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Abstract
We address the problem of reachability in distributed systems, modelled as networks of finite
automata and propose and prove a new algorithm to solve it efficiently in many cases. This
algorithm allows to decompose the reachability objective among the components, and proceeds
by constructing partial products by lazily adding new components when required. It thus con-
structs more and more precise over-approximations of the complete product. This permits early
termination in many cases, in particular when the objective is not reachable, which often is an
unfavorable case in reachability analysis. We have implemented this algorithm in a first prototype
and provide some very encouraging experimental results.
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1 Introduction

As distributed systems become more and more pervasive, the need for the verification of
their correctness increases accordingly. The problem of verifying that some particular state
of the system is reachable is a cornerstone in this endeavour. Yet even this simple problem is
challenging in a distributed context, due to the exponential growth of the state-space of the
system with the number of components, a problem often referred to as “state explosion”.

To alleviate this issue several approaches have been proposed in the last two decades. In
particular, partial order techniques, which allow to explore only part of the state-space while
preserving completeness, have proved to be an efficient approach [12] and are implemented
in some state-of-the-art tools, including LoLA [15]. Another technique called partial model-
checking has been proposed in [1], which consists in incrementally quotienting temporal
logic formulas by incorporating the behaviours of individual processes into that formula.
This leads to a compositional verification scheme that has been recently extended and
implemented in the PMC tool on top of the CADP toolbox [14]. This idea to incrementally
take into account components of distributed systems is also present in works on compositional
minimization [9, 6] and modular model checking [10, 7]. Recently, the IC3 algorithm [3]
has been proposed to address the safety / reachability issue, with very promising results.
This algorithm incrementally generates more and more precise over-approximations of the
reachability relation, by computing stronger and stronger inductive assertions using SAT
solving [3] or SMT solving [4]. Similar ideas of incremental refinements were also successfully
used in AI planning [2, 11].

A common high-level scheme in the partial model-checking approach, the IC3 approach,
and the hierarchical planning approach is to incrementally compute more and more precise
approximate objects until sufficient precision permits to conclude. We propose a new approach
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17:2 Lazy Reachability Analysis in Distributed Systems

also based on this scheme. Contrarily to IC3, we deliberately use the classical tools of explicit
state space exploration in finite automata-based models, with the motivation of ultimately
combining our technique with some of the most successful improvements of these tools, like
partial-order reduction techniques, and with well-known extensions to more expressive models
like timed automata. In contrast to the partial model-checking approach, we take advantage
of the simplicity of the reachability property we study, and adopt a lower-level approach, by
focusing on the individual components of the system and their fine interactions.

Our contribution in this paper is therefore the following: first an algorithm, which projects
a reachability property on the individual components, then lazily adds components to the
projections and merges them together as interactions that are meaningful to the reachability
property are discovered. We provide full proofs for completeness, soundness, and termination.
Second, we report on a prototype implementation that permits a first evaluation of our
algorithm. We have compared these performances with LoLA.

The paper is organized as follows: in Section 2 we give the basic definitions upon which
our algorithm is built. In Section 3, we describe our algorithm and prove it. In Section 4 we
report on experimental results, and we conclude in Section 5.

2 Preliminary definitions

2.1 LTSs and their products
We focus on labelled transition systems, synchronized on common actions, as models.

I Definition 1. A labelled transition system (LTS) is a tuple L = (S, ι, T,Σ, λ) where S is a
non-empty finite set of states, ι ∈ S is an initial state, Σ is an alphabet of transition labels,
T ⊆ S × S is a finite set of transitions, and λ : T → Σ is a transition labeling function.

By a slight abuse of notations, we also denote by Σ(L) the set of labels of L and by λ(L)
the set of labels effectively associated to at least one transition in L.

I Definition 2. In such an LTS, a path is a sequence of transitions π = t1 . . . tn such that:
∀1 ≤ k ≤ n, tk = (sk, sk+1) ∈ T and s1 = ι. In this case we say that π reaches sn+1. A state
s is said to be reachable if there exists a path that reaches s.

I Definition 3. We say that two LTSs L1 = (S1, ι1, T1,Σ1, λ1) and L2 = (S2, ι2, T2,Σ2, λ2)
are isomorphic if and only if there exists two bijections fS : S1 → S2 and fT : T1 → T2 so
that: fS(ι1) = ι2, and ∀s1, s

′
1 ∈ S1, (s1, s

′
1) ∈ T1 iff (fS(s1), fS(s′1)) ∈ T2, and λ1((s1, s

′
1)) =

λ2((fS(s1), fS(s′1))).

Our systems are built as parallel compositions of multiple LTSs.

I Definition 4. Let L1, . . . ,Ln be LTSs such that ∀1 ≤ i ≤ n,Li = (Si, ιi, Ti,Σi, λi). The
compound system L1 ‖ . . . ‖ Ln is the LTS (S, ι, T,Σ, λ) such that S = S1 × · · · × Sn,
ι = (ι1, . . . , ιn), Σ = Σ1 ∪ · · · ∪ Σn, and t = ((s1, . . . , sn), (s′1, . . . , s′n)) ∈ T with λ(t) = σ if
and only if ∀1 ≤ i ≤ n if σ ∈ Σi then ti = (si, s

′
i) ∈ Ti and λi(ti) = σ else si = s′i.

