
Genomic Scaffold Filling Revisited

Haitao Jiang1, Chenglin Fan2, Boting Yang3, Farong Zhong4,
Daming Zhu5, and Binhai Zhu6

1 School of Computer Science and Technology, Shandong University, Jinan,
Shandong, China
htjiang@sdu.edu.cn

2 Department of Computer Science, Montana State University, Bozeman, MT
59717, USA
chenglin.fan@msu.montana.edu

3 Department of Computer Science, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada
boting.yang@uregina.ca

4 College of Math, Physics and Information Technology, Zhejiang Normal
University, Jinhua, Zhejiang, China
zfr@zjnu.cn

5 School of Computer Science and Technology, Shandong University, Jinan,
Shandong, China
dmzhu@sdu.edu.cn

6 Department of Computer Science, Montana State University, Bozeman, MT
59717, USA
bhz@montana.edu

Abstract
The genomic scaffold filling problem has attracted a lot of attention recently. The problem
is on filling an incomplete sequence (scaffold) I into I ′, with respect to a complete reference
genome G, such that the number of adjacencies between G and I ′ is maximized. The problem
is NP-complete and APX-hard, and admits a 1.2-approximation. However, the sequence input
I is not quite practical and does not fit most of the real datasets (where a scaffold is more
often given as a list of contigs). In this paper, we revisit the genomic scaffold filling problem by
considering this important case when, (1) a scaffold S is given, the missing genes X = c(G)−c(S)
can only be inserted in between the contigs, and the objective is to maximize the number of
adjacencies between G and the filled S′, and (2) a scaffold S is given, a subset of the missing
genes X ′ ⊂ X = c(G) − c(S) can only be inserted in between the contigs, and the objective
is still to maximize the number of adjacencies between G and the filled S′′. For problem (1),
we present a simple NP-completeness proof, we then present a factor-2 greedy approximation
algorithm, and finally we show that the problem is FPT when each gene appears at most d times
in G. For problem (2), we prove that the problem is W[1]-hard and then we present a factor-2
FPT-approximation for the case when each gene appears at most d times in G.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Computational biology, Approximation algorithms, FPT algorithms, NP-
completeness

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.15

© Haitao Jiang, Chenglin Fan, Boting Yang, Farong Zhong, Daming Zhu, and Binhai Zhu;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Genomic Scaffold Filling Revisited

1 Introduction

The cost of sequencing a genome has been reduced significantly in the last decade, with the
current cost being around $1k. This results in a lot of genomes being sequenced, usually
not completely finished (we call them draft genomes). On the other hand, the cost to finish
these genomes completely has not been decreased as much compared with a decade ago [9].
The result is that we are having more and more draft genomes. On the other hand, for many
tools to analyze the genomic data we do need complete genomes. For instance, to compute
the reversal distance between two genomes we do need two complete genomes. Hence, there
is a need to turn a draft genome into a complete one.

To make the result biologically interesting, Munoz et al. first proposed the following
scaffold filling problem (on multichromosomal genomes with no gene repetition) as follows
[28]. Given a complete (permutation) genome R and an incomplete scaffold S, fill the missing
genes in R − S into S to have S′ such that the genomic distance (or DCJ distance [30])
between R and S′ is minimized. It was shown that this problem can be solved in polynomial
time. In [22], Jiang et al. considered the case for singleton genomes without gene repetition
(i.e., permutations), using the simplest breakpoint distance as the similarity measure. It was
shown that this problem is solvable in polynomial time; in fact, even for the two-sided case
when both the input scaffolds, being a reference to each other, are incomplete permutations.

When the genomes and scaffolds contain gene repetitions, the problem becomes harder.
(That should not be considered as a surprise as even computing certain similarity measure
between two complete genomes is NP-complete, for instance, with the exemplar breakpoint
distance [11, 13, 2, 5, 24], exemplar adjacency number [12, 14], or the minimum common
string partition [15].) The similarity measure adopted for the scaffold filling problem is
the number of common (string) adjacencies, which can be computed in polynomial time
[2, 21, 22]. In [21, 22], it was shown by Jiang et al. that scaffold filling to maximize the
number of common string adjacencies (SF-MNSA) is NP-hard. (Formally, the problem
is to fill an incomplete sequence scaffold I into I ′, with respect to a complete reference
genome G, such that the missing letters in G − I are inserted back to I and the number
of common adjacencies between G and I ′ is maximized.) A factor-1.33 approximation was
designed in [21, 22], and this bound has been improved to 1.25 [25], and to 1.20 [23]. For
the corresponding two-sided case, i.e., when two scaffolds are references to each other, the
problem admits a factor-1.5 approximation with the number of common adjacencies between
the filled scaffolds being maximized [26]. Using the number of common adjacencies as a
parameter, it was shown that this problem is also fixed-parameter tractable (FPT) – this only
handles that case when G and I ′ are not very similar so it is only of a theoretical meaning
[7].

