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Abstract
Given permutations T and P of length n and m, respectively, the Permutation Pattern Matching
problem asks to find allm-length subsequences of T that are order-isomorphic to P . This problem
has a wide range of applications but is known to be NP-hard. In this paper, we study the special
case, where the goal is to only find the boxed subsequences of T that are order-isomorphic to P .
This problem was introduced by Bruner and Lackner who showed that it can be solved in O(n3)
time. Cho et al. [CPM 2015] gave an O(n2m) time algorithm and improved it to O(n2 logm). In
this paper we present a solution that uses only O(n2) time. In general, there are instances where
the output size is Ω(n2) and hence our bound is optimal. To achieve our results, we introduce
several new ideas including a novel reduction to 2D offline dominance counting. Our algorithm
is surprisingly simple and straightforward to implement.
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1 Introduction

Consider a permutation T = (t1, t2, . . . , tn) represented in the plane as the set of points
{(1, t1), (2, t2), . . . , (n, tn)}. An axis-aligned box B = (xmin, xmax, ymin, ymax) that contains
|B| = k points induces a permutation σ(B) of the integers 1, . . . , k. For example, the box
shown in Figure 1 induces the permutation σ(B) = (1, 4, 3, 2). Given T and a permutation
P = (p1, p2, . . . , pm) (the pattern), the boxed permutation pattern matching problem is to
output all boxes where σ(B) = P . If two boxes contain the same set of points, we consider
them the same.

We view boxed permutation pattern matching as a natural 2D computational geometry
problem, but it can also be seen and motivated as a generalization of order-preserving
pattern matching (also known as consecutive permutation pattern matching). In this one-
dimensional string matching problem the goal is to output all substrings of T that are
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Figure 1 A permutation T = (2, 9, 3, 1, 10, 7, 5, 4, 8, 6) and a box B = (3, 8, 2, 7) with σ(B) =
(1, 4, 3, 2).
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Figure 2 A permutation T with many occurrences of the pattern P = (1, 2, . . . ,m), 2 ≤ m ≤ n.
Precisely, (n−m+ 2)2/4 boxes satisfy σ(B) = P , the figure shows two of them.

order-isomorphic to P . Order-preserving pattern matching has recently received a lot of
attention (see e.g., [9,10,12,13,15,17,18,20]) as it is a natural generalization of classic exact
string matching, and since it can be used to search for trends in time series such as stock
prices, music or weather data, etc.

Boxed permutation pattern matching solves order-preserving pattern matching if we only
output the boxes of the form B = (xmin, xmin +m− 1,−∞,∞) where σ(B) = P . However,
contrary to order-preserving pattern matching, which can be solved in Õ(n) time by KMP-
like algorithms [18,20], boxed permutation pattern matching requires Ω(n2) time in general,
as there are instances with Ω(n2) occurrences of P (see e.g. Figure 2).

In this paper we present the first algorithm that solves boxed permutation pattern match-
ing in optimal time, i.e., O(n2).
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1.1 Previous and Related Work
Boxed permutation pattern matching was introduced by Bruner and Lackner [7] under the
name boxed-mesh permutation pattern matching. They gave a simple O(n3) time algorithm.
Recently, Cho et al. [11] presented a faster O(n2m)-time algorithm and showed how to
improve it to O(n2 logm) time. Bruner and Lackner, as well as Cho et al., defined the
problem in terms of subsequences, but we note that our geometric definition of the problem
is equivalent.

Boxed permutation pattern matching is one of a few special cases of permutation pattern
matching that can be solved in polynomial time. This problem, which is known to be
NP-hard [4], asks to output all subsequences of T that are order-isomorphic to P .

Due to the many applications of permutation pattern matching a vast amount of research
has studied its generalizations (e.g., vincular [3,19], bivincular [5] and mesh [6] patterns) and
special cases (e.g. boxed mesh [2,11] and consecutive patterns [9,12,13,17,18,20] or patterns
with certain combinatorial properties [1,16]). We refer the reader to Bruner and Lackner [7]
for definitions and a comprehensive in-depth overview of previous work.

1.2 Our Result
We show the following result.

I Theorem 1. Boxed permutation pattern matching can be solved in O(n2) time.