Remark that (L1 ‖ L2) ‖ L3, L1 ‖ (L2 ‖ L3), and L1 ‖ L2 ‖ L3 are isomorphic (they are
identical up to renaming of states and transitions). It is thus possible to compute compound
systems step by step, by adding LTSs to the composition one after the other.

I Definition 5. Lid = (Sid, ιid, Tid,Σid, λid) with Sid = {id}, ιid = id, Tid = ∅, Σid = ∅, and
λid is the unique function from ∅ to ∅.
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Remark that Lid can be considered as the neutral element for the composition of LTSs:
∀L,L ‖ Lid and L are isomorphic. Also remark that for any LTS L, there is an LTS
containing only the initial state of L which is isomorphic to Lid. We denote it by id(L).

2.2 Partial products and reachability of partial states
We define a notion of extension of LTSs, using a partial order relation.

I Definition 6. An LTS L = (S, ι, T,Σ, λ) extends an LTS L′, noted L′ v L, if and only
if L′ is isomorphic to some LTS (S′, ι′, T ′,Σ′, λ′) with S′ ⊆ S, T ′ ⊆ T, Σ′ ⊆ Σ, ι = ι′, and
λ′ = λ|T ′ . If, moreover, S′ 6= S, or T ′ 6= T, or Σ′ 6= Σ, L is said to strictly extend L′, noted
L′ @ L.

We define ini(L) as the LTS containing only the initial state of L but, contrarily to id(L),
with Σ(ini(L)) = Σ(L). Note that we clearly have ini(L) v L.

Given a set of LTSs, we now define partial products as products in which some parts of
the LTSs, or possibly some LTSs altogether, are not used:

I Definition 7. An LTS L′ is a partial product of a compound system L = L1 ‖ · · · ‖ Ln if
there exists m LTSs L′k1

, . . . ,L′km
(with {kj : j ∈ [1..m]} ⊆ [1..n]) such that L′ is isomorphic

to L′k1
‖ · · · ‖ L′km

and ∀j ∈ [1..m],L′kj
v Lkj .

Note that in the algorithm we propose in Section 3, we will actually always have, by
construction, ini(Lkj

) v L′kj
v Lkj

, which implies that all three LTSs have the same alphabet.
We focus on solving particular reachability problems where one is interested in reaching

partial states.

I Definition 8. In a compound system L1 ‖ . . . ‖ Ln we call any element from S1× · · · ×Sn

a global state. A partial state is an element from (S1 ∪ {?})× · · · × (Sn ∪ {?}) \ {(?, . . . , ?)}.
We say that a partial state (s′1, . . . , s′n) concretises a partial state (s1, . . . , sn) if ∀i, si 6= ?

implies s′i = si.

A partial state is therefore in some sense the specification of the set of global states that
concretise it, i.e., that share the same values on dimensions not equal to ? in the partial
state. We use partial states to specify our reachability objectives.

I Definition 9. In a compound system L, a partial state is said reachable, if there exists a
reachable global state that concretises it. Given a set R of partial states, we call reachability
problem (RPRL ) the problem of deciding whether or not some element from R is reachable.

Given a reachability problem RPRL we denote by Lg the set of indices of the LTSs
involved in R: for each i ∈ Lg, there exists at least one partial state in which the element
corresponding to Li is not ?. In a reachability problem, if there exists a reachable global
state in L that concretises an element from R, we write L → R. If this is not the case, we
write L 9 R.

We conclude this section by establishing two basic results on partial products of LTSs
that will be instrumental in proving that our approach is sound and complete.

Lemma 10 formalizes the fact that, due to the synchronization by shared labels mechanism,
removing an LTS from a product produces an over-approximation of the reachability property
projected on the remaining LTSs.

CONCUR 2016



17:4 Lazy Reachability Analysis in Distributed Systems

I Lemma 10. Let L = L1 ‖ · · · ‖ Ln be a compound system in which some global state
s = (s1, . . . , sn) is reachable. Let L′ be the partial product of L obtained by removing Li for
some i. Similarly, let s′ be the state of L′ obtained from s by removing the ith component si.

Then s′ is reachable in L′.

Lemma 11 works in the opposite direction to Lemma 10: If we can find a subset of the
LTSs, in which we can reach some given state, and that does not make use of any label
appearing in an LTS not in this subset – condition (i) –, then we can add the missing LTSs
to get the full product, while still ensuring the reachability of our given state. The result we
prove is actually a bit stronger: one can preserve the reachability found in a partial product
of our subset of LTSs, provided that if some label appears on a transition in the partial
product, then it is present in the alphabets of all the components of the partial product that
can be extended into an LTS that uses this label – condition (ii). Condition (i) ensures that
we do not add any synchronization constraint to existing transitions when adding new LTS,
while condition (ii) does the same but when extending the LTSs already in the subset.

I Lemma 11. Let L = L1 ‖ · · · ‖ Ln be a compound system. Let H ⊆ [1..n]. Suppose to
simplify the writing that H = [1..h] and let C = C1 ‖ · · · ‖ Ch be a partial product of (‖ i∈HLi)
such that: (i) for all i 6∈ H, Σ(Li) ∩ λ(C) = ∅, and (ii) for all i ∈ H, Σ(Li) ∩ λ(C) ⊆ Σ(Ci).

