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Abstract
Let G = (V,E) be a vertex-colored graph, where C is the set of colors used to color V . The
Graph Motif (or GM) problem takes as input G, a multisetM of colors built from C, and asks
whether there is a subset S ⊆ V such that (i) G[S] is connected and (ii) the multiset of colors
obtained from S equals M . The Colorful Graph Motif (or CGM) problem is the special
case of GM in which M is a set, and the List-Colored Graph Motif (or LGM) problem is
the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors.

We study the three problems GM, CGM, and LGM, parameterized by ` := |V | − |M |. In
particular, for general graphs, we show that, assuming the strong exponential time hypothesis,
CGM has no (2−ε)` ·|V |O(1)-time algorithm, which implies that a previous algorithm, running in
O(2` · |E|) time is optimal [2]. We also prove that LGM is W[1]-hard even if we restrict ourselves
to lists of at most two colors. If we constrain the input graph to be a tree, then we show that
GM can be solved in O(4` · |V |) time but admits no polynomial-size problem kernel, while CGM
can be solved in O(

√
2` + |V |) time and admits a polynomial-size problem kernel.
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1 Introduction

The Subgraph Isomorphism problem is the following pattern matching problem in graphs:
given a (typically large) host graph G and a (small) query graph H, return one (or all)
occurrence(s) of H in G, where the term occurrence denotes here a subset S of V (G) such
that G[S], the subgraph of G induced by S, is isomorphic to H. This type of graph mining
problem has numerous applications, notably in biology [20]. Subgraph Isomorphism is
a structural graph pattern matching problem, where one looks for similar graph structures
between H and G. In some biological contexts, however, additional information is provided
to the vertices of the graphs, for example their biological function. This can be modeled
by labeling each vertex of the graph, for example by giving it one or several colors, each
corresponding to an identified function. In the presence of such functional annotation, the
structure of a given induced subgraph may be of less importance than the functions it
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7:2 Graph Motif Problems Parameterized by Dual

corresponds to. Thus, a new set of functional graph pattern matching problems has emerged,
starting with the Graph Motif problem [15], which was introduced in the context of the
analysis of metabolic networks. Here, what is primarily sought in the host graph is a multiset
M of colors that represents the functions of interest.

Graph Motif (GM)
Input: A multiset M built on a set C of colors, an undirected graph G = (V,E), and
a coloring χ : V → C.
Question: Is there a set S ⊆ V such that G[S] is connected and there is a one-to-one
mapping f from S to M?

Many variants of the GM problem have been introduced and studied. In particular,
List-Colored Graph Motif (or LGM) is a generalization of GM that is used to identify
protein complexes in protein interaction networks that are similar to a given protein complex
from a different species [7]. In LGM, a list-coloring L : V → 2C is assigned to each vertex
of G, and the question asked is the existence of S ⊆ V such that (i) G[S] is connected and
(ii) the one-to-one mapping f from S to M we look for satisfies ∀v ∈ S : f(v) ∈ L(v). The
special case of GM in which M is a set is called Colorful Graph Motif (or CGM). Many
optimization problems related to GM have received interest, including some that are related
to tandem mass spectrometry and where the input graph is directed [19]. All these problem
variants have given rise to a very abundant literature. CGM, GM, and LGM are NP-hard
even in very restricted cases [10]. Consequently, many of the above-mentioned studies have
focused on (dis)proving fixed-parameter tractability of the problems (see e.g. [21] for the
most recent survey on the topic). In such cases, very often the parameter k := |M | = |S| is
considered.

In this paper, we study the parameterized complexity of GM, CGM, and LGM, but we
differ from the usual viewpoint by focusing on the dual parameter ` := |V | − |S|, that is, `
is the number of vertices to be deleted from G to obtain a solution. Although the choice
of ` may be disputable because it may a priori be too large to expect a good behavior in
practice, there are several arguments for choosing such a parameter: First, after some initial
data reduction, the input may be divided into smaller connected components, where ` is not
much larger than k. Second, the algorithms for parameter k rely on algebraic techniques
or dynamic programming, and in both cases, the worst-case running time is equivalent to
the actual running time. In contrast, for example for CGM, the algorithm for parameter `
is a search tree algorithm [2], and search tree algorithms can be accelerated substantially
via pruning rules. Finally, there are subgraph mining problems where the dual parameter `
is usually bigger than the parameter k but leads to the current-best algorithm (in terms of
performance on real-world instances) [13]. Hence, parameterization by ` may be useful even
if ` is bigger than k, and thus deserves to be studied.