The motivation of this paper is two-fold. Firstly, the ‘scaffold’ used in most of these
papers is an incomplete sequence, i.e., a missing gene can be inserted anywhere in such a
‘scaffold’. In practice, most of the real datasets are not in this format; in fact, a scaffold in a
real dataset is usually composed of a sequence of contigs, where a contig is usually computed
with mature tools like BLAST [1], hence should not be arbitrarily altered. This case was
considered briefly in [28, 22], all other research on scaffold filling used an incomplete sequence
as a scaffold. Secondly, take a complete reference genome G and a scaffold S, there is no
guarantee that the filled scaffold S′ is of the same length as that of G; in fact, sometimes
we could know roughly the length of the target genome S∗ (S′ should be as close to S∗ as
possible). Then, we might only need to insert a subset of letters in G− S into S (to obtain
S′).

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:3

The main contribution of this paper is to present some research results along these two
lines. We formally call the two problems as One-sided Scaffold Filling (One-sided-SF-max),
and One-sided Subset Scaffold Filling (One-sided-SF-max(⊂)). (For the important practical
case when a gene can only appear at most d times in G, we call the corresponding problems
One-sided-SF-max(d) and One-sided-SF-max(⊂, d) respectively.) The objective function in
both cases are to maximize the number of common adjacencies between the reference and the
filled scaffold. For One-sided-SF-max, we present a simple reduction from the Hamiltonian
Path problem hence showing it to be NP-hard, we then present a factor-2 approximation.
Then we show that One-sided-SF-max(d) is FPT. For One-sided-SF-max(⊂), we prove a
stronger negative result by showing that, parameterized by the number of missing genes
inserted, the problem is W[1]-hard. We then present a factor-2 FPT-approximation for the
special case One-sided-SF-max(⊂, d). As far as we know, this is the first W[1]-hardness result
on the research of scaffold filling.

The paper is organized as follows. In Section 2, we give the preliminaries. In Section
3, we present the approximation results for One-sided-SF-max. In Section 4, we present
the FPT algorithm for One-sided-SF-max(d). In Section 5, we present the results for
One-sided-SF-max(⊂). We conclude the paper in Section 6.

2 Preliminaries

Throughout this paper we focus only on singleton genomes (i.e., each is a sequence). But
the results can be easily generalized to multichromosomal or circular genomes, with minor
changes.

At first, we review some necessary definitions, which are also defined in [22, 31]. We
assume that all genes and genomes are unsigned, and it is straightforward to generalize
the result to signed genomes. Given a gene set Σ, a string P is called permutation if each
element in Σ appears exactly once in P . We use c(P) to denote the set of elements in
permutation P . A string A is called sequence if some genes appear more than once in A, and
c(A) denotes genes of A, which is a multi-set of elements in Σ. For example, Σ = {a, b, c,
d}, A = abcdacd, c(A) = {a, a, b, c, c, d, d}. A sequence scaffold is an incomplete sequence,
typically obtained by some sequencing and assembling process. A substring with m genes
(in a sequence) is called an m-substring, and a 2-substring is also called a pair ; as the genes
are unsigned, the relative order of the two genes of a pair does not matter, i.e., the pair xy is
equal to the pair yx. Given an incomplete sequence (or sequence scaffold) A=a1a2a3 · · · an,
let PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

I Definition 1. Given two sequence scaffolds A=a1a2 · · · an and B=b1b2 · · · bm, if aiai+1
= bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB, we say that aiai+1 and
bjbj+1 are matched to each other. In a maximum matching of pairs in PA and PB , a matched
pair is called an adjacency, and an unmatched pair is called a breakpoint in A and B
respectively.

It follows from the definition that sequence scaffolds A and B contain the same set of
adjacencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the (common) adjacency set between A and B, denoted as a(A,B). We use bA(A,B)
and bB(A,B) to denote the set of breakpoints in A and B respectively. We illustrate the
above definitions in Fig. 1.

For a sequence A and a multi-set of elements X, let A + X be the set of all possible
resulting sequences after filling all the elements in X into A. We define a contig as a string

CPM 2016

15:4 Genomic Scaffold Filling Revisited

sequence scaffold A = 〈c b c e d a b a 〉
sequence scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}
PB = {ab, ba, ab, bd, dc}

matched pairs : (ab↔ ba), (ba↔ ab)
a(A,B) = {ab, ba}
bA(A,B) = {cb, bc, ce, ed, da}
bB(A,B) = {ab, bd, dc}

Figure 1 An example for adjacency and breakpoint definitions.

over a gene set Σ whose contents should not be altered. A scaffold S is simply a sequence of
contigs 〈C1, ..., Cm〉. We define c(S) = c(C1) ∪ · · · ∪ c(Cm). Now, we define the problems on
scaffolds formally.

I Definition 2. One-Sided-SF-max.
Input: a complete genome G and a scaffold S = 〈C1, C2, ..., Cm〉 where G and the contig
Ci’s are over a gene set Σ, a multiset X = c(G)− c(S) 6= ∅.
Question: Find S∗ ∈ S +X such that |a(S∗, G)| is maximized.

