
Transactional Tasks: Parallelism in Software
Transactions
Janwillem Swalens1, Joeri De Koster2, and Wolfgang De Meuter3

1 Software Languages Lab, Vrije Universiteit Brussel
jswalens@vub.ac.be

2 Software Languages Lab, Vrije Universiteit Brussel
jdekoste@vub.ac.be

3 Software Languages Lab, Vrije Universiteit Brussel
wdmeuter@vub.ac.be

Abstract
Many programming languages, such as Clojure, Scala, and Haskell, support different concurrency
models. In practice these models are often combined, however the semantics of the combinations
are not always well-defined. In this paper, we study the combination of futures and Software
Transactional Memory. Currently, futures created within a transaction cannot access the trans-
actional state safely, violating the serializability of the transactions and leading to undesired
behavior.

We define transactional tasks: a construct that allows futures to be created in transactions.
Transactional tasks allow the parallelism in a transaction to be exploited, while providing safe
access to the state of their encapsulating transaction. We show that transactional tasks have
several useful properties: they are coordinated, they maintain serializability, and they do not
introduce non-determinism. As such, transactional tasks combine futures and Software Trans-
actional Memory, allowing the potential parallelism of a program to be fully exploited, while
preserving the properties of the separate models where possible.

1998 ACM Subject Classification D.1.3 [Concurrent Programming] Parallel Programming; D.3.2
[Language Classifications] Concurrent, distributed, and parallel languages

Keywords and phrases Concurrency, Parallelism, Futures, Threads, Fork/Join, Software Trans-
actional Memory

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.23

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.2.1.13

1 Introduction

Concurrent programming has become essential to exploit modern hardware, especially
since multicore processors have become ubiquitous. At the same time, programming with
concurrency is notoriously tricky. Over the years, a plethora of concurrent programming
models have been designed with the aim of combining performance with safety guarantees.
In this paper, we study futures and Software Transactional Memory.

Futures are used to introduce parallelism in a program: the construct fork e starts the
concurrent execution of the expression e in a parallel task, and returns a future [3, 16]. A
future is a placeholder that is replaced with the value of e once its task has finished. Futures
make it easy to add parallelism to a program [16] and can be implemented efficiently [8, 7, 19].

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter;
licensed under Creative Commons License CC-BY

30th European Conference on Object-Oriented Programming (ECOOP 2016).
Editors: Shriram Krishnamurthi and Benjamin S. Lerner; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.23
http://dx.doi.org/10.4230/DARTS.2.1.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Transactional Tasks: Parallelism in Software Transactions

While futures enable parallelism, Software Transactional Memory (STM) allows access to
shared memory between parallel tasks [26]. It introduces transactions: blocks in which shared
memory locations can be read and modified safely. STM simplifies concurrent access to
shared memory, as transactions are executed atomically and are guaranteed to be serializable.

It is often desirable to combine concurrency models and this is frequently done so in
practice [27]. Languages such as Clojure, Scala, and Haskell provide support both for parallel
tasks and transactions. However, the combination of these two models is not always well
defined or supported. Using transactions to share memory between parallel tasks has a clearly
defined semantics. Conversely, parallelizing a single transaction by creating new tasks is
either not allowed (e.g. Haskell) or leads to unexpected behavior (e.g. Clojure and Scala). For
example, in Section 3 a path-finding algorithm is shown in which several search operations
are executed in parallel on a grid. In this application, each task starts a transaction that
searches for a single path. We would like to further exploit the available parallelism in
each individual search operation by starting new subtasks from within each path-finding
transaction. This is one application where we show the need for the combination of both
transaction-in-future and future-in-transaction parallelism.

In this paper, we present transactional tasks, a novel construct to introduce parallelism
within a transaction (Section 4). A transaction can create several transactional tasks, which
run concurrently and can safely access and modify their encapsulating transaction’s state.
We demonstrate several desirable properties of transactional tasks (Section 5). Firstly,
transactional tasks are coordinated: the tasks in a transaction either all succeed or all
fail. Secondly, the serializability of the transactions in the program is maintained. Thirdly,
transactional tasks do not introduce non-determinism in a transaction.

Furthermore, we have implemented transactional tasks on top of Clojure (Section 6), and
applied them to several applications from the widely used STAMP benchmark suite [21].
This confirms that they can produce a speed-up with limited developer effort (Section 7).
As a result, we believe that transactional tasks successfully combine futures and Software
Transactional Memory, allowing the potential parallelism of a program to be fully exploited,
while preserving the properties of the separate models where possible.

2 Background: Parallel Tasks, Futures, and Transactions

We start by defining parallel tasks, futures, and transactions separately. We also provide a
formalization for each model, list their properties and describe their use cases.1

The semantics described here are deliberately very similar to those offered both by
Clojure and Haskell. We aim to approximate them closely, to demonstrate how the described
problems also apply to these programming languages. A list of differences between our formal
model and the implementations of Clojure and Haskell is given in Appendix A.

1 We use the following notation for sets and sequences. ·∪ denotes disjoint union, i.e. if A = B ·∪ C then
B = A\C. We use a short-hand for unions on singletons: A∪a signifies A∪{a}. The notation S = a ·S′
deconstructs a sequence S into its first element a and the rest S′. The empty sequence is written []. We
write a for a (possibly empty) sequence of a.

J. Swalens, J. De Koster, and W. De Meuter 23:3

2.1 Parallel Tasks and Futures

2.1.1 Description and Properties
A parallel task or thread is a fragment of the program that can be executed in parallel with
the rest of the program. A runtime system schedules these tasks over the available processing
units. In a typical implementation, a distinction is made between the lightweight tasks
created in the program, and more heavyweight OS threads over which they are scheduled.
Managing and scheduling the threads is a responsibility of the runtime, and transparent to
the program.

A parallel task can be created using fork e.2 This begins the evaluation of the expression
e in a new task, and returns a future. A future is a placeholder variable that represents
the result of a concurrent computation [3, 16]. Initially, the future is unresolved. Once the
evaluation of e yields a value v, the future is resolved to v. The resolution of future f can
be synchronized using join f : if the future is still unresolved, this call will block until it is
resolved and then return its value.

In a functional language, fork and join are semantically transparent [13]: a program
in which fork e is replaced by e and join f is replaced by f is equivalent to the original.
As a result, futures can be added to a program to exploit the available parallelism without
changing its semantics. Programmers can wrap an expression in fork whenever they believe
the parallel execution of the expression outweighs the cost of the creation of a task.

A common use case of futures is the parallelization of homogenous operations, such as
searching and sorting [16]. For this purpose, Clojure provides a parallel map operation:
(pmap f xs) will apply f to each element of xs in parallel. Futures are also used to increase
the responsiveness of an application by executing long-running operations concurrently, e.g.
in graphical applications expensive computations or HTTP requests often return a future so
as not to block the user interface.

2.1.2 Formalization
Figure 1 defines a language with support for parallel tasks and futures. The syntax consists of
a standard calculus, supporting conditionals (if), local variables (let), and blocks (do). To
support futures, the syntax is augmented with references to futures (f), and the expressions
fork e and join e.

The program state p consists of a set of tasks. Each task contains the expression it
is currently evaluating, and the future to which its result will be written. The future f
associated with each task is unique, and hence can be considered an identifier for the task.
A program e starts with initial state {〈f, e〉}, i.e. it contains one “root” task that executes e.
We use evaluation contexts to define the evaluation order within expressions. The program
evaluation context P can choose an arbitrary task, and use the term evaluation context E to
find the active site in the term. E is an expression with a “hole �”. We note E [e] for the
expression obtained by replacing the hole � with e in E .

We define the operational semantics using transitions p→f p
′; the subscript f denotes all

reduction rules that apply to futures. The operational semantics is based on [13] and [32].
Rule congruence|f defines that the base language can be used in each task. Transitions in
the base language are written e→b e

′ and define a standard λ calculus, but are not detailed
here. The expression fork e creates a task in which e will be evaluated, and reduces to the

2 In Clojure this is (future e), in Scala Future { e }, in Haskell forkIO e.

ECOOP 2016

23:4 Transactional Tasks: Parallelism in Software Transactions

Syntax
c ∈ Constant ::= true | false | 0 | 1 | . . .
x ∈ Variable
f ∈ Future
v ∈ Value ::= c | x | λx.e | f
e ∈ Expression ::= v | e e | if e e e | let x = e in e

| do e; e | fork e | join e

State
Program state p ::= T

Task t ∈ T ::= 〈f, e〉

Evaluation Contexts
P ::= T ·∪ 〈f, E〉
E ::= � | E e | v E | if E e e | join E
| let x = E in e | do v; E ; e

Reduction Rules

congruence|f
e→b e

′

T ·∪ 〈f, E [e]〉 →f T ∪ 〈f, E [e′]〉

fork|f
f ′ fresh

T ·∪ 〈f, E [fork e]〉 →f T ∪ 〈f, E [f ′]〉 ∪ 〈f ′, e〉

join|f T ·∪
〈
f, E [join f ′]

〉
·∪

〈
f ′, v

〉
→f T ∪ 〈f, E [v]〉 ∪

〈
f ′, v

〉
Figure 1 Operational semantics of a language with futures.

future f ′. After the expression e has been reduced to a value v, join f ′ will also reduce to v.
It is possible to join a task multiple times, each join reduces to the same value v. A join can
only be reduced by rule join|f if the corresponding future is resolved to a value, this detail
encodes the blocking nature of our futures.

The semantic transparency property of futures is maintained by our semantics: when a
task is created, its expression is evaluated and a placeholder f ′ is returned. When the task
is joined, the placeholder is used to look up the value of the expression. This is equivalent
to evaluating the future’s expression in place: as our base language is purely functional, an
expression always evaluates to the same value, regardless of the task it is executed in.

