv(�,�) ∧NoEffect(�) ∧ Inv(�,�) ∧NoEffect(�)

By lemma 12 and corollary 13, ΦE expresses that the increment and decrement transitions
have opposite effects and that the test transitions have no effect on the marking. It can
easily be seen that all Petri nets in the class Nsim(b0, b1) have these properties.

Another property of Nsim(b0, b1) is that it contains two independent subnets. The order
in which transitions from different subnets fire is arbitrary. By ΦE, transitions � and � have
no effect and do not need to be considered. For the other events, Swap is used. Additionally,
in the initial marking, the decrement operations are disabled by φ1

dec:

Φswap = Swap(�,�,�,�) Φ1
dec = 6→� ∧ 6→�

I Lemma 17. For a bounded Petri net N over Σ such that N |= ΦE ∧ Φswap ∧ Φ1
dec, for

every reachable marking M there are words w ∈ {�}∗ and v ∈ {�}∗ so that M0[vw〉M and
M0[wv〉M .

U. Schlachter 15:9

Proof. SinceM is a reachable marking, there is a word u ∈ Σ∗ so thatM0[u〉M . By N |= ΦE
and lemma 12, events � and � have no effect and can be removed from u without problems.
By corollary 16 and N |= Φswap, we can freely swap remaining events belonging to different
counters. Every subword ba of u with a ∈ {�,�} and b ∈ {�,�} is now swapped into ab.
This results in a word from {�,�}∗ · {�,�}∗. Again by N |= ΦE and by corollary 13, we
know that � and � (respectively � and �) have opposite effects. Thus all subwords ��,
��, �� and �� can be removed. A firing sequence u = vw of the required form reaching
M remains and induction over corollary 16 swaps this into wv. Note that by Φ1

dec, neither
v nor w begin with a decrement operation and thus both only contain increments. J

Whenever a counter is incremented, it can be decremented afterwards:

Φ2
dec = Global([�]→�) ∧Global([�]→�)

I Lemma 18. If N |= Φ2
dec then for all w ∈ Σ∗ it holds that w� ∈ L(N) ⇒ w�� ∈ L(N)

and w� ∈ L(N)⇒ w�� ∈ L(N).

Proof. We only show the first part. Let w� ∈ L(N). Since L(N) is prefix closed and by
lemma 14, we have w ∈ L(N) = J[�]→�KL(N) = {u ∈ L(N) | u� 6∈ L(N) ∨ u�� ∈ L(N)}.
By w� ∈ L(N), w must satisfy the second part of the disjunction. Thus, w�� ∈ L(N). J

The formulas defined so far allow the simulation of counters. However, it is still possible
that the counters are interdependent and can, for example, reach the values (2, 3) and (3, 2),
but not (3, 3). Such dependencies are not present in Nsim(b0, b1) and we exclude them via
the formula Φdep:

Φdep = Global([�][�]→�)

We use this formula in the next lemma to express that, if both counters can be incremented,
then they can also be incremented one after another. Since Lν does not allow implications,
the situation that both counters can be incremented is captured as [�][�]. Φdep only makes
a requirement on the first counter, because the second counter follows via Φswap.

I Lemma 19. If N |= ΦE ∧ Φswap ∧ Φ2
dec ∧ Φdep, then for every w ∈ Σ∗, we have w� ∈

L(N) ∧ w� ∈ L(N)⇒ w�� ∈ L

Proof. First, we can apply lemma 18 and get w� ∈ L(N)⇒ w�� ∈ L(N). By N |= ΦE, we
know that �� has no effect, so w and w�� reach the same marking. Because of w� ∈ L(N),
this means that we also have w��� ∈ L(N). Thus, after w�, the sequence �� is enabled
and Φdep yields that � is enabled afterwards, so w���� ∈ L(N). Since �� has no effect,
we can remove this part and get w�� ∈ L(N). J

I Definition 20. For a Petri net N define the associated numbers b0(N), b1(N) ∈ N ∪ {∞}
to be the supremum of possible values so that M0[�b0(N)〉 and M0[�b1(N)〉.