One-Sided-SF-max(⊂) is exactly the same as One-Sided-SF-max except that only a subset
X ′ ⊂ X need to be inserted into S. When a gene can appear at most d times in G, the two
versions of problems are abbreviated as One-Sided-SF-max(d) and One-Sided-SF-max(⊂, d)
respectively.

We first present a simple reduction from Hamiltonian Path to One-Sided-SF-max.

I Theorem 3. The decision version of One-Sided-SF-max is NP-complete.

Proof. It is obvious that the decision version of One-Sided-SF-max is in NP, so we just
focus on the reduction from Hamiltonian Path. Given a connected graph H = (V,E), with
V = {v1, v2, · · · , vn} and ei = (vi,1, vi,2), for ei ∈ E, let e′i = vi,1vi,2, for i = 1..m. Let deg(v)
be the degree of vertex v (assuming deg(v) > 1 for all v). G and S are constructed as follows.

G = #e′1#e′2# · · ·#e′m# ◦#2#3#n
1 ,

and

S = 〈C1, C2〉,

with C1 = 〈#2v
deg(v1)−1
1 #1 · · · vdeg(vn)−1

n #1#〉 and C2 = 〈#m#3〉. Here ◦ is a connector
and X = c(G)− c(S) = V . As there are only three places to insert elements in X back to S,
moreover, the only possible adjacencies are between two vertices forming an edge in H and
between a vertex and a #, it is obvious that to maximize the number of adjacencies we need
to insert the sequence of vertices forming a Hamiltonian Path in between C1, C2.

We make the following claim: H has a Hamiltonian path iff n missing genes can be
inserted into S to obtain n+ 1 adjacencies. We only show the “only if" part here as the other
direction is trivial. If n missing genes can be inserted into S to obtain n+ 1 adjacencies, say
they are inserted between C1 and C2 as v′1v′2 · · · v′n (where v′j = vi), then n− 1 adjacencies
must be v′jv′j+1 and the other two are #v′1 and v′n#. Then each v′jv′j+1 corresponds to an

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:5

e6

v1

v2

v3

v4

v5

e1

e2 e3

e4

e5

Figure 2 A simple graph H for the reduction.

edge in H and v′1v′2 · · · v′n corresponds to a Hamiltonian path in H. It is obvious that this
reduction take O(n2) time. J

We show a simple example for the reduction. The graph H is given in Fig. 2. We have

G = #v1v3#v1v2#v2v4#v2v5#v4v5#v2v3##2#3#1#1#1#1#1,

S = 〈 #2v1#1v2v2v2#1v3#1v4#1v5#1# 〉, 〈 #######3 〉.

After inserting genes in V into S, we obtain

S∗ = #2v1#1v2v2v2#1v3#1v4#1v5#1# v1v3v2v4v5 #######3 .

It is easy to verify that we have n + 1 = 6 common adjacencies between G and S∗: #v1,
v1v3, v3v2, v2v4, v4v5 and v5#.

We note that the reduction for the unbounded case SF-MNSA (from X3C in [21, 22]) in
fact also works for One-Sided-SF-max – just making each letter in I a contig. (Of course, this
would make the contigs too artificial.) But it is obvious that the above proof is simpler and
more straightforward. We next present an approximation algorithm for One-sided-SF-max.

3 An Approximation Algorithm for One-Sided-SF-max

Before presenting our algorithm, we make the following definitions.
Let αi, βi be the first and last letter of Ci, i = 1..m, respectively. Then 〈βi, αi+1〉

constitutes a region where missing genes can inserted between βi and αi+1, for i = 1..m.
Here, we also have two open regions on the two ends of S. We denote them as 〈−∞, α1〉 and
〈βm,+∞〉 respectively.

We define a type-1 substring s of length ` ≥ 1, over X, as one which can be inserted in
〈βi, αi+1〉, for 1 ≤ i ≤ m− 1, to generate `+ 1 new common adjacencies. We call 〈βi, αi+1〉 a
type-1 slot for s. (Throughout this paper, once a type-1 slot is inserted with a corresponding
substring we do not allow the insertion of any other letter.) It is easy to see that we could
have at most m− 1 type-1 slots.

Then, we define a type-2 substring s of length ` ≥ 1, over X, as one which can be inserted
in 〈βi, αi+1〉, for 0 ≤ i ≤ m, to generate ` common adjacencies. (We write β0 = −∞ and
αm+1 = +∞. Clearly the two open slots can be type-2 or type-3.) Note that in this case, in
〈βi, αi+1〉, we could have two type-2 slots, i.e., right after βi (written as βi◦) or right before
αi+1 (written as ◦αi+1). By definition, for a fixed 〈βi, αi+1〉, it cannot be type-1 and type-2
at the same time. It is easy to see that we could have at most 2(m− 1) + 2 = 2m type-2
slots.