2.2 Software Transactional Memory

2.2.1 Description and Properties
Software Transactional Memory (STM) is a concurrency model that allows multiple threads
to access shared variables, grouping the accesses into transactions [26]. In our case, these
transactional variables are memory locations that contain a value, created using ref v. In
Haskell these are called TVars, in Clojure they are refs. A transaction atomic e encapsulates
an expression that can contain a number of primitive operations to the shared objects, such
as reads (deref r) and writes (ref-set r v).

Transactional systems guarantee serializability: transactions appear to execute serially,
i.e. the steps of one transaction never appear to be interleaved with the steps of another
[18]. The result of a transactional program, which may execute transactions concurrently,
must always be equal to the result of a serial execution of the program, i.e. one in which no
transactions execute concurrently.

Transactions are used to allow safe access to shared memory in programs with multiple
parallel tasks. These applications typically contain complex data structures of which pieces
are encapsulated in transactional variables. For example, a web browser could encapsulate
its Document Object Model in transactional variables, as its plug-ins are interested only in a
subtree of the Document Object Model, but expect a consistent view of this part. Other
examples include rich text documents, HTML pages, and CAD models [14]; networks, mazes,

J. Swalens, J. De Koster, and W. De Meuter 23:5

Syntax
r ∈ Reference
v ∈ Value ::= · · · | r
e ∈ Expression ::= · · · | ref e | deref e

| ref-set e e | atomic e

State
Program state p ::= 〈T, θ〉

Task t ∈ T ::= 〈f, e〉
Heap θ ∈ Reference ⇀ Value

Local store τ ∈ Reference ⇀ Value

Evaluation Contexts
P ::= 〈T ·∪ 〈f, E〉 , θ〉
E ::= · · · | ref E | deref E
| ref-set E e | ref-set r E

Reduction Rules

congruence|t
T→f T′

〈T, θ〉 →t 〈T′, θ〉

atomic|t
〈θ, {}, e〉 ⇒∗t 〈θ, τ ′, v〉

〈T ·∪ 〈f, E [atomic e]〉 , θ〉 →t

〈T ∪ 〈f, E [v]〉 , θ :: τ ′〉

Transactional Transitions

ref||t
r fresh

〈θ, τ, E [ref v]〉 ⇒t 〈θ, τ [r 7→ v], E [r]〉

ref-set||t 〈θ, τ, E [ref-set r v]〉 ⇒t 〈θ, τ [r 7→ v], E [v]〉

deref||t 〈θ, τ, E [deref r]〉 ⇒t 〈θ, τ, E [(θ :: τ)(r)]〉

atomic||t 〈θ, τ, E [atomic e]〉 ⇒t 〈θ, τ, E [e]〉

congruence||t
e→b e

′

〈θ, τ, E [e]〉 ⇒t 〈θ, τ, E [e′]〉

Figure 2 Operational semantics for language with transactions.

graphs, and lists [21]. STM is especially suited if it is not yet known at the start of the
atomic block which objects will be accessed: due to optimistic synchronization these are only
locked for the duration of the commit.

2.2.2 Formalization
In Figure 2 we extend our language with support for transactions. We extend the syntax
of Figure 1 with references to transactional variables (r), and the transactional operations.
The program state is extended with a transactional heap θ that contains the values of the
transactional variables.

Similar to the semantics for STM in Haskell [17], we make a distinction between two types
of transitions. Regular program state transitions are written with a single arrow p→t p

′ and
marked with |t. In contrast, transitions inside a transaction are written with a double arrow
〈θ, τ, e〉 ⇒t 〈θ, τ ′, e′〉 and marked with ||t. Here, θ is the transactional heap at the start of
the transaction, and remains unchanged throughout the transactional transitions as it is only
used to look up values. Conversely, τ is the local store that contains the updates made to
transactional variables during the transaction.

Transactional operations ref v creates a new r and sets its value in the local store to v.
ref-set r v updates the value of r to v. deref r will look for the value of r in θ :: τ , i.e.
first in the local store τ and then the global heap θ.3

atomic||t This rule applies to nested transactions, i.e. one atomic nested in another. A
nested transaction is reduced in the context of its outer transaction, hence a nested
atomic e reduces to e.

congruence||t For now, we only allow reduction rules of the base language (→b) to be
applied in a transactional context. There is no congruence rule for →f in a transaction,
so it cannot contain fork or join (this is introduced in the rest of this paper).

3 (θ :: τ)(r) =
{
τ(r) if r ∈ dom(τ)
θ(r) otherwise

ECOOP 2016

23:6 Transactional Tasks: Parallelism in Software Transactions

atomic|t The changes made to transactional variables during a transaction are gathered in
τ , and applied to the heap at once, in atomic|t. This encodes exactly the atomicity of
a transaction: its effects appear to take place in one indivisible step. This also encodes
the serializability of transactions: semantically it is as if each transaction were executed
serially.

According to the classification of Moore and Grossman [22], our transactional semantics is
high-level but small-step. It is high-level, as it relies on non-determinism in the reduction rules
(specifically in the definition of P) to find a successful execution. In contrast to an actual
implementation, in the semantics there is no notion of conflicting or aborting transactions.
Thus, we do not need to write down a commit protocol, allowing us to focus on the transitions
inside the transaction. This simplification provides a straightforward model for programmers,
and a correctness criterion against which more complex implementations can be verified. At
the same time, the semantics is small-step: a transaction takes several steps to complete
(denoted with ⇒t). This will allow us to describe parallelism in the transaction later.

In an actual implementation, multiple transactions execute in parallel. Clojure and
Haskell implement STM using optimistic synchronization instead of (pessimistic) locks: a
transaction is started, and if a conflict is detected while the transaction is running or during
its commit, the changes are rolled back and the transaction is retried. Our implementation
follows a similar approach and is described in detail in Section 6.

Transactions introduce non-determinism: a program with two tasks that each execute a
transaction has two serializations, one in which the first transaction precedes the second and
vice versa. However, this is a limited amount of non-determinism: the order in which the
individual instructions of two transactions are interleaved does not matter, the developer
only has to reason about transactions as a whole.

Lastly, by introducing transactions the fork and join constructs have lost their semantic
transparency. For instance, a program that forks two tasks that each execute a transaction
has a serialization in which the second transaction precedes the first. However, in the same
program with the fork and join constructs removed the first transaction always precedes
the second. This violates the semantic transparency property.

3 Motivation and Example

This section discusses the use of parallelism inside transactions, i.e. fork inside atomic.
Using an example, we illustrate that it is desirable for certain applications to use parallelism
in transactions. We discuss how this is realized in contemporary programming languages, and
demonstrate that they do not provide satisfying semantics, as several desirable properties
are not guaranteed.

As an example, we look at the Labyrinth application of the STAMP benchmark suite
[21]. This application implements a transactional version of Lee’s algorithm [20, 31]. Lee’s
algorithm, as it is used in chip design, places electric components on a grid and connects
them without introducing overlapping wires.

Listing 1 shows the transactional version of Lee’s algorithm implemented in Clojure,
based on [31]. Its main data structure is grid, a two-dimensional array of transactional
variables. The aim of the application is to find non-overlapping paths between given pairs
of source and destination points. For example, Figure 3a depicts four source–destination
pairs on an 6 × 6 grid, and Figure 3e shows a possible solution of connecting paths. The
transactional variable work-queue is initialized to the input list of source–destination pairs.

J. Swalens, J. De Koster, and W. De Meuter 23:7

2s2d

1s

4d

1d

3s

3d 4s

(a) Global grid: in-
put of four pairs of
source and destina-
tion points

s 1

1

d

(b) Local grid of
path 1: first expan-
sion step

2 3 4

s 1 2 3

5

2 1 2 3 4 5

3 3 4 d

4 4 5

5 5

(c) Local grid of
path 1: trace back
from destination
to source

2s2d

1s 1 1

14d

1

1d

3s 3d 4s

(d) Global grid up-
dated with path 1

2 2s2d

1s 1 1

14d

1

4 1d

3s

3d

4 4

4s3 3

4 4

(e) Final global
grid with four non-
overlapping paths

Figure 3 Different steps of the Labyrinth algorithm, illustrated using 4 paths on a two-dimensional
6× 6 grid. The black squares are impenetrable ‘walls’.

Listing 1 Transactional version of Lee’s algorithm in Clojure.
1 (def grid (initialize-grid w h)) ; w× h array of cells, each cell is a ref
2 (def work-queue (ref (parse-input))) ; list of source–destination pairs
3

4 (loop [] ; 4

5 (let [work (pop work-queue)] ; atomically take element from work queue
6 (if (nil? work)
7 true ; done
8 (do
9 (atomic

10 (let [local-grid (copy grid)
11 [src dst] work ; destructure source–destination pair using pattern matching
12 reachable? (expand src dst local-grid)] ; ref-sets on local-grid
13 (if reachable?
14 (let [path (traceback local-grid dst)]
15 (add-path grid path))))) ; ref-sets on grid
16 (recur)))))

As long as the work queue is not empty, a source and destination pair in the input will be
processed in a new transaction (lines 9–15). This happens in four steps. First, a local copy
local-grid is created of the shared grid (line 10). Next, a breadth-first search expands
from the source point (line 12), recording the distance back to the source in each visited
cell of the local-grid using ref-set (Figure 3b), until the destination point is reached.
Afterwards, the traceback function finds a path from the destination back to the source,
minimizing the number of bends (line 14; Figure 3c). Finally, the shared grid is updated to
indicate these cells are now occupied (line 15; Figure 3d). After the transaction has finished,
this process is repeated until all work has been processed.4

To parallelize this algorithm, several “worker threads” execute the loop simultaneously.
Each thread repeatedly takes a source–destination pair from the work queue and attempts to
find a connecting path in a transaction. If two threads result in overlapping paths, a conflict
occurs when updating the global grid (line 15), as the two threads attempt to write to the
same transactional variable (that represents the cell where the paths collide). As a result,
one of the two transactions is rolled back and will look for an alternative path.