Related work and our contribution. GM is NP-hard, even when M is composed of two
colors [10]. Concerning the parameterized complexity for parameter k := |M |, the current-
best randomized algorithm has a running time of 2k · nO(1) [3, 18] where n := |V |, and there
is some evidence that this cannot be improved to a running time of (2− ε)k · nO(1) [3]. The
current-best running time for a deterministic algorithm is 5.22k · nO(1) [17]. GM on trees
can be solved in nO(c) time where c is the number of colors in M [10], but it is W[1]-hard
with respect to c [10]. Other parameters, essentially related to the structure of the input
graph G, have been studied by Bonnet and Sikora [6]. Finally, concerning parameter `, GM
has been shown to be W[1]-hard, even when M is composed of two colors [2].
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Table 1 Overview of new and previous results with respect to the dual parameter ` := n − k,
where n := |V |, m := |E|, k := |M |, and ∆ := maxv∈V |L(v)| denotes the maximum list size in G.
The lower bound result for CGM assumes the strong exponential time hypothesis (SETH) [14].

General graphs Trees

LGM W[1]-hard [2] ?
LGM, ∆ = 2 W[1]-hard (Cor. 4) ?

GM W[1]-hard [2] O(4` · n) (Thm. 5)
no poly. kernel (Thm. 8)

CGM O(2` ·m) [2], O(
√

2` + n) (Thm. 13),
no (2− ε)` · nO(1) (Thm. 1)
no poly. kernel (Thm. 2) (2`+ 1)-vertex kernel (Thm. 10)

Since CGM is a special case of GM, any above-mentioned positive result for GM also
holds for CGM. Besides, CGM is NP-hard, even for trees of maximum degree 3 [10], and
does not admit a polynomial-size problem kernel with respect to k even if G has diameter
two or if G is a comb graph (a special type of tree with maximum degree 3) [1]. Finally,
CGM can be solved in O(2` ·m) time [2]. The LGM problem is an extension of GM and
thus any negative result for GM propagates to LGM. Moreover, LGM is known to be
fixed-parameter tractable with respect to k, the current-best algorithm runs in 2k · nO(1)

time [18]. Concerning parameter `, LGM has been shown to be W[1]-hard even when M is
a set [2].

As mentioned above, we study GM, LGM and CGM with respect to the dual parame-
ter ` := n− k. Since many results in general graphs turn out to be negative, we also chose
to focus on the special case where the input graph G is a tree. Our results are summarized
in Table 1. In a nutshell, we strengthen previous hardness results for the general case and
show that the O(2` ·m)-time algorithm for CGM is essentially optimal. Then, we show that
for GM on trees a fixed-parameter algorithm can be achieved, and that, for CGM on trees, a
polynomial problem kernel and better running times than for general graphs can be achieved.

Preliminaries. Throughout the paper, the input graph for our three problems is G = (V,E),
and we let n := |V | (resp. m := |E|) denote its number of vertices (resp. edges). We
use [n] := {1, . . . , n} to denote the set of the integers from 1 through n. The set S of vertices
sought for in the three problems is called an occurrence of M . If G is vertex-colored, we call
a vertex set S colorful if |S| = |M | and all vertices in S have pairwise different colors. A
vertex v is called unique if it is assigned a color c that is assigned to no other vertex in V .

We briefly recall the relevant notions of parameterized algorithmics [8]. A reduction to a
problem kernel, or kernelization, is an algorithm that takes as input an instance (I, k) of a
parameterized problem and produces in polynomial time an equivalent instance (I ′, k′) (that
is, having the same solution) such that (i) |I ′| ≤ g(k), and (ii) k′ ≤ k. The instance (I ′, k′)
is called problem kernel and g is called the size of the problem kernel. If g is a polynomial
function, then the problem admits a polynomial-size problem kernelization. The class W[1] is
a basic class of presumed fixed-parameter intractability [8], that is, if a problem is W[1]-hard
for parameter k, then we assume that it cannot be solved in f(k) · nO(1) time [8]. The strong
exponential time hypothesis (SETH) assumes that CNF-SAT with n variables cannot be
solved in time (2− ε)n for any ε > 0 [14].