We can now characterise the state space of a Petri net satisfying the formulas defined so far:

I Lemma 21. For a bounded Petri net N over Σ with N |= ΦE∧Φswap∧Φ1
dec∧Φ2

dec∧Φdep,
a marking M is reachable if and only if it is reachable via M0[�j0�j1〉M with ji ≤ bi(N).

Proof. First we show that all sequences �j0�j1 are enabled. By definition we have �j0 ∈
L(N) and �j1 ∈ L(N). Applying lemma 19 and corollary 16 (to swap the firing sequences
into the needed form) inductively shows that �j0�j1 ∈ L(N). It remains to show that no

CONCUR 2016

15:10 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

more markings are reachable. According to lemma 17, we only have to consider markings
M reachable through words of our form. Thus, it only remains to show that j0 ≤ b0(N)
and j1 ≤ b1(N). However, corollary 16 can be used to bring either the part �j0 or �j1 to
the beginning of the word. Now, the definitions of b0(N) and b1(N) guarantee that these
bounds are not exceeded. J

Φzero = Φ0
zero ∧ Φ1

zero requires that the zero test is enabled when a counter has the value
zero, no matter which value the other counter has, and is disabled otherwise:

Φ0
zero = (νX1.[�]X1 ∧→�) ∧Global([�]6→�)

Φ1
zero = (νX1.[�]X1 ∧→�) ∧Global([�]6→�)

For a language satisfying this formula, the first part of Φ0
zero requires that for any �i ∈ L,

also �i� ∈ L. The second part states that no word may end in �� and thus the zero test
is not possible after an increment.

I Lemma 22. Let N be a bounded Petri net with N |= ΦE∧Φswap∧Φ1
dec∧Φzero and j0, j1 ∈ N

so that w = �j0�j1 ∈ L(N). Then w� ∈ L(N) ⇐⇒ j0 = 0 and w� ∈ L(N) ⇐⇒ j1 = 0.

Proof. If j1 = 0, then the first part of Φ1
zero requires w� = �j0� ∈ L(N) for any value of

j0. Similarly, if j1 > 0, the second part requires w� = �j0�j1� 6∈ L(N). For the analogous
statement for the first counter, we apply lemma 17 to get �j1�j0 ∈ L(N) and make an
analogous argument afterwards. J

I Lemma 23. Let N be a bounded Petri net such that N |= ΦE∧Φzero. Then the transition
� has a negative effect on some place p and � has a negative effect on some place q, where
p = q is allowed, and both b0(N) 6= 0 6= b1(N) and b0(N) 6=∞ 6= b1(N) hold.

Proof. Observe that by Φ0
zero, transition � is initially enabled, but disabled after � (which

has to be enabled by ΦE). Thus, � consumes tokens required by � from a place p.
For the second part, by corollary 13, Inv(�,�) (part of ΦE) requires � to be enabled

in the initial marking. Thus, b0(N) > 0. For b0(N) 6=∞, we observe that the initial token
count M0(p) on the place p from which � consumes tokens is finite and � becomes disabled
eventually (b0(N) <∞). A similar argument can be made for q and 0 < b1 <∞. J

4.3 Undecidability of Petri Net Synthesis from the Nu-calculus
With the definitions and results of the previous sections, we now prove that ΦNsim :=
ΦE ∧Φswap ∧Φ1

dec ∧Φdep ∧Φ2
dec ∧Φzero characterises the reachability graph of Nsim(b0, b1):

I Lemma 24. Let N be a bounded Petri net over the alphabet Σ with N |= ΦNsim , then
RG(N) and RG(Nsim(b0(N), b1(N))) are isomorphic.

Proof. Lemma 23 shows that b0(N) 6= ∞ 6= b1(N). Thus, Nsim(b0(N), b1(N)) is well-
defined. By lemma 6 and lemma 21, all reachable markings in either net are reached via
firing sequences �j0�j1 with j0 ≤ b0(N) and j1 ≤ b1(N). By lemma 23 and by the structure
of Nsim(b0(N), b1(N)), different such firing sequences reach different markings. Thus, we can
uniquely identify markings of either net with firing sequences �j0�j1 and use this relation
as a bijection between markings.