4 Clojure’s loop (loop [x 0] (recur 1)) defines and calls an anonymous function, in which recur
executes a recursive call. It is equivalent to Scheme’s named let: (let n ([x 0]) (n 1)).

ECOOP 2016

23:8 Transactional Tasks: Parallelism in Software Transactions

Table 1 Characterization of the STAMP applications, abridged from [21]. These numbers were
gathered on a simulated 16-core system. The transaction length and transactional execution time
are color-coded high , medium G#, low #.

Application Instructions Time
/tx (mean) in tx

labyrinth 219,571 100%
bayes 60,584 83%
yada 9,795 100%
vacation-high 3,223 G# 86%
genome 1,717 G# 97%
intruder 330 # 33% G#
kmeans-high 117 # 7% #
ssca2 50 # 17% #

Minh et al. [21] measure various metrics of the applications in the STAMP benchmark,
shown in Table 1. We compare the Labyrinth application with the other applications. Firstly
we see that this application spends 100% of its execution time in transactions. Hence, the
amount of parallelism in this program is maximally the number of transactions that are
created, which is the number of input source–destination pairs, even on a machine with more
cores. To allow more fine-grained parallelism to be exploited in this program, it is necessary
to allow parallelism inside the transactions. Secondly, we infer that the transactions in this
application take a long time to execute: an average transaction of the Labyrinth application
contains several orders of magnitude more instructions than the other applications in the
STAMP benchmark. This means conflicts will be costly: retrying a transaction incurs a large
penalty. Parallelizing the transactions will reduce this cost.

Profiling reveals that, for typical inputs, more than 90% of the execution time of the
program is spent in the expansion step, which performs a breadth-first search. Listings 2 and
4 show a simplified version of the relevant code. The expand function starts with a queue
containing the src point (listing 2, line 2). In expand-point (listing 2, line 10), the first
element of the queue is expanded, which updates the neighboring cells in local-grid for
which a cheaper path has been found, using ref-set (listing 4, line 11), and returns these
neighbors. These are then appended to the queue (listing 2, lines 8–10), and the loop is
restarted. This continues until either the queue is empty or the destination has been reached.

In Listing 3, additional parallelism is exploited by replacing the breadth-first search
algorithm by a parallel version of this algorithm. It uses layer synchronization, a technique
in which all nodes of one layer of the breadth-first search graph are expanded—in parallel—
before the next layer is started [33]. The queue now starts as a set containing only the src
point (line 2). In each iteration of the loop, expand-step will expand all elements in the
queue in parallel (lines 11–13), using Clojure’s parallel map operation pmap. The union of all
returned neighbors is then used as the queue for the next iteration of the loop (line 10). As
before, this continues until either the queue is empty or the destination has been reached.

However, this code does not work as expected in Clojure! Each iteration of pmap is
executed in a new thread, executing a call to expand-point, in which an atomic block
appears. As transactions are thread-local in Clojure, it detects no transaction is running in
the current thread, and starts a new transaction. When the atomic block ends, this inner
transaction is committed. However, the surrounding transaction may still roll back, while
the inner transaction cannot be rolled back anymore.

J. Swalens, J. De Koster, and W. De Meuter 23:9

Listing 2 Expansion step: sequential, breadth-first search of local grid.
1 (defn expand [src dst local-grid]
2 (loop [queue (list src)]
3 (if (empty? queue)
4 false ; no path found
5 (if (= (first queue) dst)
6 true ; destination reached
7 (recur
8 (concat
9 (rest queue)

10 (expand-point
11 (first queue)
12 local-grid)))))))

Listing 3 Parallel breadth-first search of local grid.
1 (defn expand [src dst local-grid]
2 (loop [queue (set [src])}]
3 (if (empty? queue)
4 false ; no path found
5 (if (contains? queue dst)
6 true ; destination reached
7 (recur (expand-step queue local-grid))))))
8

9 (defn expand-step [queue local-grid]
10 (reduce union (set [])
11 (pmap ; parallel map
12 (fn [p] (expand-point p local-grid))
13 queue)))

In general, Clojure allows threads to be created in a transaction, but they are not part
of that transaction’s context. When an atomic block appears in a new thread, a separate
transaction is created with its own, possibly inconsistent, snapshot of the shared memory.
This transaction will commit separately. Clojure does not consider thread creation as part of
the transaction, hence it is not undone when the encapsulating transaction is rolled back. As
such, the serializability of the transactions is broken. This is not the desired behavior of the
presented example.

The same problems occur in most library-based STM implementations, including
ScalaSTM, Deuce STM for Java, and GCC’s support for transactional memory for C
and C++.5 Haskell, on the other hand, does not allow the code above to be written. The
type system prohibits the creation of new threads in a transaction, as transactions are
encapsulated in the STM monad while forkIO can only appear in the IO monad. As such,
the serializability of transactions is guaranteed, but the parallelism is limited.

In conclusion, there are several reasons why current approaches to parallelism inside
transactions are unsatisfactory [22]:

By disallowing the creation of threads in transactions, in effect, the parallelism of a
program is limited: every time transactions are introduced to isolate some computation
from other threads, the potential performance benefits of parallelism inside this computa-

5 https://nbronson.github.io/scala-stm/, https://sites.google.com/site/deucestm/, https://
gcc.gnu.org/wiki/TransactionalMemory. GCC has support for transactional memory since version
4.7, although still labeled experimental.

ECOOP 2016

https://nbronson.github.io/scala-stm/
https://sites.google.com/site/deucestm/
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory

23:10 Transactional Tasks: Parallelism in Software Transactions

Listing 4 Expand a point. (Code simplified for clarity.)
1 (defn expand-point [current local-grid]
2 (atomic
3 (let [cheaper-neighbors
4 (filter
5 (fn [neighbor]
6 (< (cost neighbor current) ; cost of path to neighbor, through current
7 (deref neighbor))) ; cost of previous path to neighbor
8 (neighbors local-grid current))] ; neighbors of current
9 (doseq [neighbor cheaper-neighbors] ; for each cheaper neighbor:

10 (ref-set neighbor (cost neighbor current))) ; set new cost
11 cheaper-neighbors)))

tion are forfeited. This problem becomes apparent for programs containing long-running
transactions. In the Labyrinth example, the maximal amount of parallelism is equal to
the number of input source–destination pairs, even though additional parallelism could
be exploited by the breadth-first search algorithm.
In languages and libraries that do allow the creation of threads in transactions, threads
in transactions do not execute within the context of the encapsulating trans-
action. This means they do not have access to the transactional state of the encapsulating
transaction; instead a new transaction is started. The modifications of the new transaction
are committed separately, and the serializability of transactions is no longer guaranteed.
Inside a transaction, calling a library or other part of the program that contains fork
is unsafe: it is either not allowed or can lead to incorrect results. This can severely
hinder re-usability [15]. For instance, it is impossible to use a library that implements
a parallel breadth-first search for the Labyrinth application.
Last, transactions are used to ensure isolation, e.g. to prevent overlapping paths in
the example, but they also form the unit of parallelism, evidenced by the fact that
the maximal amount of parallelism is equal to the number of transactions. Moore and
Grossman [22] and Haines et al. [15] argue that isolation and parallelism are orthogonal
issues, but the notions of isolation and parallelism are conflated. Parallelizing the
search algorithm should be orthogonal to the isolation between transactions, but it is not.

The ideal solution is one where several tasks can be created in a transaction and execute
in parallel, i.e. allowing fork inside atomic (unlike Haskell’s forkIO). Furthermore, these
tasks should be able to access and modify the transactional variables, using the transactional
context of the encapsulating transaction (unlike Clojure’s or Scala’s threads in transactions).
With our approach, we want to allow coordination of different tasks by encapsulating them
in a transaction: they either all succeed and all their changes are committed, or they all roll
back. Finally, the serializability between all transactions in the program should be preserved.

4 Transactional Tasks

In this section, we define transactional tasks (Section 4.1). Transactional tasks are parallel
tasks that are spawned in a transaction. A transactional task can access and modify the state
of its encapsulating transaction, i.e. it operates within its transactional context. To allow
multiple tasks to operate on the same transactional context simultaneously, each transactional
task works on its own version of the data. This resembles traditional transactions, where
each transaction operates on its own local store, and later commits its local updates. When
a transactional task is joined by its parent, its updates are merged into its parent’s context.

J. Swalens, J. De Koster, and W. De Meuter 23:11

1 expand point 2 fork 3a expand point

3b expand point

4 join

root task

child task transaction

0

0

0 1

1

0 1

1

0 1

1

2

0 1

1

2

1

1 0

1

1

2 2

2*22

Figure 4 The timeline of the transactional tasks that are forked and joined when expanding the
labyrinth grid. At each point in time, we show the grid as it exists in that task. The cells that are
stored in the snapshot of the task are white, the modifications stored in the local store are blue.

We describe the joining semantics in Section 4.2, and discuss the properties of transactional
tasks in Section 4.3.

4.1 A Transactional Task
In this section, we define what a transactional task is: what data it contains and what
operations can be performed on it.

Each transaction starts with one root task that will evaluate the transaction’s body. In a
task, more tasks can be created using the fork e construct.

In contrast with other approaches, in our model each transactional task created by a fork
also operates with respect to a transactional context. Conceptually, each transactional task
operates on its own private copy of the transactional heap, and will access and modify that.
To this end, a transactional task contains two parts: a snapshot containing the values of the
transactional variables when the task was created, and a local store containing the values the
task has written to transactional variables. In Figure 4, a timeline of the expand operation
of the Labyrinth application is shown. At the start of the transaction, the snapshot of the
root task contains the source cell at distance 0 (in white). After step 1, the local store is
modified with the expanded cells at distance 1 (in blue).