If some global state s = (s1, . . . , sn) is reachable in C with path π then the global state
s∗ = (s∗1, . . . , s∗n) defined by s∗i = si if i ∈ H and s∗i is an arbitrary state of Li otherwise is
reachable in L with the same path from the state s0 = (s0

1, . . . , s
0
n) such that s0

i is the initial
state of Li if i ∈ H and s0

i = s∗i otherwise.

3 The Lazy Reachability Analysis Algorithm

In the following subsections, we present our algorithm. It makes use of the classical abstract
list data-structure, with the usual operations: hd(), tl(), len() give respectively the head, tail,
and length of a list. Operator : is the list constructor (prepend) and ++ is concatenation.
rev() reverses a list. [ ] is the empty list and L[i] is the ith element of list L.

Algorithm 1 is the main function solving our reachability problems. It starts from a
partition of the LTSs involved in the reachability objective. The idea here is to decompose
this objective and verify it separately on each involved component with the hope that they
do not interact. List Ls has (initially) one element per part of the initial partition. Each of
those elements is a list of tuples (A,C, I, J,K), described in details in the next subsection,
that represent more and more concrete partial products (in the sense that they include more
and more LTSs) of the system built around the LTSs in each partition, as we go towards the
end of the list. In our algorithm, this list is walked along using the functional programming
idiom of Huet’s Zipper by decomposing it in Left, the current element, and Right, but it
could as well be represented as a big array with a current index, etc.

We start with partial products consisting of only the initial states of each involved LTSs.
The algorithm then performs two main tasks: concretisation and merging.

3.1 Concretisation
Concretisation consists in extending the partial products in two different directions: by
computing more and more states and transitions for a given number of LTSs, and by adding
LTSs. The (indices of the) LTSs currently used in the products are in the set J , and those
being added are in set K. Set I serves as a memory of the initial partition of LTSs involved
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Algorithm 1 Algorithm solving RPRL (Lg: indices of LTSs involved in R)

1: function Solve(L,R)
2: choose a partition {I1, . . . , Ip} of Lg

3: ∀k ∈ [1..p], let IDk =‖ i∈Ik
id(Li) and INIk =‖ i∈Ik

ini(Li).
4: Ls← [([ ], (ID1, INI1, I1, ∅, I1), [ ]), . . . , ([ ], (IDp, INIp, Ip, ∅, Ip), [ ])]
5: Complete ← False
6: Consistent ← False
7: while not Complete or not Consistent do
8: Complete ← ∀k, Ls[k] is complete
9: if not Complete then
10: optional unless Consistent
11: mayHaveSol ← Concretise(Ls)
12: if not mayHaveSol then return False
13: end if
14: end option
15: end if
16: Consistent ← Ls is consistent
17: if not Consistent then
18: optional unless Complete
19: Merge(Ls)
20: end option
21: end if
22: end while
23: return True
24: end function

in the objective. LTS C is the current partial product we have computed and A represents
what we had computed at the previous level (before we added the LTSs in K).

The goal of the Concretise() function (Algorithm 2) is to find a partial product reaching
the objective and using only LTSs that are either in J or in K. This is what we call complete
and is formalized as follows:

I Definition 12 (Completeness). The tuple (Left, (A,C, I, J,K),Right) is complete if ∃C∗ v C
such that C∗ → R|J∪K and {i /∈ J ∪K : Σ(Li) ∩ λ(C∗) 6= ∅} = ∅.

To ensure completeness, we have to add LTSs that share actions with our current partial
product: this is the role of the case in line 10.

LTS A serves as a limit as to what we are allowed to compute at a given level. If we need
to compute more, because we cannot find the (partial) objective, we have to backtrack to the
previous level to increase this limit (line 19). If we cannot backtrack (line 16), then we have
explored the whole product only missing some components, so we have an over-approximation,
which implies that the property is false. If we successfully backtrack, and when we have
extended again our partial product at that “lower” level, we can go forth again using the
memory of what we had already computed (line 7).

Note the use of the Forget() function in line 19 that permits to “forget” part of that
memory when we backtrack. This is useful if we are able to determine that we had made bad
moves: for instance in the choice of the LTSs to add to the product. Many implementations
of this function are possible provided they have the following property:

CONCUR 2016
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Algorithm 2 Auxiliary function Concretise() for Algorithm 1
1: function Concretise(Ls)
2: choose k ∈ [0..len(Ls)− 1] such that Ls[k] is not complete
3: (Left, (A,C, I, J,K),Right)← Ls[k]
4: if there exists C∗ s.t. C @ C∗ v (‖ i∈KLi) ‖ A and C∗ → R|J∪K then
5: choose such a C∗

6: N ← {i /∈ J ∪K : Σ(Li) ∩ λ(C∗) 6= ∅}
7: case Right 6= [ ]
8: (_,C′,_, J ′,K ′)← hd(Right)
9: Ls[k]← ((A,C∗, I, J,K) : Left, (C∗,C′, I, J ′,K ′), tl(Right))