This work is structured as follows. In Section 2, we present lower bounds for LGM
and CGM on general graphs. These negative results motivate our study of the case when G
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is a tree; our results for GM on trees and CGM on trees will be presented in Section 3
and Section 4, respectively. Due to lack of space, some proofs are deferred to a full version of
the article.

2 Parameterization by Dual in General Graphs: Tight Lower Bounds

CGM can be solved in O(2` ·m) time [2]. We show here that this running time bound is
essentially optimal.

I Theorem 1. Colorful Graph Motif cannot be solved in (2− ε)` · nO(1) time unless
the strong exponential time hypothesis fails.

Proof. We present a polynomial-time reduction from CNF-SAT:

Input: A boolean formula Φ in conjunctive normal form with clauses C1, . . . , Cq over
variable set X = {x1, . . . , xr}.
Question: Is there an assignment β to X that satisfies Φ?

The reduction works as follows. First, for each variable xi ∈ X introduce two variable
vertices vti and v

f
i and color each of the two vertices with color χxi . The idea is that (with

the final occurrence) we must select exactly one vertex for this color. This selection will
correspond to a truth assignment to X. Now, introduce for each clause Ci a clause vertex ui,
color ui with a unique color χCi and make ui adjacent to vertex vtj if xj occurs nonnegated
in Ci and to vertex vfj if xj occurs negated in Ci. Finally, introduce one further vertex v∗ with
a unique color χ∗, make v∗ adjacent to all variable vertices and let M be the set containing
each of the introduced colors exactly once. Note that there are exactly |X| colors that appear
twice in G and that all other colors appear exactly once. Hence, ` = |X|. We next show the
correctness of the reduction. Let I denote the constructed instance of CGM.

First, assume that Φ is satisfiable and let β be a satisfying assignment of X. For the
CGM instance consider the vertex set S ⊆ V that contains all clause vertices, vertex v∗, and
for each variable xi the vertex vti if β sets xi to ’true’ and vfi otherwise. Clearly, |S| = |M |
and no two vertices of S have the same color. To show that I is a yes-instance of CGM it
remains to show that G[S] is connected. First, the subgraph induced by the variable vertices
in S plus v∗ is a star and thus it is connected. Second, since β is a satisfying assignment
each clause vertex in S has at least one neighbor in S (which is by construction a variable
vertex). Hence, G[S] is connected.

Conversely, assume that I is a yes-instance of CGM, and let S be a colorful vertex set
with |S| = |M | such that G[S] is connected. Since S is colorful, the variable vertices in S
correspond to a truth assignment of X. This assignment satisfies X: Indeed, since G[S] is
connected, there is a path in G[S] between each clause vertex ui and v∗, and thus there is a
neighbor of ui that is in S. If this neighbor is vtj (resp. vfj ), then by construction, β assigns
’true’ (resp. ’false’) to xj and thus Ci is satisfied.

Thus, the two instances are equivalent. Now observe that since ` = |X| = r and
n = 2r+q+1, any (2−ε)` ·nO(1)-time algorithm implies a (2−ε)r · (r+q)O(1)-time algorithm
for CNF-SAT. This directly contradicts the SETH. J

The above reduction also makes the existence of a polynomial-size problem kernel
for parameter ` unlikely. This is implied by the following two facts. First, CNF-SAT
parameterized by the number of variables does not admit a polynomial-size problem kernel
unless NP ⊆ coNP/poly [9]. Second, the reduction presented in proof of Theorem 1 is a
polynomial parameter transformation [5] from CNF-SAT parameterized by the number of
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variables to CGM parameterized by `. More precisely, given an input CNF-SAT formula Φ
on variable set X, the reduction produces an instance I = (M,G,χ) of CGM with ` = |X|.
Now, any polynomial-size problem kernelization applied to I produces in polynomial time an
equivalent CGM instance I ′ of size `O(1) = |X|O(1). Since CNF-SAT is NP-hard, we can now
transform this CGM instance in polynomial time into an equivalent CNF-SAT instance that
has size `O(1) = |X|O(1). Hence, a polynomial-size problem kernel for CGM parameterized
by ` implies a polynomial-size problem kernel for CNF-SAT parameterized by |X|. This
implies NP ⊆ coNP/poly [9] (which in turn implies a collapse of the polynomial hierarchy).