When a task is created, its snapshot reflects the current state of the transactional variables.
Hence, it is the snapshot of its parent task modified with the current local store of the parent.
The snapshot of the root task is a copy of the transactional heap. The local store of a newly
created task is empty. In Figure 4, step 2 creates a fork, the forked task’s snapshot (in white)
consists of its parent’s snapshot combined with the parent’s local store.

While a task executes, it can look up transactional values in its snapshot, and modify
them by storing their updated values in the local store. When a task finishes its execution,
its future is resolved to its final value. In steps 3a and 3b, the root task and its child both
expand a cell and update their local stores (in blue).

When a task is joined for the first time, its local store is merged into the task performing
the join, and the value of its future is returned. Step 4 copies the modified cells of the child
task (blue cells) into the root task. Subsequent joins of the same task will not repeat this, as
their changes are already merged; they will only return the last value of its future.

At the end of the transaction, the modifications of all transactional tasks should have
been merged into the root task, and these are committed atomically. If a conflict occurs at
commit time, the whole transaction is retried. If a conflict occurs in one of the tasks while

ECOOP 2016

23:12 Transactional Tasks: Parallelism in Software Transactions

the transaction is still running, all tasks are aborted and the whole transaction is retried. In
other words, the tasks within a transaction are coordinated so that they either all succeed or
all fail: they form one atomic block.

4.2 Conflicts and Conflict Resolution Functions
On a join, conflicts are possible: it may happen that the child task has changed a transactional
variable that the parent also modified since the creation of the child. In that case, a write–
write conflict occurs. An example of such a conflict is marked on Figure 4 with an asterisk
(*). Note that in this example both values happened to be the same, but that this is not
necessarily the case in general.

For these situations, we allow a conflict resolution function to be specified per transactional
variable (similar to Concurrent Revisions [9]). To this end, the programmer provides
a resolve function when the transactional variable is created, i.e. (ref initial-value
resolve). If a conflict occurs, the new value of the variable in question is the result of
resolve(voriginal, vparent, vchild), where vparent and vchild refer to its value in the parent and
child respectively, and voriginal refers to its value when the child was created (stored in the
child’s snapshot).

In the Labyrinth example, the new value of a conflicting cell should be the minimum
of the joining tasks, i.e. resolve(o, p, c) = min(p, c), as we want to find the cheapest path.
Generally, conflict resolution functions are useful when each task performs a part of a
calculation. For example, when each task calculates a partial result of a sum, the resolve
function is resolve(o, p, c) = p + c − o, i.e. the total is the value in the parent plus the
value that was added in the child since its creation. Similarly, if several tasks generate sets
they are combined using resolve(o, p, c) = p ∪ c, or if several tasks generate lists of results
they can be combined with resolve(o, p, c) = concat(o, p− o, c− o). If no conflict resolution
function is specified, we default to picking the value in the child over the one in the parent,
i.e. resolve(o, p, c) = c. We reason that explicitly joining a task is equivalent to requesting
all its changes to be merged. On the other hand, the parent may be preferred by specifying
resolve(o, p, c) = p.

Read–write “conflicts” are not considered to be actual conflicts in our model. If the
parent reads a transactional variable while its child wrote to it, the parent still reads the ‘old’
value from its snapshot. The value will only be updated after an explicit join of the child.
This prevents non-determinism, as the moment at which changes from one task become
visible in another does not depend on how tasks are scheduled.

4.3 Properties
Transactional tasks provide several useful properties. We describe them here and discuss
them more formally in Section 5.2.

Serializability of transactions Transactional tasks should always be joined before the end
of the transaction they are created in. While a transaction can contain many tasks, each
task is fully contained in a single transaction. The changes of the tasks in a transaction
have therefore all been applied to the transaction’s local store before commit, and on
commit they are applied to the transactional heap at once. Consequently, transactions
remain atomic and serializable. The introduction of transactional tasks does not change
the developer’s existing mental model of transactions.

Coordination of transactional tasks The changes of all tasks created in a transaction are
committed at once. This means they either all succeed, or all fail. If a conflict occurs

J. Swalens, J. De Koster, and W. De Meuter 23:13

in one task during its execution, all other tasks in the transaction are aborted and the
transaction, as a whole, restarts. As such, transactions can be used as a mechanism to
coordinate tasks. The developer can reason about transactions as one atomic block.

Determinism in transactions Transactional tasks do not introduce non-determinism in trans-
actions. Firstly, it does not matter in which order the instructions of two tasks are
interleaved since they both work on their own copies of the data. Secondly, the join
operation is deterministic as long as the conflict resolution function is. The changes
made in one task only become visible in another after an explicit and deterministic join
statement, making the behavior in a transaction straightforward to predict. Furthermore,
the developer can easily trace back the value of a variable by looking where tasks were
joined.

Transactional tasks are nested transactions A transactional task makes a read-only snap-
shot of the transactional state upon its creation, and stores its modifications in a local
store. This mirrors closely how a regular transaction creates a read-only copy of the
transactional heap at its creation and stores its modifications in a local store. We could say
that, while it is not syntactically shown, a transactional task starts a ‘nested transaction’.
This similarity should provide a familiar semantics to developers. The differences with
nested transactions in the existing literature are discussed in Section 8.

No semantic transparency Transactional tasks are not semantically transparent: wrapping
fork around an expression in a transaction changes the semantics of the program. As
explained at the end of Section 2.2, this was already the case for non-transactional tasks
that contain a transaction: they also do not necessarily evaluate to the same result every
time.
Violating the semantic transparency is a necessary compromise to achieve our goal of
executing tasks in parallel. If a transactional task were semantically transparent, its
effects on the transactional state would need to be known at the point where it is created,
before the parent task can continue. Therefore the child task and its parent would need
to be executed sequentially. Instead, we opt to omit semantic transparency as a necessary
compromise to accomplish the parallel execution of tasks.
Nonetheless, we argue that we maintain the “easy parallelism” of futures. Firstly, the
determinism in transactions ensures that the order in which the instructions in the
transactional tasks are interleaved does not affect the result. Secondly, transactional tasks
provide a straightforward and consistent semantics of how the transactional effects of
tasks are composed. Each task can modify the transactional state, but its effects become
visible in a single step only when it is joined, and conflicts are resolved deterministically.

Non-transactional tasks maintain their semantics Tasks that are spawned outside a trans-
action are unchanged in our model: these non-transactional tasks cannot access or modify
the transactional state directly. They can still create a transaction internally to modify
the transactional state indirectly, as shown earlier in Section 2.

4.4 Summary
Using the concepts introduced in this section, the code in Listings 3 and 4 now behaves as
expected. Each newly created task is part of the encapsulating transaction’s context, and
has access to its state. Transactional tasks can observe the changes that occurred before
they were created, and they make their modifications in a private local store. When they are
joined, their changes become visible in their parent task.

Eventually, all tasks are joined into the transaction and the transaction commits. All
tasks of a transaction are coordinated, and transactions remain serializable, therefore all

ECOOP 2016

23:14 Transactional Tasks: Parallelism in Software Transactions

tasks in one transaction behave as a single atomic block. Transactional tasks provide a
straightforward semantics: behavior in a transaction is deterministic, and values can be
traced back by looking at the join statements. Transactional tasks also provide a familiar
semantics: they behave as nested transactions.

5 Semantics and Properties

In this section, we describe the semantics and properties of the transactional tasks model.6

5.1 Semantics
Figure 5 defines how transactional tasks are modeled. The program state and non-transactional
tasks are as defined in Section 2. On the other hand, a transactional task tx contains the
following components: a future f used to join the task and read its final result, a snapshot σ
that contains the values of the transactional variables at its start, a local store τ that stores
its changes to transactional variables, a set Fs of spawned child tasks, a set Fj of tasks joined
into this task, and finally the expression e being evaluated in this task.

Outside a transaction, rules are written 〈T, θ〉 →tf 〈T′, θ′〉, similar to Section 2.2. Inside
a transaction, rules are written Tx ⇒tf T′

x, i.e. they work on a set of transactional tasks.
A task belongs either to the set T if it is not transactional, or to one of the sets Tx if it is
transactional (there is one such set for each transaction). Outside transactions, tasks keep
their semantics as previously (rule congruence|tf , as discussed in Section 2.1).

atomic|tf When a transaction is started, one transactional task is created: the “root” task.
Its snapshot σ is the current state of transactional memory, i.e. the transactional heap θ.
Its local store τ is initially empty. By applying one or more ⇒tf rules, the transaction
will eventually be reduced to another set of transactional tasks, one of which is the root
task. Its local store has been updated to τ ′, which is merged into the transactional heap
on commit. We require that all tasks created in the root task have been joined (Fs ⊆ Fj).
This is discussed in further detail in Section 5.2.
The essence of this rule is the same as for atomic|t of Section 2.2: the changes τ ′ of
the transaction are applied at once to the heap θ, which has not changed during the
transaction. The major difference with rule atomic|t is that transactions now consist of a
set of tasks, instead of one expression and local store.

congruence||tf Rule congruence||tf specifies that the transactional transitions from Figure 2
in Section 2.2 apply in transactional tasks as well. In other words, in a transactional task
creating, reading, and writing transactional variables, nesting transactions, and using the
base language work just like before—although now they operate on the task’s local store.

fork||tf When a task is created, it creates a copy of the current state. Firstly, it creates a
copy of the current transactional heap, i.e. its snapshot σ is set to the snapshot of its
parent updated with the local modifications of its parent. In the actual implementation
this is done differently for efficiency (see Section 6). Secondly, the set of joined tasks Fj
is copied from its parent. This ensures that if any of these tasks are joined again, their
transactional state is not merged again.

join1||tf and join2||tf Two rules describe the join operation of f ′ into f : join1||tf is triggered
on the first join, join2||tf on subsequent joins.