10: case Right = [ ] and N 6= ∅
11: choose ∅ ⊂ K ′ ⊆ N
12: Ls[k]← ((A,C∗, I, J,K) : Left, (C∗, ‖i∈J∪K∪K′ ini(Li), I, J ∪K,K ′), [ ])
13: case Right = [ ] and N = ∅
14: Ls[k]← (Left, (A,C∗, I, J,K), [ ])
15: else
16: if Left = [ ] then return False
17: else
18: Right′ ← Forget((A,C, I, J,K) : Right)
19: Ls[k]← (tl(Left), hd(Left),Right′)
20: end if
21: end if
22: return True
23: end function

I Property 13 (Good Forget() implementation). Let Lt be a list [(A1,C1, I1, J1,K1), . . . ,
(An,Cn, In, Jn,Kn)] of tuples. Then Forget(Lt) must be a list [(A′1,C

′
1, I
′
1, J
′
1,K

′
1), . . . ,

(A′m,C
′
m, I

′
m, J

′
m,K

′
m)] of tuples with 0 ≤ m ≤ n and f : [1..m] → [1..n] a non-decreasing

function, such that:
A′1 = A1, J ′1 = J1,
∀j ∈ [1..m],
I ′j = I1 (remark that, by construction, I1 = I2 = · · · = In),
∅ ⊂ K ′j ⊆ (Jf(j) ∪Kf(j)) \ J ′j
C′j v Cf(j) and ‖ k∈J′

j
∪K′

j
ini(Lk) v C′j v (‖k∈K′

j
Lk) ‖ A′j

∀j ∈ [2..m],
A′j = C′j−1
J ′j = J ′j−1 ∪K ′j−1

In some sens, a good Forget() implementation can be seen as a restriction of Lt to a
subset of its elements. Each of these elements being itself restricted to a less concrete tuple
(by taking subsets of C, J , and/or K).

The two most obvious implementations are either to never forget anything (then Forget()
is just the identity function) or to always forget everything (that is, take m = 0 in the above
property – then Forget() always returns the empty list). It is clear that these two choices
satisfy Property 13.

Finally, in any element of Ls, we have a list of partial products that concern more and
more LTSs. To sum up, a call to Concretise() at least adds new LTSs to the current tuple
(A,C, I, J,K), or adds paths in C.
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3.2 Merging
Merging occurs when two parts of a partition concretised independently use common LTSs.
We have to ensure that these common LTSs behave consistently and we therefore merge the
two partitions by computing the product of the two partial products. This use of common
LTSs in different partitions we call inconsistency and it is formals as follows:

I Definition 14 (Consistency). The list of triples Ls = [(Left1, (_,_,_, J1,K1),Right1), . . . ,
(Leftn, (_,_,_, Jn,Kn),Rightn)] is consistent if ∀i 6= j ∈ [1..n], (Ji ∪Ki) ∩ (Jj ∪Kj) = ∅

Merging itself is done by the Merge() function. As for the Forget() function, many
implementations are possible provided they satisfy Property 15:

I Property 15 (Good Merge() implementation). Let Ls be a non-consistent list of triples
[T1, . . . , Tn]. For any triple Tk, note Tk = (Leftk, (Ak,Ck, Ik, Jk,Kk),Rightk) and Full(Tk) =
rev(Leftk) ++[(Ak,Ck, Ik, Jk,Kk)] ++Rightk. Then Merge(Ls) is any list [T1, . . . , Ti−1,

Ti+1, . . . , Tj−1, Tj+1, . . . , Tn, T ] of triples such that:
(Ji ∪Ki) ∩ (Jj ∪Kj) 6= ∅ (such i, j always exist because Ls is not consistent)
There exist two non-decreasing functions fi : [1..m] → [1..ni] and fj : [1..m] →
[1..nj ] so that Full(T ) = [(A′′1 ,C

′′
1 , I
′′
1 , J

′′
1 ,K

′′
1 ), . . . , (A′′m,C

′′
m, I

′′
m, J

′′
m,K

′′
m)], Full(Ti) =

[(A1,C1, I1, J1,K1), . . . , (Ani
,Cni

, Ini
, Jni

,Kni
)], and Full(Tj) = [(A′1,C

′
1, I
′
1, J
′
1,K

′
1), . . . ,

(A′nj
,C′nj

, I ′nj
, J ′nj

,K ′nj
)] with m ≤ ni + nj verify:

A′′1 = A1 ‖ A′1, J ′′1 = J1 ∪ J ′1 = ∅ (remark that, by construction, J1 = J ′1 = ∅),
I1 ∪ I ′1 ⊆ K ′′1 ⊆ Jfi(1) ∪Kfi(1) ∪ J ′fj(1) ∪K

′
fj(1)

∀k ∈ [1..m],
∗ I ′′k = I1 ∪ I ′1 (remark that, by construction, I1 = · · · = Ini

and I ′1 = · · · = I ′nj
),

∗ C′′k v Cfi(k) ‖ Cfj(k) and ‖ `∈J′′
k
∪K′′

k
ini(L`) v C′′k v (‖`∈K′′

k
L`) ‖ A′′k

∀k ∈ [2..m],
∗ ∅ ⊂ K ′′k ⊆ (Jfi(k) ∪Kfi(k) ∪ J ′fj(k) ∪K

′
fj(k)) \ J ′′k

∗ A′′k = C′′k−1
∗ J ′′k = J ′′k−1 ∪K ′′k−1

Intuitively, a good Merge() implementation should select two triples breaking the con-
sistency of Ls and merge them. These two triples are in fact two histories of concretisations
(i.e. the result of a sequence of calls to Concretise()). Merging them basically consists
in interleaving these two histories and then apply a Forget()-like construct on this inter-
leaving. This produces an history that could have been produced by a sequence of calls to
Concretise() starting from ([ ], (‖ i∈I1∪I′