As there are instances with Ω(n2) outputs (see Figure 2), this time bound is optimal.
Our algorithm improves the O(n2 logm)-time algorithm by Cho et al. [11]. The logm

factor in their time bound comes from their use of an order statistics tree with update
time O(logm) to represent a box. We observe that plugging in the more efficient data
structure by Pătraşcu and Thorup [21] immediately improves their time complexity to
O(n2 logm/ log logn). However, as their solution inherently requires dynamic rank (or se-
lect) queries on the Ω(m) points inside a box, we cannot hope to further improve the time
bound with this approach due to lower bounds on dynamic rank and select queries [14,21].

We circumvent this apparent problem as follows: Instead of representing a box by the
Ω(m) points it contains, we represent it in constant space by storing its four sides. Hence
we can easily update the representation in constant time whenever we add a new point to
the box. The challenge is to efficiently check if a point can be added or not. We show that
implementing this check can be reduced to 2D offline dominance counting on n subproblems
of size O(n). Solving these subproblems individually using the state-of-the-art O(n

√
logn)-

time algorithm for 2D offline dominance problem by Chan and Pătraşcu [8] leads to an
O(n2√logn)-time solution for boxed permutation pattern matching. To get O(n2) time, we
exploit the close relationship of the n subproblems, and show that it suffices to solve just a
single of these subproblems.

Our final algorithm is surprisingly simple and straightforward to implement, as it only
relies on a few lookup tables and uses no complicated supporting data structures.

2 Preliminaries

We start by giving some necessary definitions and combinatorial properties. Let Pk, 1 ≤
k ≤ m, be the permutation of the integers 1, . . . , k induced by the prefix (p1, p2, . . . , pk) of
P (see Figure 3). For a box B = (i, j, ymin, ymax) we define its size |B| to be the number of
points it contains. We use · to denote if one or more sides of B are unspecified, i.e., (i, j, ·, ·)

CPM 2016
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P1 = 1
P2 = 2, 1
P3 = 3, 2, 1
P4 = 3, 2, 1, 4
P5 = 4, 2, 1, 5, 3
P6 = 4, 2, 1, 6, 3, 5

P = P7 = 4, 2, 1, 6, 3, 5, 7

Figure 3 The permutations induced by the prefixes of the pattern P = (4, 2, 1, 6, 3, 5, 7).

denotes an arbitrary box with xmin = i and xmax = j. We say that B = (i, j, ·, ·) is anchored
if it includes the point (i, ti) as its left-most point. Furthermore, we say that B is a prefix
box if B is anchored and σ(B) = P|B|, in which case we also say that B matches the prefix
of P of size |B|. We need the following lemma, which is similar to Lemma 2 in [11].

I Lemma 2. For fixed integers 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ m, there is at most one prefix
box B = (i, j, ymin, ymax) of size k.

Proof. Let i, j and k be fixed, and let s and l denote the number of elements of {p2, . . . , pk}
that are smaller and larger than p1, respectively. A prefix box (i, j, ·, ·) of size k must contain
the first s points below ti and the first l points above ti, and hence it is unique. J

The proof of the lemma uses the fact that for fixed i, j, k there is a unique candidate box
Bk = (i, j, ·, ·) that can match Pk. Figure 4 shows these candidate boxes for k = 1, . . . ,m
(and i and j fixed). Observe that only the prefixes P1,P2 and P5 are matched, and that the
boxes are nested, i.e., Bk−1 is contained in Bk.

Given a prefix box B = (i, j, ·, ·) its preceding prefix box is the largest prefix box B′ =
(i, j, ·, ·) smaller than B. Observe that the preceding prefix box can be obtained by removing
a certain number of points from above and a certain number of points from below, and note
that these two numbers only depend on the size of B. Consequently, for a prefix box B of
size k = 2, . . . ,m, we let (ak, bk) be the number of points that needs to be removed from B

from above and below, respectively, to obtain the preceding prefix box of B. We will show
how to compute these numbers later.

I Example 3. In Figure 4 there are three prefix boxes on (i, j) = (2, 8): B5, B2 and B1.
The preceding prefix box of B5 is B2 and to obtain it we need to remove one point from
above and two from below, so (a5, b5) = (1, 2). Similarly, B1 is the preceding prefix box of
B2 and to obtain it, we need to remove one point from below, so (a2, b2) = (0, 1).