I Theorem 2. Colorful Graph Motif parameterized by ` does not admit a polynomial-
size problem kernel unless NP ⊆ coNP/poly.

We have thus resolved the parameterized complexity of CGM parameterized by ` on general
graphs and now turn to the more general LGM which is W[1]-hard with respect to ` [2].
Here, it would be desirable to obtain fixed-parameter algorithms for the parameter ` at least
for some restricted inputs. In other words, we would like to further exploit the structure of
real-world instances to obtain tractability results. A very natural approach here is to consider
the size and structure of the list-colorings L(v) as additional parameter. Unfortunately, the
problem remains W[1]-hard even for the following very restricted case of list-colorings. Herein,
the vertex-color graph is the graph with vertex set V ∪ C and edge set {{v, c} | c ∈ L(v)}.

I Theorem 3. List-Colored Graph Motif is W[1]-hard with respect to ` even if the
vertex-color graph is a disjoint union of paths.

We immediately obtain the following.

I Corollary 4. List-Colored Graph Motif is W[1]-hard with respect to ` even if |L(v)| ≤
2 for every vertex in G.

3 Graph Motif on Trees

Motivated by these negative results on general graphs, we now study the special case where
the input graph is a tree. For LGM, we were not able to resolve the parameterized complexity
with respect to ` for this case. Hence, we focus on the more restricted GM problem. We
show that GM is fixed-parameter tractable with respect to ` if the input graph is a tree.
Recall that for general graphs, GM is W[1]-hard for ` even if the motif M contains only two
colors [2]. Hence, the tree structure helps significantly when parameterizing by `.

3.1 A Dynamic Programming Algorithm
Call a color of M abundant if it occurs more often in G than in M . The abundant colors are
exactly the ones that have to be “deleted” to obtain a solution S. Let c1, . . . , cj denote the
abundant colors ofM , and let `i denote the difference between the number of vertices in V that
have color ci and the multiplicity of ci in M . This implies in particular that

∑
1≤i≤j `i = `.

The algorithm is a dynamic programming algorithm that works on a rooted representation
of G. Thus, obtain a rooted tree T by rooting G at an arbitrary vertex r ∈ V . As usual for
dynamic programming on trees, the idea is to combine partial solutions of subtrees. Our
algorithm is somewhat similar to a previous dynamic programming algorithm for GM on
graphs of bounded treewidth [10] but the analysis and concrete table setup is different.

I Theorem 5. Graph Motif can be solved in O(4` · n) time if G is a tree.

CPM 2016
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The fixed-parameter tractability of GM on trees also implies the following result for LGM.

I Corollary 6. LGM can be solved in O(4` · n) time if G is a tree and the vertex-color
graph H = (V ∪ C, {{v, c} | c ∈ L(v)}}) is a disjoint union of paths.

Proof. We describe a reduction of this special case of LGM on trees to GM on trees. Here,
we call the vertices of H that are from V the V -vertices of H and those that are from C

the C-vertices. Observe that without loss of generality, we can assume that all colors in the
lists are contained inM . First, if H has a connected component that contains more C-vertices
than V -vertices, then the instance (M,G,L) is a no-instance and can be immediately rejected.
Second, for any connected component H ′ of H that contains at least two C-vertices c1 and c2
that have multiplicity two in M , then the instance is also a no-instance: In H ′, the number
of V -vertices exceeds the number of C-vertices by at most one. Hence, if four or more
V -vertices are assigned only to c1 or c2, then there is some other C-vertex in H ′ that is
assigned to none of the V -vertices. A similar argument applies if H ′ contains a C-vertex
that has multiplicity at least three in M .

If the instances are not rejected because any of the cases described above applies, then
each connected component H ′ of H has at most one C-vertex that has multiplicity two in M
and all other C-vertices have multiplicity at most one. We show that in both cases, the
constraints of L for H ′ can be replaced by simple coloring constraints.

Case 1: Every C-vertex of H ′ has multiplicity one in M . If H ′ has the same number
of V -vertices as C-vertices (equivalently, H ′ has an even number of vertices), then every
occurrence S of M contains all V -vertices from H ′. Otherwise, if H ′ has more V -vertices
than C-vertices (equivalently, H ′ has an odd number of vertices), then every occurrence S
of M contains all except one V -vertex from H ′. In both cases, we can replace the constraints
as follows. Introduce a color cH′ , color all V -vertices in H ′ with color cH′ and replace in M
every C-vertex of H ′ by cH′ . In the first case, the number of vertices with color cH′ is exactly
the multiplicity of cH′ in M , in the second case it is the multiplicity of cH′ in M plus one.