1
id(Li), ‖ i∈I1∪I′

1
ini(Li), I1 ∪ I ′1, ∅, I1 ∪ I ′1), [ ]), i.e

if I1 ∪ I ′1 had been an element of the initial partition chosen in Algorithm 1.
At the lowest level of implementation, the basic merging operation of two tuples

h1 = (A1,C1, I1, J1,K1) and h2 = (A2,C2, I2, J2,K2) gives the tuple (A1 ‖ A2,C1 ‖
C2, I1 ∪ I2, J1 ∪ J2, (K1 \ J2) ∪ (K2 \ J1)). Let us denote it by h1 ∗ h2. Building on that,
a minimal implementation satisfying Property 15 would be to select i and j such that
Ls[i] = (Lefti, hi,Righti), with hi = (Ai,Ci, Ii, Ji,Ki) and Ls[j] = (Leftj , hj ,Rightj), with
hj = (Aj ,Cj , Ij , Jj ,Kj), and (Ji ∪Ki) ∩ (Jj ∪Kj) 6= ∅, remove them from Ls and replace
them by the singleton list ([ ], hd(Lefti) ∗ hd(Leftj), [ ]). Another relevant choice, which is
easy to compute and also trivially satisfies Property 15, would be to also keep the current
elements by replacing both Ls[i] and Ls[j] by ([hd(Lefti) ∗ hd(Leftj)], hi ∗ hj , [ ]).

When we have found a list of complete partial products that is consistent then we know
that our objective is reachable.

CONCUR 2016
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Figure 1 A compound system with four LTSs (L1 to L4).
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β
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δ

Figure 2 Some LTSs appearing during an execution of our algorithm on the example of Figure 1.

3.3 Example
Let us perform a sample execution of the algorithm on the system described in Figure 1.
Suppose we want to reach the partial state (s3, ?, s9, ?). Therefore we have the set of indices
of the LTSs involved in the objective Lg = {1, 3} and we choose to partition it, for instance,
as {{1}, {3}}.

Then, Ls[1] is the list [([ ], (id(L1), ini(L1), {1}, ∅, {1}), [ ])] and, similarly, Ls[2] is the list
[([ ], (id(L3), ini(L3), {3}, ∅, {3}), [ ])]. None of those elements is complete because they do
not reach their part of the objective so we call Concretise().

In that function, we choose for instance k = 1 and compute an extension of ini(L1)
that reaches the objective. Say we compute the extension C∗1 made of the path s0, s1, s3
(Figure 2). Then, since labels α and β are shared with L2, and 2 6∈ K1 = {1}, we have
N = {2}. Since Right1 = [ ], we get to line 10, replace ini(L1) by C∗1, add the tuple
(C∗1, ini(L1) ‖ ini(L2), {1}, {1}, {2}) to the list represented by Ls[1], and set that tuple as the
current element of that list. Finally, we return true.

Back in the main function, Ls is consistent for now, so we move to the next iteration.
Again both Ls[1] and Ls[2] are not complete because their current elements do not reach
their objective. Let us say we concretise again Ls[1]. This time we cannot find an extension
of ini(L1) ‖ ini(L2) in the product of L1, L2 and C∗1, which is empty. Then, since Left1 is not
empty, we go to line 18, call Forget() (suppose here it forgets nothing), and set again the
head of the list represented by Ls[1] (which is also the head of Left1) as the current element.
Then we return true again.

Back in the main function, Ls is still consistent and both its element are not complete.
We then call Concretise() and for the example choose again k = 1. This time we extend
C∗1 by taking C∗∗1 as the whole of L1 except the δ transition (Figure 2). Since Right1 is not
empty this time, we go to line 7, update the tuples with C∗∗1 , and move the current element
of the list right, then return true.
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Back in the main function we still call Concretise() and choose again k = 1. This time,
we can extend ini(L1) ‖ ini(L2) with the LTS C∗12 made only of the path (s0, s4), (s2, s4),
(s1, s4), (s3, s6) (Figure 2). Set N is empty because no LTS other than L1 and L2 has labels
β, a or b (used in this path). Right1 is also empty so we just update the current element in
Ls[1] with C∗12 (line 14) and return true.

Back in the main function, Ls[1] is now complete but not Ls[2]. So, we call Concretise()
and choose k = 2. We extend ini(L3) by C∗3 made of the path s7, s9 (Figure 2). Then
N = {1} because L1 shares label δ with C∗3 and, as before, Right2 being empty, we go to
line 10, replace ini(L3) by C∗3, add the tuple (C∗3, ini(L3) ‖ ini(L1), {3}, {3}, {1}) to the list
represented by Ls[2], and set that tuple as the current element of that list. Then we return
true.