Note that if βiαi+1 is already a common adjacency with respect to G, then it is possible
that s is inserted in the slot to generate |s|+ 1 common adjacencies (while destroying the
common adjacency βiαi+1). In this case, s really increases the total number of common
adjacencies by |s|. Hence, s is considered as type-2. For convenience, we simply say that

CPM 2016

15:6 Genomic Scaffold Filling Revisited

in this case s generates |s| new common adjacencies. In fact, with a simple example we
could show that such an existing adjacency in a slot must be destroyed to obtain an optimal
solution. Example: G = 〈1, 1, 5, 4, 3, 5, 3, 7, 7〉, S = 〈 1,7,3,5 , 3,1,5,7 〉, the missing gene 4
must be inserted between 1,7,3,5 , 3,1,5,7 to obtain the optimal solution.

Finally, we define a type-3 substring s of length ` ≥ 1, over X, as one which can be
inserted in the slot 〈βi, αi+1〉, for some i, to generate `− 1 common adjacencies. Note that a
type-3 substring can only form adjacencies internally, hence it does not matter where we
insert s – provided that it does not destroy any existing adjacencies.

We show an example as follows:

G = 〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6〉,

S = 〈 1,5 , 3,6 , 2,4 〉.
We have α1 = 1, β1 = 5, α2 = 3, β2 = 6, α3 = 2, β3 = 4. Then, X = {1, 2, 3, 4, 5, 6} are
missing from S. One of the optimal solution is

S′ = 〈1, 2, 1,5 , 6, 3,6 , 5, 4, 3, 2,4 〉.

In this case, 〈5, 4, 3〉 is type-1, 6 and 〈1, 2〉 are type-2.
We comment that in general a type-j substring, j = 1, 2, 3, does not have to be a substring

of G. If a type-j substring is composed of i letters, we call it an i-type-j substring.
Let the number of common adjacencies between G and S be k0, and the number of

newly increased common adjacencies be k1 (after all genes in X have been inserted into
S). To approximate k0 + k1, it suffices to approximate k1. This is because if we have an
approximation solution A1 for k1, i.e., |A1| ≥ k1/ρ, then k0 + |A1| ≥ (k0 + k1)/ρ (for ρ > 1).
From now on, we will only discuss the approximation for the newly increased common
adjacencies.

Our Algorithm 1 is a simple greedy one:
1. Scan through all slots, if an 1-string (i.e., a letter) x or a 2-string xy in X can be inserted

in such a slot t to obtain two adjacencies or three adjacencies, insert x or xy into t, lock
t. Update X ← X − {x} or X ← X − {x, y} accordingly.

2. For all the remaining (type-2) slots, if a letter x ∈ X could be inserted to obtain one
adjacency, then insert x into the slot and update the the slot as follows. If x is inserted
at the slot y◦ (resp. ◦y) then update the slot as x◦ (resp. ◦x).

3. For all the letters in X after Step 1 (including those already inserted at Step 2), compute
a multigraph Q with the vertices being these letters in X (after Step 1), and if xy is a
potential adjacency in G (ignoring those already matched with the ones computed at Step
1 and 2), then there is an edge between all x ∈ X and all y ∈ X. Compute a maximum
matching M in Q. For all the pairs xy in M with one end x being a letter inserted at
Step 3, insert y before or after x accordingly. For the remaining pairs in M , insert them
arbitrarily in any unlocked slot in S, provided no existing adjacency is destroyed.

4. Insert the remaining letters in X arbitrarily in any unlocked slot in S, provided no existing
adjacency is destroyed.

Let bij denote the number of j-type-i substrings in some optimal solution. Then the
optimal solution value

Opt =
∑
j=1..p

(j + 1)b1j +
∑
j=1..q

jb2j +
∑
j=2..r

(j − 1)b3j ,

for some p, q, r. Let b′ij denote the number of j-type-i substrings in the approximation
solution. We show the properties of the greedy algorithm as follows.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:7

I Lemma 4. After Step 1, 2b′11 + 3b′12 ≥ 1
2 (2b11 + 3b12).

Proof. By the greedy choice, we have b′11 + b′12 ≥ b11 + b12. Then,

2b′11 + 3b′12 ≥ 2b′11 + 2b′12

≥ 2b11 + 2b12

= 1
2(4b11 + 4b12)

≥ 1
2(2b11 + 3b12). J

I Lemma 5. After Step 2, b′21 ≥ b21.

Proof. If a slot t could be either inserted with an i-type-1 substring si for i = 1, 2, then a
1-type-2 substring (letter) x could not be inserted at the slot t in an optimal solution. The
reason is as follows. (1) Suppose that t can be inserted with an 1-type-1 substring s1. If t in
the optimal solution is inserted with x to generate one adjacency, then we could swap x with
s1 to generate at least two adjacencies. This contradicts with the optimality of the assumed
optimal solution. (2) Suppose that t can be inserted with an 2-type-1 substring s2. If t in the
optimal solution is inserted with x to generate one adjacency, then, again, we could swap x
with s2 to generate at least three adjacencies. This implies that there is an optimal solution
where all 2-type-1 substrings are always inserted before any 1-type-2 substring is processed.

Then following the greedy choice at Step 2, we have b′21 ≥ b21. J

Hence, we could have the following theorem.

I Theorem 6. One-Sided-SF-max can be approximated within a factor of 2.