Case 2: One C-vertex c of H ′ has multiplicity two in M . If H ′ has the same number of
V -vertices as C-vertices (equivalently, H ′ has an even number of vertices), then the instance
is a no-instance and can be rejected immediately: any assignment of colors to the V -vertices
either fails to assign one of the C-vertices or assigns at most one V -vertex to c. Otherwise,
if H ′ has an odd number of vertices, every occurrence S of M contains all V -vertices of H ′.
The constraints posed by H ′ may thus be replaced as follows: Introduce a color cH′ , color
all V -vertices in H ′ with color cH′ and replace in M every C-vertex of H ′ by cH′ (replace c
twice). Then the multiplicity of cH′ in M is exactly the number of V -vertices in H ′.

Applying these replacements exhaustively then results in an equivalent instance of GM
on trees which can be solved in the claimed running time due to Theorem 5. J

3.2 A Kernelization Lower Bound
We now show that GM does not admit a polynomial-size problem kernel with respect to `
even if G is a tree. The proof is based on a cross-composition [4] from the W[1]-hard
Multicolored Clique problem [11].

Multicolored Clique
Input: A graph H = (W,F ) and a vertex-coloring χ : W → {1, . . . , k}.
Question: Is there a vertex set S ⊆ W such that S is colorful, that is, |S| = k and
the vertices in S have pairwise different colors, and H[S] is a clique?
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To avoid confusion between the colors of the Multicolored Clique instance and the GM
instance, we refer to the colors of the Multicolored Clique instance as labels in the
following. Informally, cross-compositions are reductions that combine many instances of
one problem into one instance of another problem. The existence of a cross-composition
from an NP-hard problem to a parameterized problem Q implies that Q does not admit a
polynomial-size problem kernel (unless NP ⊆ coNP/poly) [4].

I Definition 7 ([4]). Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation
on Σ∗, and let Q ⊆ Σ∗×N be a parameterized problem. An or-cross-composition of L into Q
(with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging
to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi|+ k and outputs an

instance (y, k) ∈ Σ∗ × N of Q such that
the parameter value k is polynomially bounded in maxti=1 |xi|+ log t, and
the instance (y, k) is a yes-instance for Q if and only if at least one instance xi is a
yes-instance for L .

We present an or-cross composition of Multicolored Clique into GM on trees
parameterized by `. The polynomial equivalence relation R will be simply to assume that all
the Multicolored Clique instances have the same number of vertices n. The main trick is
to encode vertex identities in the graph of the Multicolored Clique instance by numbers
of colored vertices in the GM instance; note that this approach was also followed in previous
works on GM [10, 6]. Given t instances (H1 = (W1, F1), χ1), H2 = (W2, F2), χ2), . . . ,Ht =
(Wt, Ft), χt) of Multicolored Clique such that |Wi| = n for all i ∈ [t], we reduce to an
instance of GM where the input graph is a tree as follows. Herein, we assume without loss
of generality that t = 2s for some integer s.

The first construction step is to add one vertex r that connects the different parts of
the instance and which will be contained in every occurrence of the motif. The vertex r
thus receives a unique color that may not be deleted. To this vertex r we attach subtrees
corresponding to edges of the input instances. Deleting vertices of such a subtree then
corresponds to selecting the endpoints of the corresponding edge.

Instance selection gadget. The technical difficulty in the construction is to ensure that the
solution deletes only vertices in subtrees corresponding to edges of the same graph. To achieve
this, we introduce k · (k−1) · log t instance selection colors ι[p, q, τ ] where p ∈ [k], q ∈ [k]\{p},
and τ ∈ [log t], and demand that the solution deletes exactly one vertex of each instance
selection color. To ensure that exactly one instance is selected, we use two further colors ι+
and ι−. For each Multicolored Clique instance (Hi, χi), attach an instance selection
path Pi to r that is constructed based on the number i. Let b(i) denote the binary expansion
of i and let bτ (i), τ ∈ [log t], denote the τth digit of b(i). Construct a path Pi containing
first a vertex with color ι+, then in arbitrary order exactly one vertex of each color in the
color set Ii := {ι[p, q, τ ] : bτ (i) = 1}, and then a vertex with color ι−. Attach the path Pi
to r by making the vertex with color ι+ a neighbor of r.