6 An executable implementation of the operational semantics built using PLT Redex [12] is available in
the artifact, or at https://github.com/jswalens/transactional-futures-redex.

https://github.com/jswalens/transactional-futures-redex

J. Swalens, J. De Koster, and W. De Meuter 23:15

State
Program state p ::= 〈T, θ〉

Non-transactional task t ∈ T ::= 〈f, e〉
Transactional task tx ∈ Tx ::= 〈f, σ, τ,Fs,Fj, e〉

Snapshot, local store σ, τ ∈ Reference ⇀ Value
Spawned and joined tasks Fs,Fj ⊆ Future

Reduction Rules

congruence|tf
T→f T′

〈T, θ〉 →tf 〈T′, θ〉

atomic|tf
f ′ fresh {〈f ′, θ, {},∅,∅, e〉} ⇒∗tf {〈f ′, θ, τ ′,Fs,Fj, v〉} ∪ Tx Fs ⊆ Fj

〈T ·∪ 〈f, E [atomic e]〉 , θ〉 →tf 〈T ∪ 〈f, E [v]〉 , θ :: τ ′〉

Transactional Transitions

congruence||tf
〈σ, τ, e〉 ⇒t 〈σ, τ ′, e′〉

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [e]〉 ⇒tf Tx ∪ 〈f, σ, τ ′,Fs,Fj, E [e′]〉

fork||tf
f ′ fresh

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [fork e]〉 ⇒tf

Tx ∪ 〈f, σ, τ,Fs ∪ {f ′},Fj, E [f ′]〉 ∪ 〈f ′, σ :: τ,∅,∅,Fj, e〉

join1||tf

f ′ /∈ Fj
〈
f ′, σ′, τ ′,F′s,F′j, v

〉
∈ Tx F′s ⊆ F′j

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [join f ′]〉 ⇒tf Tx ∪
〈
f, σ, τ :: τ ′,Fs,Fj ∪ F′j ∪ {f ′}, E [v]

〉
join2||tf

f ′ ∈ Fj
〈
f ′, σ′, τ ′,F′s,F′j, v

〉
∈ Tx

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [join f ′]〉 ⇒tf Tx ∪ 〈f, σ, τ,Fs,Fj, E [v]〉

Figure 5 Operational semantics of transactional tasks.

A join can only occur once f ′ has been resolved, i.e. once the task has been reduced to
a single value v. Moreover, we require that the joined task has itself joined all of its
children (F′

s ⊆ F′
j). This rule applies recursively: each of the tasks in F′

s should also have
joined its children. Thus, this condition ensures that all effects of the task and all its
descendants have been applied to its local store τ ′.
On the first join of a task, its changes are pulled into the joining task, by merging its τ ′

into the local τ and adding its set of joined tasks F′
j to the local Fj. On subsequent joins,

by any task that has directly or indirectly joined f ′ before, the changes are not merged
again, as these effects have already been merged. In both cases join resolves the future to
its value v.
A task does not necessarily need to be joined by its parent: we do not require f ′ ∈ Fs.
Any task that is able to obtain a reference to the task’s future can join it, using the same
rules. This maintains the flexibility of traditional futures. However, a transactional task
cannot be joined outside the transaction it was created in, as it depends on the initial
state of the heap at the start of the transaction. This is enforced as the joined task should
be in Tx, and there is a separate such set for each transaction.

Conflict resolution function For simplicity, we did not describe the functionality provided
by the custom conflict resolution function of Section 4.2 in the operational semantics.
Instead, the child’s value always overwrites the parent’s value. To add this function,
the operation τ :: τ ′ in rule join1||tf should be replaced with an operation that calls the

ECOOP 2016

23:16 Transactional Tasks: Parallelism in Software Transactions

(atomic
(let [a (fork (let [d (fork ...)

e (fork ...)] ...))
b (fork (let [f (fork ...)] ...))
c (fork (let [g (fork ...)

h (fork ...)] ...))]
...))

root

a b c

d e f g h

Figure 6 The tasks created in a transaction form a tree. By writing the tree in post-order
notation, d-e-a-f-b-g-h-c-root, we see that task b can join tasks d, e, a, and f. It may be less obvious
that task f can also join task d: task a may return d, and f can access a.

resolve function for conflicting writes in τ and τ ′. The operations θ :: τ in atomic||tf and
σ :: τ in fork||tf do not need to be replaced: they represent non-conflicting writes.

5.2 Properties

The following properties are a result of the operational semantics:

Serializability This semantics is trivially serializable: at most one transaction is active at a
time, as it is a high-level semantics, and is committed at once in atomic|tf . The semantics
thus describes how a correct implementation of transactional tasks should behave for
the programmer, and forms a correctness criterion for more complex implementations.
An actual implementation that allows multiple transactions to execute concurrently is
discussed in Section 6.

Deadlock freedom The tasks created in a transaction form a tree, as illustrated in Figure 6,
with the root task at the root of the tree. Each task is identified by a future, which is a
reference that can be passed around and supports one operation: join. Each task can
obtain the future of 1) its child tasks, as it created those; 2) its descendants, if a child
returns the future of a descendant (e.g. the root task can access d if a returns d); 3) its
earlier siblings (e.g. b can access a); and 4) any descendants of its earlier siblings, if a
sibling returns the future of one of its descendants (e.g. f can access d if a returned d).
Tasks cannot obtain their own future. Writing the tree in post-order notation defines a
strict total order on the tasks, in which each task can access the futures of the tasks that
come before it. This is a consequence of the lexical scoping of the language. This means
that there cannot be circular dependencies between futures, and therefore deadlocks are
impossible.

Coordination: a transaction’s tasks are all committed, atomically Rule atomic|tf requires
that all tasks created by the root task have been joined before commit (Fs ⊆ Fj). Fur-
thermore, rule join1||tf specifies that each task should join its sub-tasks before it in turn
can be joined (F′

s ⊆ F′
j). As a result, all tasks created in the transaction should have been

joined, directly or indirectly, into the root task before it can commit. If this is not the
case, the program is incorrect. Consequently, the local store τ ′ of the root task contains
the changes to the transactional state of all tasks in the transaction. In rule atomic|tf ,
these changes are committed atomically.

In-transaction determinacy In a transaction, there is no non-determinism: given the initial
state of the transactional heap θ, a transaction will always reduce to the same value v
and local store τ ′, assuming that all conflict resolution functions are determinate. We say
that a transaction is determinate. This can be proven using a technique similar to [10].

J. Swalens, J. De Koster, and W. De Meuter 23:17

Listing 5 Overview of implementation of transactions and transactional tasks as an extension of
Clojure. Abridged versions of the interfaces of the classes Transaction and TxTask are listed.

1 public class Transaction {
2 // (dosync fn): runs fn in a transaction and returns the return value of fn.
3 static public Object runInTx(Callable fn) {
4 // If we’re already in a transaction, use that one; else create one. In the new tx, fn is called, and an attempt to
5 // commit is made. As long as committing fails, we rerun fn and retry.
6 }
7 void stop(); // Indicate that tx and its tasks should stop by setting stop flag.
8 }
9

10 // Implements Callable so that it can be created in a thread pool; implements Future so we can wait for its final value.
11 public class TxTask implements java.util.concurrent.Callable, java.util.concurrent.Future {
12 static ThreadLocal<TxTask> task; // Transactional task running in current thread (can be null)
13 Transaction tx; // Associated transaction
14
15 Vals<Ref, Object> snapshot; // In-tx values of refs on creation of this task (from all ancestors)
16 Vals<Ref, Object> values; // In-tx values of refs (set/commute)
17 Set<Ref> sets; // Set refs
18 Map<Ref, List<CFn>> commutes; // Commuted refs
19 Set<Ref> ensures; // Ensured refs
20 Set<TxTask> spawned; // Spawned tasks
21 Set<TxTask> joined; // Directly/Indirectly joined tasks
22
23 // (fork fn): spawns a task. Creates TxTask if a transaction is running, or a regular Future otherwise.
24 static public Future spawnFuture(Callable fn) { ... }
25 // Create a transactional task in tx to execute fn. Snapshot is created from parent (= current thread).
26 TxTask(Transaction tx, TxTask parent, Callable fn) { ... }
27
28 Object doGet(Ref r) { ... } // (deref r)
29 Object doSet(Ref r, Object v) { ... } // (ref-set r v)
30 Object doCommute(Ref r, IFn fn, ISeq args) { ... } // (commute r fn args)
31 void doEnsure(Ref r) { ... } // (ensure r)
32 void join(TxTask child) { ... } // (join child) (new)
33 }

6 Implementation

We implemented transactional tasks as an extension of Clojure, a Lisp dialect implemented
on top of the Java Virtual Machine.7 In this section, we briefly describe the core concepts of
Clojure’s STM and our modifications to it. Listing 5 lists the interface of the Transaction
and TxTask (transactional task) classes.

Clojure represents transactional variables as Refs. It uses Multi-Version Concurrency
Control (MVCC) [6]: each ref contains a (limited) history of previous values and the time at
which they were set. As a result, transactions can read an older version of a ref even after it
has been overwritten, preventing conflicts. Only if no recent-enough value is available in the
limited history, will the transaction abort and restart.

A transaction contains several data structures to store its modifications (together they
correspond to the local store τ of the operational semantics): sets, commutes, and ensured
for refs modified using ref-set, commute, and ensure. The latest value of each modified
ref is stored in the mapping values. In traditional Clojure these data structures are stored
in the Transaction. To support transactional tasks, we move them to the TxTask class, as
each task should have its own local store of modifications. Additionally, the sets of spawned
and joined tasks are stored in the current task as well, mirroring the operational semantics.