Proof. By definition, the optimal solution value OPT satisfies

Opt =
∑
j=1..p

(j + 1)b1j +
∑
j=1..q

jb2j +
∑
j=2..r

(j − 1)b3j ,

for some p, q, r. At Step 3, the size of the maximum matching, |M |, satisfies

|M | ≥ 1
2

 ∑
j=3..p

(j + 1)b1j +
∑
j=2..q

jb2j +
∑
j=2..r

(j − 1)b3j

 .

The right-hand side of the above inequality represents the optimal internal adjacencies
among the corresponding type-1, type-2, and type-3 substrings in the optimal solution. The
approximation solution value, App, satisfies

App = (2b′11 + 3b′12) + b′21 + |M |

≥ 1
2(2b11 + 3b12) + b′21 + |M | (by Lemma 4)

≥ 1
2(2b11 + 3b12) + b21 + |M | (by Lemma 5)

≥ 1
2Opt. J

CPM 2016

15:8 Genomic Scaffold Filling Revisited

4 An FPT Algorithm for One-Sided-SF-max(d)

In this section, we present an FPT algorithm for One-Sided-SF-max(d), parameterized by
the optimal number of common adjacencies k. Whether One-Sided-SF-max is FPT is still
open, but One-Sided-SF-max(d) represents the important practical version where each gene
appears in a genome at most d times. We first review Fixed-Parameter Tractable (FPT)
algorithms.

4.1 Definition of FPT Algorithms
Let Σ be the alphabet, and Q ⊆ Σ∗ be a classic decision problem. A parameterized problem
is a pair (Q, κ) where κ : Σ∗ → N is a polynomial computable function. An instance of (Q, κ)
is a pair (x, κ(x)) consisting of a string x ∈ Σ∗ and an integer κ(x).

I Definition 7. Let (Q, κ) be a parameterized problem. We say (Q, κ) is Fixed-Parameter
Tractable (FPT) if for each instance (x, κ(x)), there is an algorithm A which decides whether
x ∈ Q in f(κ(x)) · |x|c time, where f is an arbitrary computable function and c is a constant.

As a convention now, we write O(f(κ(x))nc) = O∗(f(k)). FPT algorithms are efficient
tools for handling some NP-complete problems, especially when k = κ(x) is small in some
practical datasets [16, 18, 29].

4.2 The FPT Algorithm
We now present an FPT algorithm for One-Sided-SF-max(d), parameterized by the optimal
number of common adjacencies k. (Here k includes the existing number of common adjacencies
between S and G, though it is obvious that our algorithm also works by looking at newly
created common adjacencies.) As the running time of the algorithm is high and the result is
mostly for theoretical purpose.

Our idea is as follows. We use the color-coding method to find a potential `-type-i
substring for i = 1, 2. Then we use the property that each gene appears at most d times
to search for a slot to put this string in a right slot. After this process are repeated for all
potential type-1 and type-2 substrings, type-3 substrings can then be inserted arbitrarily, as
long as they do not destroy the existing adjacencies.

Note that a 1-type-3 substring cannot contribute any common adjacency with respect to
G, so it is useless. All other inserted letters are useful. We first show the following lemma
regarding the number of useful letters in an optimal solution.

I Lemma 8. Let X∗ ⊆ X be the set of genes in X that contribute in generating some new
common adjacencies. If the optimal number of common adjacencies between G and S∗ is k,
then |X∗| ≤ 2k.

Proof. From the previous discussions, a `-type-1 substring creates `+ 1 common adjacencies,
a `-type-2 substring creates ` common adjacencies, and a `-type-3 substring creates ` − 1
common adjacencies. Hence, in the worst case, the k common adjacencies are created by
2k type-3 substrings, each of length 2 (creating one common adjacency). In this case, these
genes form the set of optimal active genes X∗, with |X∗| ≤ 2k. J

We then make use of the color-coding method [3, 4], summarized as the following lemma.
For a positive integer n, let [n] = {1, 2, ..., n}.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:9

I Lemma 9 ([3, 4]). Let 1 ≤ ` ≤ k. For every n, ` there is a family ∆n,` of polynomial time
computable functions from [n] to [k] such that for every `-element subset Y of [n], there is an
h ∈ ∆n,` such that h is injective on Y . Moreover, ∆n,` can be computed in time 2O(k) ·nO(1).

The following lemma is similar to that for solving the k-path problem using color-coding
[3, 4].

I Lemma 10. Given a fixed slot, a p-type-j substring, j = 1, 2, can be computed in FPT
time.

Proof. A p-type-j substring is formed by the 2-substrings (or, at most n − 1 possible
adjacencies) in G. We use the color-coding technique. For the ease of description, we focus
on j = 1. We give each 2-substring in G one of the p+ 1 random colors. A p-type-1 substring
for a given slot is determined by p+ 1 2-substrings in G. The probability that we could find
such a colorful p-type-1 substring is at least

(p+ 1)!
(p+ 1)p+1 =

√
2π(p+ 1)
ep+1 > (1

e
)p+1,

where p! ∼
√

2πp(pe)p, following Stirling’s formula. To guarantee that we could obtain a
valid solution, we simply run this algorithm ep+1 times. This process can be derandomized
with standard techniques [16, 18, 4]. The total running time of this algorithm is then
bounded by O∗(ep+1). For constructing the corresponding p-type-2 and p-type-3 substrings
(over the unused/unmatched 2-substrings in G), the running times are O∗(ep) and O∗(ep−1)
respectively. Note that type-3 substrings are not relevant to any specific slot. J

I Theorem 11. One-Sided-SF-max(d) is FPT.