The idea of the construction is that exactly one instance selection path Pi is deleted
completely and that this will force any solution to delete paths that “complement” Pi (that
is, paths which contain all ι[p, q, τ ] such that bτ (i) = 0) in the rest of the graph.

Edge selection gadget. To force deletion of subtrees corresponding to exactly
(
k
2
)
edges

with different labels, we introduce 2k(k − 1) label selection colors λ[p, q]+ and λ[p, q]−
where p ∈ [k] and q ∈ [k] \ {p}. These colors will ensure that for each pair of labels p and q
the solution deletes exactly one path corresponding to the ordered pair (p, q) and one path
corresponding to the pair (q, p).

CPM 2016



7:8 Graph Motif Problems Parameterized by Dual

There are two further sets of colors. One set is used for ensuring vertex consistency of the
chosen edges, that is, to make sure that all the selected edges with label pair (p, ·) correspond
to the same vertex with label p. More precisely, we introduce a color ω[p, q] for each p ∈ [k]
and each q ∈ [k] \ {p}, except for the biggest q ∈ [k] \ {p}.

The final color set is used to check that the edges selected for label pair (p, q) and for
label pair (q, p) are the same. To this end, we introduce a set of colors ε[p, q] for each p ∈ [k]
and each q ∈ [k] \ {p} such that q > p. To perform the checks of vertex and edge consistency,
we encode the identities of vertices and edges into path lengths. More precisely, we assign
each vertex v ∈Wi a unique (with respect to the vertices of Wi) number #(v) ∈ [n].

Now, for each label pair (p, q) and each instance i, attach one path Pi(u, v) to r for each
edge {u, v} where u has color p and v has color q 6= p. The path Pi(u, v)

starts with a vertex with color λ[p, q]+ that is made adjacent to r,
then contains exactly one vertex of each color in {ι[p, q, τ ] : ι[p, q, τ ] /∈ Ii},
then contains #(u) vertices of color ε[p, q] if p < q and n−#(v) vertices of color ε[q, p]
if p > q,
then, if q is not the biggest label in [k] \ p, contains #(u) vertices with color ω[p, q],
then, if q is not the smallest label in [k] \ p, contains n−#(u) vertices with color ω[p, q′],
where q′ is the next-smaller label in [k]\p (if p = q−1, then q′ = q−2; otherwise q′ = q−1),
and
ends with a vertex with color λ[p, q]−.

Let C denote the multiset containing all the vertex colors of all vertices added during the
construction with their respective multiplicities. In the correctness proof it will be easier to
argue about the colors that are not contained in M . Hence, the construction is completed by
setting the multiset D of colors to “delete” to contain each color with multiplicity one except

the color of r which is not contained in D,
the vertex consistency colors ω[p, q] each of which is contained with multiplicity n, and
the edge selection colors ε[p, q] each of which is contained with multiplicity n.

The motif M is defined as M := C \D. It remains to show the correctness.

I Theorem 8. Graph Motif does not admit a polynomial-size problem kernel with respect
to ` even if G is a tree.

4 Colorful Graph Motif on Trees

For the combination of vertex-colored trees as input graphs and motifs that are sets, the
problem becomes considerably easier. First, we show that CGM admits a linear-vertex
problem kernel in this case. Moreover, we show that this problem kernel can be computed
in linear time. The idea for the problem kernelization is based on two simple observations.
First, in all graphs, not only in trees, the number of vertices that are not unique is bounded.

I Observation 9. Let (M,G,χ) be an instance of Colorful Graph Motif. Then at
most 2` vertices in G are not unique.

Proof. Let C+ denote the set of colors that occur more than once in G and let occ(c) denote
the number of occurrences of a color c in G. We denote c+ := |C+|, n+ :=

∑
c∈C+ occ(c),

and n− the number of unique vertices in G. By definition, no color is repeated in M , thus
|M | = c+ + n− ; moreover, |V | = n+ + n−. Hence, the number ` = |V | − |M | of vertices to
delete satisfies ` = n+−c+. By definition n+ ≥ 2c+, and thus we conclude that ` ≥ n+/2. J
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r

u v

r r

Figure 1 The two phases of the kernelization. Left: The input instance, where r, u, and v have
unique colors. The pendant non-unique subtrees are highlighted by the grey background. Middle:
after Phase I, all vertices on paths between unique vertices are contracted into r. Right: In Phase II,
all vertices with a color that was removed in Phase I are removed together with their descendants.