3 The Flattening Box Algorithm

At a high level the algorithm of Cho et al. [11] and our new algorithm can both be seen as
implementations of an abstract algorithm, which we call the flattening box algorithm. The
name comes from the fact that it examines boxes of decreasing height and increasing length.
In this section we give a geometric exposition of this abstract algorithm, and in the next
section we elaborate on how to implement the three primitives it needs.

Let Bmax(i, j) be the largest prefix box (i, j, ·, ·), e.g., in Figure 4, we have that
Bmax(2, 8) = B5. We also refer to Bmax(i, j) as the maximum prefix box on (i, j). Note
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Figure 4 The unique boxes (2, 8, ·, ·) that can match P1, . . . , P7. In this specific case only the
three bold boxes B1, B2, and B5 are prefix boxes and match the corresponding prefix of P .

that by Lemma 2, Bmax(i, j) is unique, and observe that if |Bmax(i, j)| = m then it corres-
ponds to an occurrence of P .

Recall that to solve the boxed permutation pattern matching problem, we need to find
all boxes B s.t. σ(B) = P . The flattening box algorithm actually solves the slightly more
general problem of computing Bmax(i, j) for all 1 ≤ i ≤ j ≤ n. We do this in n iterations
(i = 1, . . . , n), and in each iteration we compute Bmax(i, j) for all j = i, . . . , n. The main
idea is to compute Bmax(i, j) as a so-called extension of another prefix box (i, j − 1, ·, ·).

3.1 Extensions of Prefix Boxes
We say that a prefix box B = (i, j, ymin, ymax) has an empty extension B′ = (i, j +
1, ymin, ymax) if B′ is a prefix box also of size |B|. Note that this means B′ contains exactly
the same points as B. See Figure 5a for an example. Moreover, we say that B has an
increasing extension B′ = (i, j + 1,min(ymin, tj+1),max(ymax, tj+1)), if B′ is a prefix box
of size |B| + 1, i.e., σ(B′) = P|B|+1. Note, here B′ is the box obtained by extending B to
include the point (j + 1, tj+1). See Figure 5b for an example.

The following lemma shows that we can compute the prefix boxes of the form (i, j, ·, ·)
as the extensions of the prefix boxes of the form (i, j − 1, ·, ·).

I Lemma 4. Let 1 ≤ i < j ≤ n. Any prefix box B = (i, j, ·, ·) is an extension of a prefix box
B′ = (i, j − 1, ·, ·).

Proof. Let B = (i, j, ymin, ymax), j > i, be a prefix box and consider the box B′ = (i, j −
1, ymin, ymax). Clearly, B′ is also a prefix box, and if |B′| = |B| − 1, B is an increasing
extension of B′, and otherwise |B′| = |B| and B is an empty extension of B′. J

Let Bext(i, j) = (i, j, ·, ·) denote the largest prefix box that has an extension. We then have
the following important corollary, which we will use for computing Bmax(i, j).

CPM 2016
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Figure 5 Illustrating different extensions of a prefix box B of the pattern P shown in Figure 1.
(a) B′ is an empty extension of B, since σ(B) = P|B| = σ(B′). (b) B′ is an increasing extension of
B, since σ(B) = P|B| and σ(B′) = P|B|+1. (c) B′ is not an extension of B.

I Corollary 5. Bmax(i, j) is an (increasing or empty) extension of Bext(i, j − 1).

I Example 6. In Figure 4 there are three prefix boxes B5, B2 and B1 on (i, j) = (2, 8). B5
has no extension, B2 has both an increasing and an empty extension, and B1 has an empty
extension. Consequently, Bext(i, j) = B2, and thus the largest prefix box Bmax(i, j + 1) is
the increasing extension of B2, i.e., (2, 9, 5, 8), matching the prefix P3.