Clojure translates a transaction (dosync e) into Transaction.runInTx(fn), where fn
corresponds to a function executing e. The creation of a task using (fork e) is translated
to TxTask.spawnFuture(fn) and returns a new TxTask, which runs in a new thread (using
a thread pool). Upon its creation, the new task’s snapshot and values are set to a copy

7 It is available in the artifact, or at https://github.com/jswalens/transactional-futures.

ECOOP 2016

https://github.com/jswalens/transactional-futures

23:18 Transactional Tasks: Parallelism in Software Transactions

(a) Code example.

(atomic
1(ref-set gray A)
2(fork 3(ref-set blue B)

4(fork 5(ref-set green C))
6(ref-set red D)
...)

7(ref-set purple E)
...)

(b) Data after step 3.

A

B

s₂

v₂

s₁

v₁

(c) Data after step 7.

A

E B

D E

s₂

v₂

s₃

v₃

s₁

v₁

Figure 7 In the code example (a) three tasks are created. Each task contains a snapshot, which
is immutable through the task’s lifetime, and values, to which updated values for refs are written.
(b) and (c) illustrate how the data structures are stored in memory.

of the parent’s current values, as described in Section 6.1. The other data structures start
empty. When reading a ref, doGet(r) searches for it first in the task’s values, next in its
snapshot, and finally in the ref’s history. Modifying a ref calls doSet(r, v), which adds
the ref to sets and its value to values.

When a parent task joins a child, (join child) is translated to parent.join(child),
which takes several steps. Firstly, it waits until the child task has completed. Next, it checks
whether the child task has joined all of its children. Then, the value of each ref in the
sets of the child is copied from the child’s to the parent’s values, calling the resolution
function on conflicts. The child’s sets, commutes, ensures, and joined are appended to
the parent’s. Additionally, the child is added to its parent’s joined. Lastly the child’s final
value is returned. On subsequent joins of the same child, only the final value is returned.

The transaction also contains a ‘stop’ flag. If one of the tasks encounters a conflict during
its execution, it sets the transaction’s stop flag and stops. The transactional operations
(doGet, doSet, join...) contain a check point: they check the stop flag when they are called
and abort their task if it is set. Consequently, when a task encounters a conflict and sets the
stop flag, all other tasks in the same transaction will stop once they reach their next check
point, and once all tasks have stopped the transaction is restarted.

When a transaction commits, at the end of Transaction.runInTx(fn), it first checks
whether the root task has joined all of its children: if it has we know all tasks have been
joined (as explained in Section 5.2), otherwise an exception is thrown. Next, each modified
ref is locked and the changes are committed. This may abort other transactions: by setting
the stop flag of the other transaction, eventually all its tasks will stop and the conflicting
transaction restarts.

6.1 Implementation of Snapshot and Local Store
Even though our implementation is a prototype, we briefly describe how the snapshot and
values are stored, the most frequently used data structures in a transactional task. Even
though the snapshot and values of a task are copied from its parent when it is created, we
do not actually store duplicates.

Figure 7a lists a program that creates three tasks that each modify some refs. In Figure 7b
we illustrate how the data structures are stored in memory after the third statement. We
write si and vi for the snapshots and values of task i. Each data structure comprises a linked
list of hash maps. We exploit the fact that snapshots are immutable to share some of these
hash maps between the data structures.

J. Swalens, J. De Koster, and W. De Meuter 23:19

In the code example, task 1 (the root task) first sets A. A second task is forked and sets B.
Consequently, after this step, s1 is empty, v1 and s2 both contain A, and v2 consists of A and
B. Figure 7b illustrates how this is stored in memory. The snapshots are shared between the
two tasks: these are immutable structures only used for look-up. The values of both tasks,
v1 and v2, consist of a linked list that first contains a hash map that stores their private
changes and next contains the shared snapshots. When ref B is updated in the second task,
it is updated in the first hash map pointed to by v2. When a ref is read in the second task,
we iterate over the linked list pointed to by v2, up the tree, until the ref is found.

Creating a new task, as in step 4, is now a matter of modifying some pointers. When
task 3 is forked by task 2, the node that represented v2 becomes the snapshot s3 of the new
task, with two empty children to contain the new values of tasks 2 and 3. After the last step,
in Figure 7c, tasks 2 and 3 have updated their values with D and E respectively. Hence, v3
now consists of the new values of task 3, the snapshot of task 3, the snapshot of task 2, and
the snapshot of task 1.

By representing the snapshot and values data structures of a transactional task as
a linked list of hash maps, the memory overhead of duplicated entries is eliminated. In
exchange, the look-up time slightly increases as we need to iterate over the list of maps. The
time to update a value is unchanged: a write happens directly in the first hash map. Forking
is a matter of creating two new maps and adjusting an existing pointer. Joining still means
copying values and potentially resolving conflicts, as explained earlier.

Furthermore, we performed another optimization for a common use case. In many
programs it is common to create several tasks immediately after another, for example in a
parallel map as in Section 3. This leads to a sequence of empty nodes in the tree. Instead
of pointing a new child to an empty node, we directly point to the previous non-empty
node. This optimization avoids the need to traverse empty nodes on look-ups. It is a safe
optimization as non-leaf nodes in the tree are always snapshots and therefore immutable.

7 Case Studies and Experimental Results

We evaluate the applicability and performance benefits of transactional tasks using the
STAMP benchmark suite [21]. STAMP consists of the eight applications listed in Table 1. It
has been composed so as to represent a variety of use cases for transactions, from several
application domains and with varying properties. We are interested in two characteristics in
particular: (1) the transaction length, i.e. the average number of instructions per transaction
in an execution; (2) time spent in transactions, i.e. the ratio of instructions in transactions
over the total number of instructions in an execution of the program. When most of the
execution time is spent in transactions, we can assume that those transactions execute
performance-critical parts of the application. If these transactions are also long-running,
they potentially benefit from more fine-grained parallelism.

As shown in Table 1 (page 8), five out of the eight applications in the STAMP suite spend
a large proportion of time in transactions, three of which have long-running transactions:
Labyrinth, Bayes, and Yada. In the rest of this section, we study Labyrinth and Bayes.

We also examined the Yada application. While its transactions have a relatively long
execution time, they contain sequential dependencies that make it difficult to parallelize
the different steps. Hence, we were unfortunately not able to achieve a speed-up using
transactional tasks. The overhead of creating transactional tasks overshadows the benefit of
performing only a small piece of the program in parallel. We therefore will not look at this
application in further detail.

ECOOP 2016

23:20 Transactional Tasks: Parallelism in Software Transactions

For these case studies, we first ported the STAMP applications from C to Clojure. After-
wards, we used transactional tasks to parallelize individual transactions where applicable.8
In the performance results, the implementations with transactional tasks are compared with
the original version in Clojure.

Experiments ran on a machine with two Intel Xeon E5520 processors, each containing
four cores with a clock speed of 2.27 GHz and a last-level cache of 8 MB. HyperThreading
was enabled, leading to a total of 16 logical threads. The machine has 8 GB of memory. Our
transactional tasks are built as a fork of Clojure 1.6.0, running on the Java HotSpot 64-Bit
Server VM (build 25.66-b17) for Java 1.8.0. Each experiment ran 30 times; the graphs report
the median and the interquartile range.

7.1 Labyrinth
The Labyrinth benchmark was already introduced in Section 3. The goal of the benchmark
is to connect given pairs of points in a grid using non-overlapping paths. For each pair, a
breadth-first search is executed in a new transaction. In Section 4 we discussed how each
iteration of the breadth-first search can process its elements in parallel using transactional
tasks. Here, we optimized this solution to first distribute the elements into a configurable
number of partitions, and then process these partitions in parallel. Furthermore, we ran the
experiments on a three-dimensional grid of 64× 64× 3 with 32 input pairs.

In the original version, there is one parameter t that influences the amount of parallelism:
t worker threads will process input pairs in parallel. The maximal ideal speed-up in the
original version is therefore t: in an ideal case where no transactions fail and the overhead
is zero, we can expect a speed-up of maximally t. In the version that uses transactional
tasks, another parameter p affects the parallelism: the number of partitions created on each
iteration of the breadth-first search. Each of the t worker threads can create at most p
partitions; therefore, the maximal number of threads and thus the maximal ideal speed-up
in the version with parallel search is t× p.9

In Figure 8 we measure the speed-up of running the program with several values of t and
p. The speed-up is calculated relative to the version with sequential search and only one
worker thread (t = 1). For the version that uses sequential search, the number of worker
threads is increased (blue line). For the version with parallel search, both the number of
partitions (different lines) and the number of worker threads (different points on the same
line) are varied. The x axis denotes the maximal number of threads, i.e. t for the sequential
search and t× p for the parallel search. In an ideal case, the measured speed-up would be
equal to the maximal number of threads.

The blue line depicts the results of the original version of the Labyrinth application.
Increasing the number of threads causes only a modest speed-up, because they find overlapping
paths and consequently need to be rolled back and re-executed. This is shown in Figure 9,
which lists the average number of attempts per transaction. If there is only one thread, each
transaction executes only once, but as the number of threads increases each transaction
re-executes several times on average. For 16 threads, the average transaction executes 2.10
times, i.e. it rolls back more than once. This hampers any potential speed-up.

In the version with parallel search, as the parameter p increases the speed-up improves, for
small values of p. Each transaction now spawns p tasks, and consequently each transaction

8 The code for these applications is available in the artifact, or at https://github.com/jswalens/
ecoop-2016-benchmarks.

9 To minimize the overhead of forking tasks, we ensure that each partition contains at least 20 elements.

https://github.com/jswalens/ecoop-2016-benchmarks
https://github.com/jswalens/ecoop-2016-benchmarks

J. Swalens, J. De Koster, and W. De Meuter 23:21

1 2 4 8 16 32 64

Maximal number of threads (t×p)

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

su
re

d
sp

ee
d-

up

optimum for p=8, t=2

Measured speed-up on an 8-core machine

Sequential search
Parallel search, 1 partition
Parallel search, 2 partitions
Parallel search, 4 partitions
Parallel search, 8 partitions
Parallel search, 16 partitions

Figure 8 Measured speed-up of the Labyrinth application for the version with sequential search
(blue line) and parallel search (other lines), as the total number of threads (t× p) increases. Each
point on the graphs is the median of 30 executions, the error bar depicts the interquartile range.

can finish its execution faster. On the tested hardware, an optimal speed-up of 2.32 is
reached for t = 2 and p = 8, when two worker threads process elements and create up to
eight partitions. For this case, the number of conflicts is low: each transaction executes 1.11
times on average (Figure 9).