Now, we have the index 1 in J ∪K for both the current elements of Ls[1] and Ls[2], so we
can choose to merge them. Let us do it: we use the second of the simple strategies outlined
above: we keep and merge only the first and current elements of each list. After the call
to Merge(), Ls = [([(id(L1) ‖ id(L3),C∗∗1 ‖ C∗3, {1, 3}, ∅, {1, 3})], (C

∗∗
1 ‖ C∗3,C

∗
12 ‖ ini(L3) ‖

ini(L1), {1, 3}, {1, 3}, {2}), [ ])] and C∗12 ‖ ini(L3) ‖ ini(L1) consists only of state (s0, s4, s7),
because ini(L1) restricts C∗12 to its initial state and δ is not in C∗12. That product has no path
to a state (s3, ?, s9), so the new Ls[1] is not complete and we need to call Concretise() one
last time.

We will then be able to extend C∗12 ‖ ini(L3) ‖ ini(L1) to an LTS C∗123 containing state
(s3, s6, s9) but with no transition γ (Figure 2). Then N is empty, as well as Right1, so we go
through line 14 to update the current LTS, and return true. Finally, in the main function,
we now have that Ls is consistent, since it contains only one element, and that element is
complete because C∗123 contains only labels not shared with L4. So we terminate and return
true.

Note that we never needed to consider products involving L4 – which is the reason why
we call our analysis “lazy”.

3.4 Soundness, completeness, termination
We now proceed to proving that our algorithm is sound and complete and that it terminates.
We first state two utility lemmas.

I Lemma 16. Let (Left, h,Right) be an element of Ls in Solve(L,R) and let L = (‖i∈[1..n]
Li).

Let (A,C, I, J,K) be either h, or an element of Left, or an element of Right. Then C is a
partial product of (‖i∈J∪K Li) and, if we write C = (‖i∈J∪K Ci), then Σ(Ci) = Σ(Li).

I Lemma 17. Let (Left, (A,C, I, J,K),Right) be an element of Ls in Solve(L,R). If Left
is empty then I ⊆ K, J = ∅ and A =‖ i∈I id(Li).

And finally the main results:
I Proposition 18. If Solve(L,R) returns False then R is not reachable in L.

Proof. The only way Solve(L,R) can return False is through line 12 in Algorithm 1, and in
turn this means that the call to Concretise() in line 11 returned False. Now Concretise()
will only return False through line 16 in Algorithm 2. To get there, there must exist some
k such that Ls[k] can be decomposed as the triple (Left, (A,C, I, J,K),Right), with (1) Left
being empty, and (2) there is no C∗ s.t. C @ C∗ v (‖ i∈KLi) ‖ A and C∗ → R|J∪K .

By Lemma 16 we know that C is a partial product of L. With (1) and Lemma 17, we
have that I ⊆ K, J = ∅ and A =‖ i∈I id(Li). So (‖ i∈KLi) ‖ A = (‖ i∈KLi). Then, with (2),
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we can deduce that R|K is not reachable in (‖ i∈KLi), and finally with the contrapositive of
Lemma 10, we get that R is not reachable in L. J

I Proposition 19. If Solve(L,R) returns True then R is reachable in L.

Proof. The only way Solve(L,R) can return True is through line 23 in Algorithm 1. This
can only happen when Ls is such that (1) for all k, Ls[k] is complete and (2) Ls is consistent.

If we denote by (Ak,Ck, Ik, Jk,Kk) the second component of Ls[k], and by Hk the union
Jk ∪ Kk, (1) translates to ∀k, there exists C∗k v Ck such that C∗k can reach R|Hk

and
{i 6∈ Hk : Σ(Li) ∩ λ(C∗k) 6= ∅} = ∅. Similarly, (2) translates to ∀i, j,Hi ∩Hj = ∅.

By Lemma 16, each C∗k is a partial product of (‖ i∈Hk
Li) (and thus also of L). Now

consider some i ∈ Hk and σ ∈ Σ(Li) ∩ λ(C∗k). By Lemma 16, we know that there exist
some Ci such that C∗ = (‖i∈Hk

Ci) and Σ(Ci) = Σ(Li). Consequently, for all i ∈ Hk,
Σ(Li) ∩ λ(C) ⊆ Σ(Ci). From (2), we also have that ∀i 6∈ Hk, Σ(Li) ∩ λ(C) = ∅ and we
can thus use Lemma 11 and obtain that R|Hk

is reachable in L, whatever the states of
the components not in Hk (and leaving them unchanged). Therefore, by finally putting all
components together, R is reachable in L. J

Relation v is not sufficient to reflect progress in our algorithm. We therefore introduce a
new relation <` , built on top of v, as a partial order over lists Ls (as the ones appearing
in Algorithm 1). Relation <` does reflect progress in concretisation (by advancing in the
history of concretisations (2), or by adding LTSs (3), or by adding paths in partial products
(4,5)), and merging (by reducing the length of the list (1)).

I Definition 20. Given two lists of tuples Ls1 and Ls2 with the same type as Ls in Algorithm 1,
we define <` such that Ls1 <` Ls2 if and only if Ls1 6= Ls2 and:

len(Ls1) > len(Ls2), or (1)
len(Ls1) = len(Ls2) and ∀k, Ls1[k] 6= Ls2[k] =⇒ Ls1[k] <t Ls2[k];

where (Left1, h1,Right1) <t (Left2, h2,Right2) if and only if, for hLri = rev(Lefti) ++[hi],
hLr2 is a prefix of rev(Left1), or (2)
∃`, hLr1[`] 6= hLr2[`] and, for the smallest such ` one has hLr1[`] <a hLr2[`];

where (A1,C1, I1, J1,K1) <a (A2,C2, I2, J2,K2) if and only if:
J1 ∪K1 ⊂ J2 ∪K2, or (3)
J1 ∪K1 = J2 ∪K2 and A1 @ A2, or (4)
J1 ∪K1 = J2 ∪K2, A1 = A2, and C1 @ C2. (5)

If Ls1 <` Ls2 or Ls1 = Ls2 we write Ls1 ≤` Ls2.