It remains to show that this bijection preserves the firing of transitions. By the structure
of Nsim(b0(N), b1(N)) and by lemma 22, the zero test is enabled in a markingM of either net
exactly if the corresponding counter was not increased to reachM . By ΦE and the structure

U. Schlachter 15:11

of Nsim(b0(N), b1(N)), the zero test has no effect and reaches the marking M again. By a
similar argument, this time including lemma 18, a decrement is possible if the corresponding
counter has a non-zero value and reaches the marking where the corresponding counter was
incremented one time less often. Finally, by the structure of Nsim(b0(N), b1(N)) and lemma
21, a counter can be incremented as long as it is below its maximal value.

Altogether this shows that we have an isomorphism between RG(Nsim(b0(N), b1(N)))
and RG(N) that preserves the firing of transitions. J

I Theorem 25. It is undecidable whether there exists a bounded Petri net N with transitions
Σ = {�,�,�,�,�,�} so that N |= β for a given formula β ∈ Lν without free variables.

Proof. We use a reduction from the problem of finding b0, b1 ∈ N so that Nsim(b0, b1) |= ΦC ,
which is undecidable according to corollary 11. Define βC = ΦNsim ∧ ΦC . We show that
∃N : N |= βC ⇐⇒ ∃b0, b1 ∈ N : Nsim(b0, b1) |= ΦC .

Assume a bounded Petri net N with N |= βC . By lemma 24, RG(N) and A :=
RG(Nsim(b0(N), b1(N))) are isomorphic. From this, we derive L(RG(N)) = L(A) and be-
cause the semantics of Lν are defined on languages, we arrive at Nsim(b0(N), b1(N)) |= βC .
By definition of the conjunction, this gives us Nsim(b0(N), b1(N)) |= ΦC . We can easily
compute b0(N), b1(N) ∈ N via their definition.

For the other direction, assume that there are numbers b0, b1 ∈ N so that Nsim(b0, b1) |=
ΦC . Without loss of generality we can assume that b0 6= 0 6= b1, because if the execution of C
is bounded by (b0, b1), it is also bounded by (b0 + 1, b1 + 1) (apply lemma 10). It remains to
show that ∀x, y > 0: Nsim(x, y) |= ΦNsim , because we can combine this to ΦNsim ∧ ΦC = βC
and arrive at Nsim(b0, b1) |= βC . To satisfy ΦNsim , all its parts have to hold. The formula ΦE
only makes requirements about the effect of transitions by requiring some infinite sequences
to be initially enabled (see lemma 12 and corollary 13). These sequences are possible in
Nsim(b0, b1), but only if b0 > 0 and b1 > 0, which we can assume. The rest follows directly
from the semantics of ΦNsim and the structure of the Petri net together with corollary 16. J

5 Undecidability of Synthesis from Modal Transition Systems

We will show our main result in theorem 30 via an equivalence between the conjunctive
nu-calculus and deterministic modal transition systems. This equivalence is established via
another formalism, modal specifications, which is known to be equivalent to the conjunctive
nu-calculus. Similar equivalences are known for more expressive models [5], but depend on
a ∨-operator, which Lν does not have, for transforming a formula to an automaton. A
different approach follows.

Remember that a finite automaton A = (Q,Σ,→, F, q0) is a lts equipped with a set
F ⊆ Q of final states. The language of A is Lf (A) = {w ∈ Σ∗ | ∃q ∈ F : q0

w−→ q}. Every
regular language is the language of a unique minimal deterministic finite automaton AL [14].

I Definition 26 ([18]). A modal transition system is a tupleM = (S,Σ,→�,→♦, s0) where
S is a finite set of states, Σ an alphabet, s0 the initial state and →�,→♦ ⊆ S ×Σ× S with
→� ⊆ →♦ are its must and may arcs, respectively. The maximal implementation of M is
the ltsM = (S,Σ,→♦, s0). M is deterministic ifM is.