Further increases in p lead to worse results: the additional parallelism does not offset
the overhead of forking and joining tasks. Joining transactional tasks is expensive for this
benchmark, as conflicts between the tasks are likely (two points expanding into a shared
neighbor), and each conflict calls a conflict resolution function (the minimum, as explained
in Section 4.2).

The parallel search with p = 1 (which does not actually search in parallel as only
one partition is created) is slower than the sequential search. This is due to the different
algorithms: the parallel algorithm creates several sets on each iteration to keep track of the
work queue, while the sequential algorithm uses one list throughout.

These results demonstrate two benefits of transactional tasks. Firstly, the execution time
of each transaction decreases by exploiting parallelism in the transaction. Secondly, the
lower execution time of a transaction also means that the cost of conflicting transactions is
decreased: each attempt takes less time. By varying the two parameters t and p, we can find
an optimum between running several transactions simultaneously but risking conflicts (t)
and speeding up the transactions internally but with more fine-grained parallelism (p).

Finally, to transform the original version with sequential search into the one with parallel
search, out of 682 lines, 30 lines (4%) were removed and 78 lines (11%) were added. This
corresponds to changing the sequential search algorithm into the parallel search algorithm,
which is more complex.

7.2 Bayes
The Bayes application implements an algorithm that learns the structure of a Bayesian
network given observed data [11, 21]. A Bayesian network consists of random variables and
their conditional dependencies. Each variable in the Bayesian network is represented as a
transactional variable that contains references to its parents and children. Initially, there

ECOOP 2016

23:22 Transactional Tasks: Parallelism in Software Transactions

Figure 9 Average number of attempts per transaction for different values of t (transactions
executing simultaneously) and p (partitions per transaction).

are no dependencies between the variables. A shared work queue contains the dependencies
to insert next, and is initialized to one dependency per variable. t worker threads process
the work queue in parallel: they insert the dependency into the network, and then calculate
which dependencies (if any) could be inserted next, appending the best candidate to the
work queue. The best candidate dependency is the one that maximizes a score function that
calculates the capability of the network to estimate the input data. This is encapsulated in a
transaction to prevent two dependencies from being added to the same variable simultaneously.
Dependencies are inserted until the work queue is empty. As more dependencies are discovered,
connected subgraphs of dependent variables form in the network.

Before the algorithm starts, the application generates the input data. Then, the t worker
threads process the work queue in parallel. Figure 10 indicates that a typical execution
spends 11.8% of its total time generating the input data, 88.1% learning the dependencies,
and 0.1% validating the solution. We focus on the middle part only. In that part, 93.2%
of the execution time is spent in the transaction that determines the best next dependency.
The transaction contains a loop that calculates the score for each candidate and then selects
the maximum. Each of the iterations of this loop is independent, and can therefore run in
parallel using transactional tasks.

In Figure 11, we measure the speed-up of the learning phase as the number of worker
threads (t) increases, for a network of 48 variables. The blue line is the original version: t
threads process dependencies in parallel. The red line shows the version in which the loop is
executed in parallel. Here, in each transaction, up to v transactional tasks run in parallel,
where v is the number of Bayesian variables in the network (48 in our experiment). Therefore,
the maximal ideal speed-up in the original version is t, while in the version with the parallel
loop it is t× v.

The speed-up of the original version (blue line) increases as number of threads increases,
up to a speed-up of 2.75 for 16 threads. After this point, the speed-up plateaus. By examining
the execution of the program, we find that even though a larger number of worker threads
are created, only a limited number of them actually perform any work. The others are idle
as not enough work is available after a certain point in the execution of the program.

J. Swalens, J. De Koster, and W. De Meuter 23:23

0

2

4

6

8

10

12

14

T
im

e
 (

s)

Phases of
the program

Generate input (11.8%)
Learn network (88.1%)
Validate solution (0.1%)

Time spent
in transaction

(in learning phase)

Transactional (93.2%)
Non-transactional (6.8%)

Figure 10 Proportion of time spent in different parts of the Bayes application (with v = 48).

In the version with parallel tasks, we see that even when there is only one worker thread
processing one transaction at a time, the parallelization of its internal loop produces a
speed-up of 2.88. By increasing the number of worker threads, a maximum speed-up of 3.45
can be produced for 5 worker threads. Again, the speed-up reaches a plateau as not enough
work is available for all worker threads. However, the reached speed-up is higher than the
original version as more fine-grained parallelism is available in each unit of work.

This result demonstrates another benefit of transactional tasks. In the original version,
the amount of parallelism corresponded to the number of transactions, which is equal to
number of work items. Hence, if at a certain point there are fewer work items than cores in
the machine, not all potential parallelism is exploited. By introducing parallelism inside the
transactions, we make better use of the available hardware. Even if there is limited work
and therefore a limited number of transactions, transactional tasks allow us to make use of
more fine-grained parallelism in the transactions.

Lastly, to modify the original version into the one that uses transactional tasks, only one
line (out of 1248) had to be changed: the keyword for was replaced by parallel-for, a
macro that uses transactional tasks internally to execute its iterations in parallel.

7.3 Conclusions
Based on these experiments, we draw the following conclusions:

Out of the eight applications in the STAMP benchmark suite, which represents a variety
of use cases for transactions, five spend a large proportion of their time in transactions
and three of these have long-running transactions. We parallelized two of these three
applications using more fine-grained transactional tasks.
In the Labyrinth application, transactional tasks allow the breadth-first algorithm to be
parallelized. This leads to a speed-up, by tuning the parameters for parallelism to have
faster transactions and fewer conflicts.
The Bayes application spends most of its execution time in a loop (in a transaction) that
can be trivially parallelized. As there is only limited work available, at a certain point the

ECOOP 2016

23:24 Transactional Tasks: Parallelism in Software Transactions

1 2 4 8 16 32 64 128

Number of worker threads (t)

0

1

2

3

4

5

M
ea

su
re

d
sp

ee
d-

up

maximum for t=5

maximum for t=16

Measured speed-up on an 8-core machine, v=48

Original version
Parallel loop (48 tasks
per worker thread)

Figure 11 Measured speed-up of the learning phase for the Bayes application, as the number of
threads increases. The blue line shows the original version. The red line shows the version with a
parallel for loop, where each of the (at most) 48 iterations is executed in parallel.

number of transactions is lower than the number of cores in the machine. Transactional
tasks allow us to introduce more fine-grained parallelism. This is a matter of changing
for into parallel-for, and increases the maximal speed-up on an eight-core machine
from 2.75 for the original version to 3.45 for the version with transactional tasks.

These results lead us to believe that transactional tasks allow developers to improve
the performance of their transactional applications with only limited effort. Moreover, as
our implementation is a relatively simple prototype in Clojure, further optimizations could
decrease the overhead and improve its performance (e.g. for the Bayes application). In future
work we would also like to explore the applicability of transactional tasks for other programs.

It should be possible to apply transactional tasks to other STM systems, such as Haskell
or ScalaSTM. In those systems, the fact that the studied applications allow parallelism in
the transaction also applies, the development effort to introduce them should be similar, but
depending on the implementation the speed-up may be different.

8 Related Work

We will briefly discuss three categories of related work: nested and parallel transactions,
concurrency models with deterministic access to shared memory, and work that allows parallel
tasks to share memory.

Nested, multithreaded, and nested parallel transactions Nested transactions [23, 5, 24,
25] are subtransactions created in a transaction. Nested transactions attempt to commit
separately from their parent. Hence, they can fail separately, thus requiring only a portion
of the work to be rolled back. This can improve the performance of large transactions.
In contrast to transactional tasks, nested transactions do not execute in parallel, as they
correspond to nested atomic blocks and not the nesting of fork in atomic.
Haines et al. [15] and Moore and Grossman [22] allow threads to be created in a transaction,
i.e. multithreaded transactions. However, there are no guarantees on the access to shared
memory by threads within a transaction: they may read and modify shared transactional
variables concurrently, thus permitting race conditions.

J. Swalens, J. De Koster, and W. De Meuter 23:25

Transactional Featherweight Java [28] combines nested and multithreaded transactions:
a transaction can spawn threads that contain nested transactions. When a nested
transaction commits, its changes are written to its parent. Conflicts are explicitly
forbidden: the value of a variable in a child must be the same as its value in the
parent. Nested parallel transactions [1, 4, 2, 29] are similar, but resolve conflicts using the
traditional serializability of transactions: the transaction that commits last wins. This is
the main difference with transactional tasks, which resolve conflicts deterministically using
conflict resolution functions, thus guaranteeing in-transaction determinacy (Sections 4.3
and 5.2). The second major difference is that nested parallel transactions roll back on
conflicts between siblings, while transactional tasks do not, as they resolve the conflicts
instead. In an application without such conflicts, both models operate equivalently.
However, in our motivating example, the Labyrinth application, such conflicts frequently
occur: the parallel expansion of the breadth-first search causes conflicts on overlapping
cells. Nested parallel transactions would cause frequent rollbacks of the inner transactions,
essentially sequentializing them, detrimental to performance. Transactional tasks run
in parallel, but rely on the developer for an appropriate conflict resolution function.
We expect both models to be suited for different applications. In applications in which
non-top-level sibling transactions conflict, we expect transactional tasks to perform better.