Second, if there are two vertices that are unique, then the uniquely determined path between
these vertices is contained in every occurrence of the motif. The kernelization accordingly
removes all the vertices that lie on these paths. More precisely, these vertices are “contracted”
into the root r. Afterwards, in a second phase some further vertices are removed because
their colors have been used during the contraction. Eventually, this results in an instance
which has at most one unique vertex and thus, by Observation 9, bounded size. For an
example of the kernelization, see Figure 1. Below, we give a more detailed description.

I Theorem 10. Colorful Graph Motif on trees admits a problem kernel with at
most 2`+ 1 vertices that can be computed in O(n) time.

Proof. We first describe the kernelization algorithm, then we show its correctness and finally
bound its running time. By Observation 9, the size bound holds if the instance has no unique
vertex. Thus, we assume that there is a unique vertex in the following.

Given an instance (G,M,χ) of CGM, first root the input tree G at an arbitrary unique
vertex r. Now call a subtree with root v pendant if it contains all descendants of v in G.
Then, compute in a bottom-up fashion maximal pendant subtrees such that no vertex in this
subtree is unique. Call these subtrees the pendant non-unique subtrees. By Observation 9,
the total number of vertices in pendant non-unique subtrees is at most 2`. Now the algorithm
removes vertices in two phases.

Phase I. Remove from G all vertices except r that are not contained in a pendant non-
unique subtree. Remove all colors of removed vertices from M . If there is a color c such that
two vertices with color c are removed in this step, then return “no”. Make r adjacent to the
root of each pendant non-unique subtree.

Phase II. In the first step of this phase, for each color c where at least one vertex has been
removed in Phase I, remove all vertices from G that have color c. In the second step of this
phase, remove all descendants of these vertices. Finally, let M ′ denote the set of colors that
are contained in the remaining instance. This completes the kernelization algorithm; the
resulting instance has at most 2`+ 1 vertices since all vertices except r are unique. To show
correctness, we first observe the following.

Claim: Every occurrence of M in G contains no vertex v that is removed during Phase II
of the kernelization. This can be seen as follows. First, every occurrence ofM in G contains
all vertices removed during Phase I: these vertices are either unique or lie on the uniquely
determined path between two unique vertices. Now consider a vertex v removed during
Phase II. If v is removed in the first step of Phase II, then v has the same color c as a vertex u
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removed during Phase I. Consequently, v is not contained in an occurrence of M : By the
above, the occurrence contains u and it contains no other vertex with color c. Otherwise, v
is removed in the second step of Phase II, because v is not connected to r. Since every
occurrence of M contains r, it thus cannot contain v.

We now show the correctness of the kernelization, that is, the equivalence of the original
instance (M,G,χ) and the resulting instance (M ′, G′, χ′). First, assume that (M,G,χ) is
a yes-instance. Let ST be an occurrence of M in G, and let T denote G[ST ]; by the above
claim, T contains only vertices that are removed during Phase I or that are contained in G′.
Consider the subtree T ′ of G that contains all vertices of T that are not removed during the
kernelization. We show that T ′ is connected in G′ and contains all colors of M ′. Connectivity
can be seen as follows. First, observe that T and T ′ contain r. Second, any vertex v 6= r

of T ′ is contained in some pendant non-unique subtree of G. Thus, v is in T connected to r
via a path that first visits only vertices of T ′, including the root of the pendant non-unique
subtree. The root of the pendant non-unique subtree is in G′ adjacent to r. Thus, each
vertex v 6= r has in T ′ a path to r which implies that T ′ is connected. It remains to prove
that T ′ contains all colors of M ′. Consider a color c ∈M ′. Since c ∈M ′, none of the vertices
with color c are removed in Phase I of the kernelization. Moreover, since no vertex of T
is removed in Phase II of the kernelization, we have that the vertex of T with color c is
contained in T ′. Thus, T ′ contains each color of M ′. Finally, T ′ contains each color at most
once since T does.