Proof. The general idea is a combination of bounded-degree search and color-coding. Fol-
lowing Lemma 9 and 10, the algorithm generates a proper p-type-j substring s, where
p ≤ k − 1, j = 1 or p ≤ k, j = 2, for a potential slot 〈βi, αi+1〉. As βi and αi+1 can each
appear d times, we could have 2d possible slots to put s. We then delete the letters in s
from X and repeat the process until no type-1 or type-2 substring can be inserted in S. If
the number of common adjacencies is at least k, we stop and insert the remaining letters in
X arbitrarily, not to destroy any existing adjacency. If the number of common adjacencies
is still less than k, we use Lemma 10 to generate some p-type-3 substring and insert it
arbitrarily into S (not to destroy any existing adjacency). By Lemma 8, the search stops
when a total of at most 2k useful letters have been inserted. (The remaining letters can be
inserted arbitrarily, provided that they do not destroy any existing common adjacency). We
can then check and report a solution with at least k common adjacencies, or report that such
a solution does not exist.

The total running time of this algorithm is

O∗((2d · ek)k) = O∗(2kdke2k).

Hence we have the theorem. J

In the next section, we discuss the One-sided Subset Scaffold Filling (One-sided-SF-max(⊂))
problem.

CPM 2016

15:10 Genomic Scaffold Filling Revisited

5 Results for One-Sided-SF-max(⊂)

In this section, we present some results for One-Sided-SF-max(⊂). We prove that if the
parameter is the number of genes inserted, then the problem is W[1]-hard. This implies
that the problem cannot be solved with an FPT algorithm, unless FPT=W[1] [16, 18, 29].
We then present a simple FPT-approximation for the problem, with a factor of 2, for
One-Sided-SF-max(⊂, d).

5.1 W[1]-Hardness Result
The main theorem is stated as follows.

I Theorem 12. One-Sided-SF-max(⊂) parameterized by the number of genes inserted is
W[1]-hard.

Proof. Throughout this proof, assume that k ≤ (n − 1)/2. We show that Independent
Set can be reduced to One-Sided-SF-max(⊂) via a linear FPT reduction. Given a graph
Q = (V,E), if the maximum vertex degree is ∆, then for each vertex ui ∈ V with degree
deg(ui) < ∆, we create ∆− deg(ui) new nodes and connect them only to ui. In the resulting
graph Q′ = (V ′, E′), all the original vertices in V have degree ∆. It can be easily seen that
Q has an independent set of size k iff k vertices in Q′ can be selected to cover exactly k∆
edges. This part of the proof is adapted from [20].

Now we arrange the graph Q′ = (V ′, E′) as a genome G as follows. WLOG, still assume
that |V ′| = n, |E′| = m throughout this proof. For each vi ∈ V ′, construct Ei as the list
of edges incident to vi (ordered by their indices). Then we use separators #’s and #j , for
j = 1..5. The set of genes are {ei|i = 1..m} ∪ {#j |j = 1..5} ∪ {#}. Finally we arrange G as
follows.

G = #m+1 ◦#1#2#3#4 ◦#4#3#2#1 ◦#5E1#5E2#5 · · ·#5En#5.

Note that ◦ is used as a connector, each ei (i = 1..m),#j (j = 1..4) appears twice in G, #
appearsm+1 times and #5 appears n+1 times in G. S is constructed such that it is composed
of exactly k + 1 contigs C1, ..., Ck+1, each Ci starts and ends with #5. For C1, between the
two #5’s, we arrange all the genes #’s and ei’s such that C1 = #5#e1#e2# · · ·#em##5.
We construct C2 = #5#3#1#4#2 ◦#n−2k−1

5 ◦#2#4#1#3#5. The remaining contigs are
constructed as Ci = #5#5 for i = 3, ..., k + 1.

It is clear that in S we have missed a copy of ei for each i = 1..m. Due to the construction
of G, ei cannot form any common adjacency with # or #j for j = 1..4, the only possible
common adjacencies are from ei and e`’s (i.e., in some sequences of Ep’s, each of length ∆)
and between ei and #5’s. To maximize the common adjacencies obtained, these missing
genes can only be inserted in k slots, after Ci and before Ci+1 for i = 1..k. Then, it is safe
for us to claim, with some easy details omitted, that Q has an independent set of size k iff
k∆ missing genes can be inserted into the k slots in S to obtain a maximum of k(∆ + 1)
adjacencies with respect to the reference genome G. This is obviously an FPT-reduction. J

With the above W[1]-hardness result, it is easy to obtain the following corollary (part of
it is similar to the corollary in [27]).