A lts A = (Q,Σ,→, q0) is an implementation of M, written A |= M, if a relation
R ⊆ Q×S exists so that (q0, s0) ∈ R and for all (q, s) ∈ R and all a ∈ Σ the following holds:
1. If s a−→� s′, then ∃q′ ∈ Q with q a−→ q′ and (q′, s′) ∈ R.
2. If q a−→ q′, then ∃s′ ∈ S with s a−→♦ s

′ and (q′, s′) ∈ R.
Also, L |=M for a prefix-closed language L, iff there is a det. lts A |=M with L = L(A).

CONCUR 2016

15:12 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

I Lemma 27. For any modal transition system M = (S,Σ,→�,→♦, s0) and any prefix-
closed language L, both M |= M and L |= M ⇒ L ⊆ L(M) hold. If A |= M for a lts
A = (Q,Σ,→, q0) and M and A are both deterministic, then R = {(q, s) | ∃w ∈ Σ∗ : q0

w−→
q ∧ s0

w−→♦ s} is a relation witnessing A |=M.

I Definition 28 ([11]). A modal specification is a tuple Sm = ({Ca}a∈Σ, I) describing a class
of languages where Ca ⊆ Σ∗ contains all words that must be extendable by an additional a,
while words from I ⊆ Σ∗ are forbidden to occur at all. All Ca and I are regular languages.
The completion operator associated to Sm is the function CSm

: 2Σ∗ → 2Σ∗ defined by
CSm

(L) =
⋃
a∈Σ(L∩Ca) ·{a}. A prefix-closed language satisfies Sm, written L |= Sm, if and

only if CSm(L) ⊆ L and L ∩ I = ∅. A modal specification is incoherent if I ∩ CSm(Σ∗) 6= ∅.

I Lemma 29 ([13]). For every modal specification Sm there is an equivalent coherent modal
specification S′m.

Proof sketch. For S′m, modify the Ca according to C ′a = Ca \ {w ∈ Σ∗ | wa ∈ I}. J

We can now prove our main result:

I Theorem 30. Given a deterministic modal transition system M, it is undecidable if a
bounded Petri net N with L(N) |=M exists.

Proof. It is known that formulas of Lν without free variables and modal specification are
equally expressive [11, 13]. Therefore, invoking theorem 25 shows that it is undecidable if
for a given modal specification Sm there is a bounded Petri net N with L(N) |= Sm. We
prove this theorem by showing that modal specification and deterministic modal transition
systems are equally expressive.

Given a deterministic modal transition systemM = (S,Σ,→�,→♦, s0), we construct a
modal specification Sm(M) so that for all prefix-closed languages L ⊆ Σ∗ : L |= M ⇐⇒
L |= Sm(M) as follows. The set S(a) := {s ∈ S | s a−→�} is the set of all states having
an outgoing must arc with label a. Via this, define AS(a)

M as the finite automaton based
on the lts M with S(a) as its set of final states. Now Ca := Lf (AS(a)

M) is the regular lan-
guage containing words after which an a is required. Finally, define the modal specification
Sm(M) := ({Ca}a∈Σ, I) where I := Σ∗ \ L(M) is the set of forbidden words.

Analogously, given a coherent modal specification Sm, there is a deterministic modal
transition system M(Sm) so that for all prefix-closed languages L ⊆ Σ∗ : L |= Sm ⇐⇒
L |= M(Sm). For a regular language L, let AL be the deterministic automaton accepting
it, let Sm = ({Ca}a∈Σ, I) be given and let A be the synchronous product of all ACa

and
AI . The synchronous product of two automata is a lts constructed by taking the Cartesian
product of the sets of states and defining the transition relation element-wise, i.e. if q a−→ q′

and s a−→ s′, then (q, s) a−→ (q′, s′). This can be generalized to multiple automata.
The states ofM(Sm) are the states of A and its initial state and alphabet are kept. The

may arcs →♦ are based on the arcs of A. However, all arcs that reach states which belong
to final states of AI are removed. This ensures that the allowed behaviour between Sm and
M(Sm) is the same. M(Sm) is deterministic because A is deterministic. For →�, for each
a ∈ Σ look at each state s containing a final state q of ACa . Because Sm is coherent, the
arc s a−→♦ was not removed in the previous step. The (unique) arc s a−→ s′ is added to →�.