3.2 The Abstract Algorithm
Our goal is to compute Bmax(i, j) assuming we have already computed Bmax(i, j − 1). Ac-
cording to Corollary 5, we need to first find Bext(i, j−1). Note that as shown by Example 6,
Bext(i, j−1) is not necessarily equal to Bmax(i, j−1). However, we can find Bext(i, j−1) as
follows: Starting with Bmax(i, j− 1) (which we have computed), we check each of the prefix
boxes (i, j−1, ·, ·) in decreasing order of their size. The first one, which has an extension (in-
creasing or empty) gives us Bext(i, j− 1), and hence also Bmax(i, j). Algorithm 1 shows this
approach, assuming that we have available a function precedingPrefixBox, which takes a
prefix box B = (i, j − 1, ·, ·) and returns the largest prefix box (i, j − 1, ·, ·) smaller than B.

4 Implementing the Algorithm

To implement the abstract algorithm we need to describe how to check if a prefix box B
has an increasing/empty extension, and how to obtain the preceding prefix box of B. We
describe how to do this in the following sections.

4.1 Checking If a Prefix Box Can Be Extended
We can easily check in constant time whether a given prefix box B = (i, j, ymin, ymax) has
an empty extension, since this is the case if and only if tj+1 /∈ [ymin, ymax].

Hence in the remaining part of this section we focus on how to efficiently check whether
B has an increasing extension, which is significantly more involved. We need the following
definitions. For a permutation Q = (q1, . . . , q|Q|), we define DQ(i, j) = |(i, j, 1, qj)|, i.e.,
DQ(i, j) is the number of points (l, ql) where i ≤ l ≤ j and ql ≤ qj (see Figure 6b).
Moreover, for a box B = (i, j, ymin, ymax), we define EQ(B) = |(i, j, 1, ymin− 1)|, i.e., EQ(B)
is the number of points below B (see Figure 6a).
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Input : Permutations T = (t1, . . . , tn) and P = (p1, . . . , pm)
Output: All boxes B s.t. σ(B) = P

1 for i← 1 to n do
2 Bmax(i, i)← (i, i, ti, ti)
3 /Users/mikaamit/Dropbox/Order Preserving/versions/CPM16/paper.tex
4 for j ← i+ 1 to n do
5 B ← Bmax(i, j − 1)
6 while Bmax(i, j) = null do
7 if B has an increasing extension B′ then
8 Bmax(i, j)← B′

9 else if B has an empty extension B′ then
10 Bmax(i, j)← B′

11 else
12 B ← precedingPrefixBox(B)
13 end
14 end
15 if |Bmax(i, j)| = m then
16 Output Bmax(i, j) /* Found an occurrence of P */
17 end
18 end
19 end

Algorithm 1: The Flattening Box Algorithm

The following lemma gives the property that we will use for checking if a prefix box B
has an increasing extension in constant time.

I Lemma 7. A prefix box B = (i, j, ymin, ymax) has an increasing extension if and only if
DT (i, j + 1)− ET (B) = DP (1, |B|+ 1).

Proof. We need the following simple append operation on permutations. Let Q =
(q1, . . . , qk) be a permutation of the integers 1, . . . , k. The permutation obtained by ap-
pending an integer 1 ≤ r ≤ k + 1 to Q is the permutation Q · r = (q′1, . . . , q′k, r) of the
integers 1, . . . , k + 1, where for 1 ≤ i ≤ k, q′i = qi + 1 if qi ≥ r and q′i = qi otherwise.

Now to prove the lemma, we start by observing that Pk+1 = Pk · DP (1, k + 1) for
1 ≤ k ≤ m−1. We need to show that the box B′ = (i, j+1,min(tj+1, ymin),max(tj+1, ymax))
obtained by extending B to include the point (j+1, tj+1), induces the permutation P|B|+1 if
and only if DT (i, j+ 1)−ET (B) = DP (1, |B|+ 1). We consider the two cases |B′| = |B|+ 1
and |B′| > |B|+ 1 separately.

In the first case |B′| = |B|+ 1, which means B′, in addition to the points in B, includes
only the point (j+1, tj+1). It is not hard to see that DT (i, j+1)−ET (B) counts the number
of points (l, tl) ∈ B s.t. tl ≤ tj+1 (see Figure 6). Hence the induced permutation of B′ is

σ(B′) = σ(B) · (DT (i, j + 1)− ET (B)) .

At the same time we have that B has an increasing extension if and only if

σ(B′) = P|B|+1 = P|B| ·DP (1, k + 1) = σ(B) ·DP (1, k + 1) .

Combining the two equations yields the lemma.