Now assume that (M ′, G′, χ′) is a yes-instance and let ST ′ be an occurrence of M ′ in G′.
Let T denote G[ST ′ ∪ VI ], where VI is the set of vertices removed during Phase I of the
kernelization. We show that T is connected and contains every color of G exactly once. To
see that T is connected observe the following: Clearly, G[{r} ∪ VI ] is connected. Moreover,
each vertex v 6= r of T ′ has in T ′ a path to r. This path contains a subpath from v to the
root r′ of the pendant non-unique subtree containing v. In G, r′ is adjacent to some vertex
of {r} ∪ VI . Therefore, r′ is connected to r in T and thus T is connected. It remains to show
that T contains every color of G exactly once. Clearly, T ′ contains at least one vertex of each
color c ∈M ′. Moreover, it also contains at least one vertex of each color c ∈M \M ′ since it
contains all vertices of VI . Besides, it contains each color only once: The vertices of T ′ have
pairwise different colors and different colors than those of the vertices of VI . Finally, the
vertices of VI have different pairwise colors since the kernelization did not return “no”.

The running time can be seen as follows. Determining the pendant non-unique subtrees
can be done by a standard bottom-up procedure in linear time. Removing all vertices during
Phase I can also be achieved in linear time. After removing a vertex with color c in Phase I,
we label c as occupied. When we remove a vertex with an occupied color during Phase I, we
immediately return “no”. After the removal of vertices during Phase I, we can construct M ′
from M in linear time by removing each occupied color. Finally, we can in linear time add
an edge between r and each root of the pendant non-unique subtrees and then remove all
remaining vertices that have an occupied color. The final graph G′ is obtained by performing
a depth-first search from r, in order to include only those vertices still reachable from r. J

Now, let us turn to developing fast(er) FPT algorithms for CGM. It can be seen that
it is possible to solve CGM in trees in time 1.62` · nO(1), by ’branching on colors with the
most occurrences’ until every color appears at most twice. More precisely, for a color c that
appears at least three times and some vertex v with color c, we can branch into the two
cases to either delete v or to delete the at least two other vertices that have color c. The
branching vector1 for this branching rule is (1, 2) or better. Now, if every color appears at

1 For an introduction to the analysis of branching vectors, refer to [8, 12].
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most twice, then CGM on trees can be solved in polynomial time [10, Lemma 2]. However,
by a different branching approach, the above running time can be further reduced.

I Branching Rule 11. If there is a color c such that there are two vertices u and v with
color c that are both not leaves of the tree G, then branch into the case to delete from G

either
the maximal subtree containing u and all vertices w such that the path from v to w

contains u, or
the maximal subtree containing v and all vertices w such that the path from u to w

contains v.

Proof of correctness. No occurrence may contain vertices of both subtrees, since in this
case it contains u and v which have the same color. J

If the rule does not apply, then one can solve the problem in linear time; here, let occ(c)
denote the number of occurrences of a color c in G.

I Lemma 12. Let (M,G,χ) be an instance of Colorful Graph Motif such that G is a
tree and for each color c with occ(c) > 1 at least occ(c)− 1 occurrences of c are leaves of G,
then (M,G,χ) can be solved in O(n) time.

Proof. For each color c with occ(c) > 1, the algorithm simply deletes occ(c)− 1 leaves with
color c. This can be done in linear time by visiting all leaves via depth-first search, checking
for each leaf in O(1) time whether occ(c) > 1 and deleting the leaf in O(1) time if this is the
case. The resulting graph contains each color exactly once, and it is connected since a tree
cannot be made disconnected by deleting leaves. J

Altogether, we arrive at the following running time.

I Theorem 13. Colorful Graph Motif can be solved in O(
√

2` + n) time if G is a tree.

Proof. The algorithm is as follows. First, reduce the input instance in O(n) time to an
equivalent one with O(`) vertices using the kernelization of Theorem 10. Now, apply
Branching Rule 11. If this rule is no longer applicable, then solve the instance in O(`)
time (by applying the algorithm behind Lemma 12). Since the graph has O(`) vertices,
applicability of Branching Rule 11 can be tested in O(`) time. Thus, the overall running time
is O(`) times the number of search tree nodes. Since each application of Branching Rule 11
creates two branches and reduces ` by at least two in each branch, the search tree has
size O(2`/2) = O(

√
2`). The resulting running time is O(

√
2` · `+n). Furthermore, the factor

of ` in the running time can be removed by interleaving search tree and kernelization [16],
that is, by applying the kernelization algorithm of Theorem 10 in each search tree node. J
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