Deterministic access to shared memory The model provided by transactional tasks in the
transaction is similar to two existing concurrency models. Firstly, Concurrent Revisions
are a model for task parallelism with shared memory [9]. Its concurrent tasks share
memory using versioned variables. When a task is forked, a conceptual copy is made
of the versioned variables; when a task is joined, the changed variables are merged into
the joining task. This resembles how transactional variables behave inside a transaction
in our model. However, between the transactions we provide serializability. As such,
Concurrent Revisions provide determinacy for the complete program, while transactional
tasks provide determinacy in the transactions, and serializability of the transactions as a
whole.
A similar model is provided by Worlds [30], in which the program state is reified as a
world. The world can be forked into a child world, a conceptual copy of all program state.
The state in a child world can be updated, and eventually committed back (merged) into
its parent world. As such, worlds also behave similarly to the transactional variables in
a transaction. However, the Worlds model does not provide parallelism: a child world
does not run in parallel with its parent. Instead, Worlds are used as a mechanism to
‘undo’ changes to the program state. As a result, when a child world is merged in its
parent there will be no conflicts, as the parent has not changed in the mean time. In the
case of transactional tasks and Concurrent Revisions, it is possible for the parent to have
changed as well, and a form of conflict resolution between parent and child is needed.

Parallel tasks with shared memory Otello [34] allows parallel tasks to access shared memory,
while still running the tasks in isolation. To this end, it introduces assemblies, which
consist of a task and the set of shared objects it owns. When two assemblies conflict, one
is re-executed after the other has finished. However, while Otello re-executes code, it
does not provide transactions and as such does not guarantee serializability.

9 Conclusion

Many modern programming languages and frameworks support multiple concurrency models.
However, the combination of these concurrency models is often either not supported or not

ECOOP 2016

23:26 Transactional Tasks: Parallelism in Software Transactions

well defined. In existing languages, using futures to increase the parallelism within a single
transaction is either not allowed (Haskell), or leads to unexpected behavior (Clojure, Scala).

This paper introduces transactional tasks as a mechanism to enable safe parallelism
within transactions. Each transactional task executes within the context of its encapsulating
transaction, hence, transactions remain serializable. Furthermore, the different tasks of
a single transaction are coordinated: they are all committed or retried together. Lastly,
transactional tasks do not introduce non-determinism, and behave as nested transactions,
thereby providing a straightforward and familiar mental model to the programmer.

This paper provides a formalization of transactional tasks, and discusses its implementation
on top of Clojure. Our approach is validated through a case study of several applications from
the STAMP benchmark suite. We show that our approach allows finer-grained parallelism of
performance-critical, long-running transactions to be exploited, leading to a higher speed-up.
As a result, we believe that transactional tasks successfully combine futures and Software
Transactional Memory, allowing the parallelism of a program to be fully exploited with
limited developer effort, while preserving the properties of the separate models where possible.

Acknowledgements. We would like to thank Stefan Marr for insightful discussions and
comments on early drafts. We also thank the anonymous reviewers for their feedback.

References

1 K. Agrawal, J. T. Fineman, and J. Sukha. Nested Parallelism in Transactional Memory.
In PPoPP, 2008.

2 W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested
parallel transactions in software transactional memory. In SPAA, 2010.

3 H. C. Baker and C. Hewitt. The incremental garbage collection of processes. In Symposium
on Artificial Intelligence and Programming Languages, pages 55–59, 1977.

4 J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapałka. Leveraging parallel
nesting in transactional memory. In PPoPP, 2010.

5 C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in nested transactions
systems. Journal of the ACM, 36(2):230–269, 1989.

6 P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems.
ACM Computing Surveys, 13(2):185–221, 1981.

7 G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient scheduling for languages
with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

8 R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An Efficient Multithreaded Runtime System. In PPoPP, 1995.

9 S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent programming with revisions and
isolation types. In OOPSLA, 2010.

10 S. Burckhardt and D. Leijen. Semantics of Concurrent Revisions. In ESOP, 2011.
11 D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian

networks with local structure. In UAI, 1997.
12 M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. The

MIT Press, 2009.
13 C. Flanagan and M. Felleisen. The Semantics of Future and Its Use in Program Optimiza-

tions. In POPL, 1995.
14 R. Guerraoui, M. Kapałka, and J. Vitek. STMBench7: A Benchmark for Software Trans-

actional Memory. In European Conference on Computer Systems, 2007.

J. Swalens, J. De Koster, and W. De Meuter 23:27

15 N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and J. M. Wing. Composing first-
class transactions. ACM Transactions on Programming Languages and Systems, 16(6):1719–
1736, 1994.

16 R. H. Halstead. MULTILISP: a language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

17 T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.
In PPoPP, 2005.

18 M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-Free
Data Structures. ACM SIGARCH Computer Architecture News, 21:289–300, 1993.

19 S. Imam and V. Sarkar. Cooperative Scheduling of Parallel Tasks with General Synchro-
nization Patterns. In ECOOP, 2014.

20 C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions on
Electronic Computers, EC-10(3):346–365, 1961.

21 C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Transactional
Applications for Multi-Processing. In Symposium on Workload Characterization, 2008.

22 K. F. Moore and D. Grossman. High-level small-step operational semantics for transactions.
In POPL, 2008.

23 J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD
thesis, Massachusetts Institute of Technology, 1981.

24 J. E. B. Moss and A. L. Hosking. Nested transactional memory: Model and architecture
sketches. Science of Computer Programming, 63(2):186–201, 2006.

25 Y. Ni, V. S. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha,
and T. Shpeisman. Open nesting in software transactional memory. In PPoPP, 2007.

26 N. Shavit and D. Touitou. Software transactional memory. Distributed Computing, 10(2):99–
116, 1997.

27 S. Tasharofi, P. Dinges, and R. E. Johnson. Why Do Scala Developers Mix the Actor Model
with Other Concurrency Models? In ECOOP, 2013.

28 J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A Semantic Framework for Designer
Transactions. In ESOP, 2004.

29 H. Volos, A. Welc, A. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy.
NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems. In ECOOP, 2009.

30 A. Warth, Y. Ohshima, T. Kaehler, and A. Kay. Worlds: Controlling the Scope of Side
Effects. In ECOOP, 2011.

31 I. Watson, C. Kirkham, and M. Lujan. A Study of a Transactional Parallel Routing
Algorithm. In PACT, 2007.

32 A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In OOPSLA, 2005.
33 Y. Zhang and E. A. Hansen. Parallel Breadth-First Heuristic Search on a Shared-Memory

Architecture. In Heuristic Search, Memory-Based Heuristics and Their Applications, 2006.
34 J. Zhao, R. Lublinerman, Z. Budimlić, S. Chaudhuri, and V. Sarkar. Isolation for nested

task parallelism. In OOPSLA, 2013.

ECOOP 2016

23:28 Transactional Tasks: Parallelism in Software Transactions

A Syntactical and Semantical Differences with Clojure and Haskell
The syntax and operational semantics introduced in Section 2 closely matches Clojure and Haskell,
with only a few insignificant differences. These are detailed in this appendix.

A.1 Clojure
Clojure 1.7.0 (released June 30, 2015) differs from the presented syntax in the following ways:

Clojure encapsulates all forms in parentheses, as S-expressions. Furthermore, it has a slightly
different syntax for let.
fork and join are named future and deref respectively. That is, deref is overloaded for both
futures and transactional variables.
Clojure’s (dosync e) is equivalent to our atomic (do e;).

The semantics differ only on these two points:
Clojure allows ref and deref to be used outside a transaction: Clojure’s (ref e) and (deref e) are
equivalent to our atomic (ref e) and atomic (deref e), but with an optimized implementation.
Clojure supports alter, commute, and ensure, which are essentially variations of ref-set with
different performance characteristics.

Finally, Clojure allows futures to be created in a transaction, as described in Section 3.

A.2 Haskell
Syntactically, Haskell writes forkIO, atomically, newTVar, readTVar, and writeTVar for fork,
atomic, ref, deref, and ref-set. The semantics differ in the following ways:

Haskell’s forkIO returns a thread identifier, and not a future. Nevertheless, our formalization
models the use of transactions in tasks, in Haskell one uses atomically in a task created using
forkIO.
Moreover, Haskell does not support the join operation on thread identifiers. Instead, waiting
for a thread and retrieving its result is usually implemented manually using an MVar10; while
our language uses futures for this purpose. This aspect does not affect the problem statement of
Section 3, but porting our solution to Haskell does require adding a join operation to Haskell.
Transactions are encapsulated in the STM monad, and the main program is encapsulated in the
IO monad. This leads to a different semantics of the do block, which in Haskell is syntactic sugar
for monad sequencing. Haskell’s do notation allows monadic binding (<-) and let binding, and
may require return.
Haskell does not allow multiple atomically blocks to be nested: the type signature of atomically
is STM a -> IO a, and a result of type IO a cannot be used in an STM block.
Haskell supports retry to abort a transaction, and orElse to compose two alternative STM
actions.

Lastly, one could see transactional tasks as the addition of forkSTM to Haskell, extending its
forkIO to usage in the STM monad.

10As indicated in the documentation of the Control.Concurrent package at https://hackage.haskell.
org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12.

https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12
https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12

	Introduction
	Background: Parallel Tasks, Futures, and Transactions
	Parallel Tasks and Futures
	Description and Properties
	Formalization

	Software Transactional Memory
	Description and Properties
	Formalization

	Motivation and Example
	Transactional Tasks
	A Transactional Task
	Conflicts and Conflict Resolution Functions
	Properties
	Summary

	Semantics and Properties
	Semantics
	Properties

	Implementation
	Implementation of Snapshot and Local Store

	Case Studies and Experimental Results
	Labyrinth
	Bayes
	Conclusions

	Related Work
	Conclusion
	Syntactical and Semantical Differences with Clojure and Haskell
	Clojure
	Haskell