I Corollary 13. The optimization version of One-Sided-SF-max(⊂) does not admit an
EPTAS (resp. FPTAS) unless FPT=W[1].

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:11

Proof. Assume that there is an EPTAS (resp. FPTAS) which runs in time O((1
ε)O(1

ε)nc) (resp.
O((1

ε)c1nc2)), for some constant c (resp. c1 and c2); moreover, it achieves an approximation
factor of 1 + ε, for any ε > 0. Then, if k∗ is the optimal solution value and APP is the
approximation solution value, we have

APP ≥ k∗

1 + ε
.

Setting ε = 1
2k∗−1 , we have APP ≥ k∗

1+ε = k∗ − 1
2 , which further implies APP = k∗. In

this case, the running time of the algorithm becomes O((k∗)O(k∗)nc) (resp. O((k∗)O(c1)nc2));
i.e., the problem would admit an FPT algorithm. A contradiction to Theorem 12, unless
FPT=W[1]. J

5.2 FPT-Approximation for One-Sided-SF-max(⊂,d)
For W[1]-hard problems, a natural way to handle them is to use FPT-approximations. Here we
briefly review the Fixed-Parameter Tractable Approximation Algorithm (FPT-approximation
for short), which was first proposed in 2006 [10, 17, 8] (but the development has been slow.)

I Definition 14. A Fixed-Parameter Tractable ρ-approximation for a minimization (resp.
maximization) parameterized problem (Q, κ) is an FPT algorithm which, given any instance
(x, k) ∈ (Q, κ), returns a solution of cost at most ρ(k) · k (resp. at least k/ρ(k)) if a solution
of cost at most (resp. at least) k exists.

Our FPT-approximation algorithm for One-Sided-SF-max(⊂, d), parameterized by the
number of inserted genes, is as follows.

1. As in Theorem 11, use bounded-degree search and color-coding to insert ` (0 ≤ ` ≤ k)
type-1 and type-2 substrings into the ` slots, which can be done in FPT time.

2. If these ` substrings have a total length at least k, then the problem can be solved
optimally in FPT time.

3. If these ` substrings have a total length k1 with k1 < k, then we insert enough type-3
substrings (of a total length k − k1) as follows.

4. We use a maximum matching method to insert k− k1 letters. For all the remaining genes
to be inserted into G, form a graph D such that there is an edge connecting two such
genes if they could potentially form a common adjacency with respect to G. Then simply
compute a maximum matching in D and insert all the pairs in the matching arbitrarily
into D (provided that they do not destroy any existing common adjacency).

I Theorem 15. One-Sided-SF-max(⊂, d) parameterized by the number of genes inserted
admits a factor-2 FPT-approximation.

Proof. The analysis of the first two steps of the FPT algorithm is the same as in Theorem
11, hence omitted.

Let k1 letters inserted at Step 1 generate k∗1 common adjacencies. The k − k1 genes
forming type-3 substrings could generate at most k2 ≤ k − k1 − 1 common adjacencies.
By the maximum matching algorithm at step 4, we could generate at least k2/2 common
adjacencies. (For any connected component in D, if it contains a path of length k3 ≤ k2 then
the maximum matching algorithm could return at least k3/2 common adjacencies.) Then

OPT = k∗1 + k2,

CPM 2016

15:12 Genomic Scaffold Filling Revisited

and

APP ≥ k∗1 + k2/2 ≥
OPT

2 .

The whole algorithm obviously takes FPT time. J

6 Concluding Remarks

In this paper, we revisit the genomic scaffold filling problem by considering each scaffold
as a sequence of contigs (instead of as an incomplete sequence as in most of the previous
research). We obtain a list of algorithmic results, some of which could eventually lead to the
practical processing of genomic datasets. However, as in [7], the parameter k (i.e., number of
common adjacencies) in reality should be relatively large, so the FPT algorithms we obtained
here are only theoretically meaningful. Further research is needed along this line. On the
other hand, theoretically, it is interesting to decide whether One-Sided-SF-max is FPT and
whether One-Sided-SF-max(⊂) admits an FPT-approximation.

Acknowledgments This research is partially supported by the Open Fund of Top Key
Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang
Normal University. We also thank anonymous reviewers for several useful comments.

References
1 S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. Basic local alignment search

tool. J. Molecular Biology, 215(3):403-410, 1990.
2 S. Angibaud, G. Fertin, I. Rusu, A. Thevenin and S. Vialette. On the approximability of

comparing genomes with duplicates. J. Graph Algorithms and Applications, 13(1):19-53,
2009.

3 N. Alon, R. Yuster and U. Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.
4 N. Alon, R. Yuster and U. Zwick. Finding and counting given length cycles. Algorithmica,

17(3):209-218, 1997.
5 G. Blin, G. Fertin, F. Sikora and S. Vialette. The exemplar breakpoint distance for non-

trivial genomes cannot be approximated. Proc. 3nd Workshop on Algorithm and Computa-
tion (WALCOM’2009), LNCS 5431, pp. 357-368, 2009.