The correctness of both constructions can be shown. For this, lemma 27 is useful. J

I Example 31. Figure 3 shows a deterministic modal transition system M. We will now
construct Sm(M). We have S(a) = S(b) = {1}, since for both letters this is the only state

U. Schlachter 15:13

1 2
init

b
a

a

M :

1 2 3
init

b

a

a

a, b
b

A :

Figure 3 On the left, a modal transition system M is shown. May arcs are dashed and solid
lines represent may and must arcs.On the right, the product automaton A being the synchronous
product of ACa , ACb and AI is depicted. For ACa and ACb , state 1 is the only final state. For AI ,
this is state 3.

with an outgoing must arc, so Ca = Cb = Lf (AS(a)
M). The reader may easily verify that

Lf (AS(a)
M) = L((a+ ba)∗). For I, derive L(M) = L((a+ ba)∗(ε+ b)) and I = Σ∗ \ L(M) =

L((a+ ba)∗bb(a+ b)∗). This finishes the construction of Sm(M) = ({Ce}e∈{a,b}, I)
For the other direction, we begin with the modal specification Sm := Sm(M) that was

just derived and constructM(Sm). The synchronous product of ACa
, ACb

and AI is shown
in Figure 3. The may arcs ofM(Sm) are all arcs of A except those reaching a final state of AI .
Thus, the arc from state 2 to state 3 and the two loops around state 3 are removed. For the
must arcs, the arcs leaving a final state of ACa

(resp. ACb
) labelled with the corresponding

event are considered. These are both arcs leaving state 1. The only may arc which is not
also a must arc is the arc from state 2 to state 1. The constructed modal transition system
M(Sm) is the same asM from Figure 3, except that it also contains an isolated state 3.

6 Conclusion

In this paper, the problem of finding a bounded Petri net implementing a given deterministic
modal transition system was shown to be undecidable. This was done by first showing this
problem to be undecidable for the conjunctive nu-calculus. The main result followed via
an equivalence between the nu-calculus and deterministic modal transition systems. This
result also settles the undecidability for the more powerful class of non-deterministic modal
transition systems.

Several interesting questions are still open. The author believes that the presented
approach can also be applied to the pure and bounded Petri net synthesis problem. The
main difficulty is the zero-test transition, which would have to be split into two parts.

Another direction is to find decidable subcases of the Petri net synthesis problem. This
could be done via structural restrictions on the modal transition systems or via limiting the
class of synthesised Petri nets. For example, for a given k, the k-bounded Petri net synthesis
problem from modal transition systems is decidable, because k-bounded Petri nets can be
restricted to arc weights ≤ k without loss of generality. Only a finite number of Petri nets
remain and each can be model-checked against the specification.

Possible structural restrictions on the modal transition systems might forbid must-arcs
to form loops or might require each specification to be reachable via must-arcs.

Acknowledgements. I am grateful for the thoughtful remarks and suggestions by Eric
Badouel, Eike Best, Valentin Spreckels, and Harro Wimmel. Also, I’d like to thank the
anonymous reviewers for their helpful comments.

References
1 Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. 20

years of modal and mixed specifications. Bulletin of the EATCS, 95:94–129, 2008.

CONCUR 2016

15:14 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

2 André Arnold and Damian Niwiński. Rudiments of µ-calculus. North Holland, 2001.
3 Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net Synthesis. Springer,

2015. doi:10.1007/978-3-662-47967-4.
4 Eric Badouel, Benoît Caillaud, and Philippe Darondeau. Distributing finite automata

through petri net synthesis. Formal Aspects of Computing, 13(6):447–470, 2002. doi:
10.1007/s001650200022.

5 Nikola Benes, Benoît Delahaye, Uli Fahrenberg, Jan Kretínský, and Axel Legay. Hennessy-
milner logic with greatest fixed points as a complete behavioural specification theory. In
Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013, volume 8052 of
LNCS, pages 76–90. Springer, 2013. doi:10.1007/978-3-642-40184-8_7.

6 Nikola Benes, Jan Kretínský, Kim Larsen, and Jirí Srba. On determinism in modal trans-
ition systems. Theoretical Computer Science, 410(41):4026–4043, 2009. doi:10.1016/j.
tcs.2009.06.009.