I Proposition 21. The calls to Solve(L,R) always terminate (and return only True or
False).

Sketch of the proof. The fact that, if a call to Solve(L,R) terminates, it can only return
True or False, comes from lines 23 (returning True) and 12 (returning False) of Algorithm 1
which are the only return statements of the Solve(, ) function.

In order to prove the termination one can show that (1) ≤` is an order relation over the
Ls used in Algorithm 1, (2) the set of such lists appearing in any instance of Algorithm 1 is
finite (and so, there are lists which are greater or incomparable to any other lists with respect
to ≤` ), and (3) any step of the while loop of Algorithm 1 terminates and if the return of
line 12 is not used, strictly increases Ls with respect to ≤` . From (1) and (2) one then gets
that, in any instance of Algorithm 1, there cannot exist an infinite strictly increasing chain
of Ls with respect to ≤` . Hence, from (3), Algorithm 1 always terminates. J
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4 Experimental analysis

In order to get insight on the practical efficiency of our algorithm we developed a tool1
(LaRA, for Lazy Reachability Analyzer) using it. We then compared the time efficiency of
LaRA with that of other tools on several reachability analysis tasks in distributed systems.
We originally selected three other tools for these experiments:

LoLA2: A Petri net analyzer (it is straightforward to convert the compound systems we
consider in this paper into (safe) Petri nets) which efficiently implements many techniques
for model checking Petri nets. LoLA is arguably very effective for reachability analysis
in Petri nets as it won the reachability track at the last model checking contest [13].
PMC [14]: A tool for partial model checking that uses incremental techniques for dealing
with the verification of distributed systems.
The on the fly model checking capabilities of the CADP toolbox [8]

Early preliminary experiments revealed that, on all our benchmarks, LoLA outperformed
PMC and CADP. For the larger experiments on which we report here we thus focused on
comparing LoLA with our tool.

4.1 Implementation choices
LaRA consists of approximately 500 lines of Haskell code, using the standard Parsec
parsing library, and the fgl graph library. Note that memory management in Haskell is
automatic.

We have presented our algorithm in a manner as generic as possible including the
possibility for many heuristic choices. For our first prototype presented here, we have chosen
to completely compute each partial product before adding more components. This eliminates
the need for backtracking, which greatly simplifies the code and, to some extent, favors the
case when the desired state is not reachable. This choice is rather drastic and probably not
optimal when exploring big partial products, in which a more on-the-fly approach would
usually give better results. However, we believe it is reasonable, as our objective was to
evaluate the influence of the laziness feature of our approach.

Before adding LTSs to the partial product, we trim it by keeping only the reachable and
coreachable states. We add only one automaton each time, chosen arbitrarily in the set of
LTSs synchronized on the path that synchronizes as few LTSs as possible.

4.2 Benchmarks
Our benchmarks where taken from a set of benchmarks proposed by Corbett in the 90’s [5].
Among these, we selected the ones where scaling increases the number of components but
does not change the size of individual components. The reason for this choice is that our early
implementation is not made for dealing with large state spaces of individual components –
as, again, our goal is to evaluate the impact of its laziness feature. Not embedding efficient
search techniques it was hopeless to cope with finely tuned model checking tools. This left
us with six models, described in Table 1. For each model we define a simple reachability
property and state if it is verified by the model.

Both tools were used in a similar setting: on a machine with four Intel® Xeon® E5-2620
processors (six cores each) with 128GB of memory. Though this machine has some potential

1 For reproducibility of experiments, LaRA is available at http://lara.rts-software.org
2 http://service-technology.org/lola/
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Table 1 Benchmarks description.

Model Description Size Property Verified?
Cyclic Milner’s cyclic scheduler, a

set of tasks have to be sched-
uled in a cyclic order.

Number of tasks to be
scheduled.

One task in two can
be in their waiting
state together.

Yes.

DAC Divide and conquer compu-
tation, a task has to be com-
pleted by a set of processes.
Each one can complete the
task alone or fork.

Maximal number of
processes involved in
the solving of the
task.

A given process can
be involved in the
solving and decide to
complete it alone.

Yes.

Philo Dining philosophers, in its
eating cycle a philosopher
takes and releases his left
fork first.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

PhiloDico Variation of Philo, a diction-
ary turns around the table,
preventing the philosopher
holding it to take forks.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

PhiloSync Variation of Philo, philosoph-
ers take and release both
their forks in a single step.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

TokenRing Classical mutual exclusion al-
gorithm with a token circu-
lating on a ring of processes.

Number of processes. Two given processes
can reach their crit-
ical section together.

No.

for parallel computing, all the experiments presented here are actually monothreaded. We
put a time limit of 20 minutes for computations. For each experiment, each tool had as
input a file in its own format: file generation and conversion are not taken into account in
the processing times.