6 H. Bodlaender, R. Downey, M. Fellows and D. Hermelin. On problems without polynomial
kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009.

7 L. Bulteau, A.P. Carrieri and R. Dondi. Fixed-parameter algorithms for scaffold filling.
Theoretical Computer Science, 568: 72–83, 2015.

8 L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approx-
imability results. Algorithmica, 57(2):398-412, 2010.

9 P.S. Chain, D.V. Grafham, R.S. Fulton, et al. Genome project standards in a new era of
sequencing. Science, 326:236-237, 2009.

10 Y. Chen, M. Grohe and M. Grueber. On parameterized approximability. Proc. 2nd Intl.
Workshop on Parameterized and Exact Computation (IWPEC’06), LNCS 4169, pp. 109-
120, 2006.

11 Z. Chen, B. Fu and B. Zhu. The approximability of the exemplar breakpoint distance
problem. Proc. 2nd Intl. Conf. on Algorithmic Aspects in Information and Management
(AAIM’06), LNCS 4041, pp. 291-302, 2006.

12 Z. Chen, B. Fu, B. Yang, J. Xu, Z. Zhao, and B. Zhu. Non-breaking similarity of genomes
with gene repetitions. In Proceedings of the 18th Annual Symposium on Combinatorial
Pattern Matching (CPM’07), LNCS 4580, pp. 119–130, 2007.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:13

13 Z. Chen, B. Fu, R. Fowler and B. Zhu. On the inapproximability of the exemplar conserved
interval distance problem of genomes. J. Combinatorial Optimization, 15(2):201-221, 2008.

14 Z. Chen, B. Fu, R. Goebel, G. Lin, W. Tong, J. Xu, B. Yang, Z. Zhao and B. Zhu. On
the approximability of the exemplar adjacency number problem of genomes with gene
repetitions. Theoretical Computer Science, 550:59-65, 2014.

15 G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 667-676, 2002.

16 R. Downey and M. Fellows. Parameterized Complexity, Springer-Verlag. 1999.
17 R. Downey, M. Fellows, C. McCartin and F. Rosamond. Parameterized approximation of

dominating set problems. Info. Process. Lett., 109(1): 68–70, 2008.
18 J. Flum and M. Grohe. Parameterized Complexity Theory, Springer-Verlag. 2006.
19 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman. 1979.
20 J. Guo, R. Niedermeier and S. Wernicke. Parameterized complexity of vertex cover variants.

Theory Comput. Syst., 41(3):501-520. 2007.
21 H. Jiang, F. Zhong and B. Zhu. Filling scaffolds with gene repetitions: maximizing the

number of adjacencies. Proc. 22nd Annual Combinatorial Pattern Matching Symposium
(CPM’11), LNCS 6661, pp. 55-64, Palermo, Italy, June 27-29, 2011.

22 H. Jiang, C. Zheng, D. Sankoff, and B. Zhu. Scaffold filling under the breakpoint and
related distances. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
9(4):1220-1229, July/August, 2012.

23 H. Jiang, J. Ma, J. Luan and D. Zhu. Approximation and nonapproximability for the
one-sided scaffold filling problem. Proc. 21st Intl. Ann. Comput. and Combinatorics (CO-
COON’15), LNCS 9198, pp. 251-263, 2015,

24 M. Jiang. The zero exemplar distance problem. Proc. of the 2010 International RECOMB-
CG Workshop (RECOMB-CG’10), LNBI 6398, pp. 74-82, 2010.

25 N. Liu, H. Jiang, D. Zhu, and B. Zhu. An improved approximation algorithm for scaffold
filling to maximize the common adjacencies. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 10(4):905-913, July/August, 2013.

26 N. Liu, D. Zhu, H. Jiang and B. Zhu. A 1.5-approximation algorithm for two-sided scaffold
filling. Algorithmica, 74(1):91-116, 2016.

27 D. Marx. Parameterized complexity and approximation algorithms. Computer Journal,
51(1):60-78, 2008.

28 A. Muñoz, C. Zheng, Q. Zhu, V. Albert, S. Rounsley and D. Sankoff. Scaffold filling, contig
fusion and gene order comparison. BMC Bioinformatics, 11:304, 2010.

29 R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford Univ. Press. 2006.
30 S. Yancopoulos, O. Attie and R. Friedberg. Efficient sorting of genomic permutations by

translocation, inversion and block interchange. Bioinformatics, 21:3340-3346, 2005.
31 B. Zhu. A retrospective on genomic preprocessing for comparative genomics. In Chauve et

al., eds., Models and Algorithms for Genome Evolution, pages 183-206. Springer, 2013.

CPM 2016

	Introduction
	Preliminaries
	An Approximation Algorithm for One-Sided-SF-max
	An FPT Algorithm for One-Sided-SF-max(d)
	Definition of FPT Algorithms
	The FPT Algorithm

	Results for One-Sided-SF-max(subset)
	W[1]-Hardness Result
	FPT-Approximation for One-Sided-SF-max(subset,d)

	Concluding Remarks