7 Eike Best and Philippe Darondeau. Petri net distributability. In Edmund M. Clarke, Irina
Virbitskaite, and Andrei Voronkov, editors, PSI 2011, Revised Selected Papers, volume
7162 of LNCS, pages 1–18. Springer, 2011. doi:10.1007/978-3-642-29709-0_1.

8 Glenn Bruns. An industrial application of modal process logic. Science of Computer
Programming, 29(1-2):3–22, 1997. doi:10.1016/S0167-6423(96)00027-5.

9 Philippe Darondeau. Distributed implementations of Ramadge-Wonham supervisory con-
trol with Petri nets. In Eduardo Camacho, editor, Proceedings of the 44th IEEE CDC-ECC
2005, pages 2107–2112. IEEE, 2005. doi:10.1109/CDC.2005.1582472.

10 Javier Esparza. On the decidability of model checking for several µ-calculi and petri nets.
In Sophie Tison, editor, CAAP 1994, volume 787 of LNCS, pages 115–129. Springer, 1994.
doi:10.1007/BFb0017477.

11 Guillaume Feuillade. Modal specifications are a syntactic fragment of the Mu-calculus.
Research Report RR-5612, INRIA, 2005. URL: https://hal.inria.fr/inria-00070396.

12 Guillaume Feuillade. Spécification logique de réseaux de Petri. PhD thesis, Université de
Rennes I, 2005.

13 Guillaume Feuillade and Sophie Pinchinat. Modal specifications for the control theory of
discrete event systems. DEDS, 17(2):211–232, 2007. doi:10.1007/s10626-006-0008-6.

14 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass, 1st edition, 1979.

15 Petr Jancar. Nonprimitive recursive complexity and undecidability for petri net equival-
ences. Theoretical Computer Science, 256(1-2):23–30, 2001. doi:10.1016/S0304-3975(00)
00100-6.

16 Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983. doi:10.1016/0304-3975(82)90125-6.

17 Jan Kretínský and Salomon Sickert. MoTraS: A tool for modal transition systems and their
extensions. In Dang Van Hung and Mizuhito Ogawa, editors, ATVA 2013, volume 8172 of
LNCS, pages 487–491. Springer, 2013. doi:10.1007/978-3-319-02444-8_41.

18 Kim Larsen. Modal specifications. In Joseph Sifakis, editor, AVMFSS, volume 407 of
LNCS, pages 232–246. Springer, 1989. doi:10.1007/3-540-52148-8_19.

19 Kim Larsen and Bent Thomsen. A modal process logic. In LICS 1988, pages 203–210.
IEEE, 1988. doi:10.1109/LICS.1988.5119.

20 Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

21 Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke-Uffmann. On character-
ising distributability. Logical Methods in Computer Science, 9(3), 2013. doi:10.2168/
LMCS-9(3:17)2013.

http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/s001650200022
http://dx.doi.org/10.1007/s001650200022
http://dx.doi.org/10.1007/978-3-642-40184-8_7
http://dx.doi.org/10.1016/j.tcs.2009.06.009
http://dx.doi.org/10.1016/j.tcs.2009.06.009
http://dx.doi.org/10.1007/978-3-642-29709-0_1
http://dx.doi.org/10.1016/S0167-6423(96)00027-5
http://dx.doi.org/10.1109/CDC.2005.1582472
http://dx.doi.org/10.1007/BFb0017477
https://hal.inria.fr/inria-00070396
http://dx.doi.org/10.1007/s10626-006-0008-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1007/978-3-319-02444-8_41
http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.2168/LMCS-9(3:17)2013
http://dx.doi.org/10.2168/LMCS-9(3:17)2013

	Introduction
	Preliminaries
	Simulating Two-Counter Machines with Petri nets
	Undecidability of Petri Net Synthesis from the Nu-calculus
	Auxiliary Formulas
	Characterisation of our Class of Nets via the Nu-Calculus
	Undecidability of Petri Net Synthesis from the Nu-calculus

	Undecidability of Synthesis from Modal Transition Systems
	Conclusion