4.3 Positive results.

In most of the cases (namely Cyclic, Philo, PhiloDico, and PhiloSync) our tool outperformed
LoLA with increasing size of models. On DAC, our results are comparable to those obtained
with LoLA, and for very large instances we slightly outperform it. The experimental results
for these cases are summarized in Table 2. For each model, timeout indicates the first
instance of this model for which a tool reached the time limit of 20 minutes. Notice that, in
the variants of the dining philosophers, there are two timeouts: one for instances of odd size
and the other one for instances of even size. This is because the property we verify is false
for odd sizes and true for even sizes, which makes a significant difference for LoLA.

4.4 Focus on TokenRing.

Table 3 presents the results obtained with various modeling of TokenRing. It compares
runtimes of LoLA and our tool on Corbett’s modeling. It appears that LaRA is far from
efficient on this particular example. This is due to the fact that, without taking into account
all the components, it is not possible for our tool to figure out that only one token exists in
the system. So, for deciding that no two processes can be in their critical sections together,
LaRA cannot be lazy and has to explore the full state space of the system.
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Table 2 Comparison of runtimes of LoLA and LaRA on instances of increasing size of Cyclic,
DAC, Philo, PhiloDico, and PhiloSync.

Size Cyclic DAC Philo PhiloDico PhiloSync
LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA

15 0.01s <0.01s 0.01s <0.01s 0.04s 28.47s 0.10s 30.92s 0.02s <0.01s
16 0.01s <0.01s 0.01s <0.01s 0.04s <0.01s 0.05s <0.01s 0.02s <0.01s
17 0.01s <0.01s 0.01s <0.01s 0.05s 327.55s 0.10s 349.38s 0.02s 0.02s
18 0.01s <0.01s 0.02s <0.01s 0.04s <0.01s 0.06s <0.01s 0.03s <0.01s
19 0.01s <0.01s 0.01s <0.01s 0.05s Timeout 0.10s Timeout 0.02s 0.05s
24 0.02s <0.01s 0.01s <0.01s 0.05s <0.01s 0.08s <0.01s 0.03s <0.01s
25 0.02s <0.01s 0.01s <0.01s 0.06s 0.13s 0.03s 0.97s
35 0.03s <0.01s 0.02s <0.01s 0.08s 0.15s 0.04s 182.54s
45 0.03s <0.01s 0.02s <0.01s 0.11s 0.17s 0.06s Timeout

1000 0.57s 2.55s 0.35s 0.56s 1.90s 2.44s 2.34s 2.50s 1.11s 2.38s
3000 2.68s 64.32s 1.08s 1.15s 6.87s 64.84s 8.56s 64.55s 4.82s 64.31s
6000 8.07s 514.89s 2.25s 1.62s 17.86s 520.86s 21.32s 523.54s 13.83s 519.21s
8000 13.37s Timeout 2.97s 2.79s 27.63s Timeout 32.21s Timeout 22.15s Timeout
10000 20.86s 3.72s 3.14s 39.73s 44.69s 33.10s
30000 234.97s 11.24s 9.46s 334.79s 346.36s 319.15s
50000 687.68s 19.10s 19.75s 1063.69s 1072.71s 946.86s

Table 3 Runtimes on TokenRing.

Size TokenRing
LaRA LoLA

7 0.514s <0.01s
8 1.716s <0.01s
9 6.713s <0.01s
10 25.810s <0.01s
11 70.370s <0.01s
12 322.440s <0.01s
13 Timeout <0.01s

1000 0.15s

5 Conclusion

We have presented a new approach for the verification of reachability in distributed systems.
It builds on both decomposing the goal state into its projection on the different components
of the system and lazily adding components in an iterative fashion to produce more and
more precise over-approximations. This notably allows for early termination both when
the state is reachable and when it is not. We have presented an algorithm based on this
approach, together with proofs for completeness, soundness, and termination. We have also
implemented this into an early prototype named LaRA. This rather naive implementation
already gives very promising results, on which we report together with comparisons to LoLA,
a state-of-art model-checker for Petri nets.

Further note that, when a reachability property is true, LaRA has computed, and can
output, a consistent list of complete LTSs satisfying that property. An interesting plus-value
is that adding whatever number of new components to that list would not change the
outcome provided that none of those new components shares actions that are used in the list.
Therefore in systems with a particular synchronization structure, like rings for instance, we
can generalize the reachability result to any number of components in the ring : for instance
to prove that a philosopher can eat we need to add the two forks around her and the other
two philosophers that could also use those forks. Now, any additional fork or philosopher
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beyond those do not share any action required to establish that the first philosopher can eat.
We can then deduce that she can eat regardless of the number of philosophers around the
table.

We have proposed and proved our algorithm in a generic and extendable way. In particular,
it seems very likely that partial order or Decision Diagram-based symbolic techniques could
be incorporated in this approach. The algorithm we propose also offers several opportunities
for parallelisation. First, between two merge operations all concretisations in the different
partitions can clearly be performed in parallel. Second, the different choices left open in the
algorithm, such as the choice of a particular path to concretise, or a specific automaton to
add to the product, can be resolved by some heuristics but may also better be handled by
testing several of the different choices in parallel.

In addition to studying theses issues, further work includes extensions to more expressive
formalisms, in particular (parametric) timed automata and time Petri nets, and to more
complex properties.
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