CPM 2016
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i j j + 1
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(a) ET (B)
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DT (i, j + 1)

(b) DT (i, j + 1)
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i j j + 1

tj+1 B

DT (i, j + 1) − ET (B)

(c) DT (i, j + 1) − ET (B)

Figure 6 Illustrating the boxes that represent ET (B), DT (i, j + 1), and DT (i, j + 1) − ET (B).
The number of points in these boxes are used to decide if a prefix box B has an increasing extension.

In the other case |B′| > |B| + 1. This means that B′ in addition to (j + 1, tj+1) also
contains some other points (either above or below B). See Figure 5c for an example. Clearly
σ(B′) 6= P|B|+1 and thus B has no increasing extension in this case. To show that DT (i, j+
1)− ET (B) 6= DP (1, |B|+ 1), observe that if points above B were included then DT (i, j +
1)−ET (B) > |B|+ 1, and if points below B were included then DT (i, j + 1)−ET (B) ≤ 0.
Since 1 ≤ DP (1, |B|+ 1) ≤ |B|+ 1, we have that DT (i, j+ 1)−ET (B) 6= DP (1, |B|+ 1). J

In the following we describe how to efficiently obtain the values of DT (i, j + 1), ET (B)
and DP (1, |B|+ 1).

4.1.1 The value DP (1, |B|+ 1)
Prior to running the algorithm, we preprocess a table of size O(m) that stores the value
DP (1, k) for k = 2, . . . ,m. Assuming we maintain the size of the current prefix box B in
the algorithm (which is straightforward), we can obtain DP (1, |B| + 1) by a constant-time
lookup. We describe how to compute the lookup table in O(m

√
logm) time in Section 4.3.

4.1.2 The value ET (B)
Recall that in the algorithm we consider the prefix boxes (i, j, ·, ·) in decreasing order of
their size until we find Bext(i, j). For each such prefix box B, we need the value of ET (B),
i.e., the number of points below that prefix box. We maintain this number as we iterate j
from i to n as follows.

Initially (for j = i) there are no points below the box, so ET (B) = 0. The number
only changes in the following two cases: If B does not have an extension, we consider the
preceding prefix box of B, and hence ET (B) increases by bk (the number of points that are
removed from below). The other case in which ET (B) changes is when B is extended to
j + 1 as an empty extension and tj+1 < ymin. In this case ET (B) increases by one.

4.1.3 The value DT (i, j + 1)
In the following assume that i is fixed, corresponding to a single iteration of the outer-most
loop of the algorithm. As we iterate j from i to n, we need the value DT (i, j). We compute
these values for j = i, . . . , n in the beginning of iteration i and store them in a table of size
O(n). Recall that DT (i, j) is the number of points with x value between i and j and y-value
below tj . Hence we can compute the value DT (i, j) from DT (i− 1, j) as follows.

DT (i, j) =
{
DT (i− 1, j)− 1 if ti−1 < tj

DT (i− 1, j) otherwise
(1)
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Note that computing the table only takes O(n) time, assuming we have the tableDT (i−1, j).
Moreover, there is no need to store the old table, so we only need O(n) space over all
iterations of the algorithm. However, in the very first iteration (i = 1), we need the table
DT (1, j), j = 1, . . . , n. We compute this table in O(n

√
logn) time in the preprocessing

phase of the algorithm as explained in Section 4.3.

4.2 Computing the Preceding Prefix Box
Recall that given a prefix box B = (i, j, ymin, ymax) of size k, its preceding prefix box B′
can be obtained by removing ak points from above, and bk points from below. We compute
(ak, bk) for all k in the preprocessing phase as will be explained in Section 4.3.

To remove ak points from above, we decrement ymax in steps of one and keep track of
how many points we have excluded. Note that when decrementing ymax we exclude a point
from B if and only if i ≤ T−1(ymax) ≤ j, where T−1 is the inverse permuation of T , i.e.,
T−1(ti) = i. We remove the bk points from below by similarly incrementing ymin until bk
points have been excluded.

We compute T−1 in the preprocessing phase of the algorithm in O(n) time.

4.3 Preprocessing the Lookup Tables
We now describe and analyze the necessary preprocessing of the text T and the pattern P .

4.3.1 Preprocessing of the Text
For the text, we need two O(n)-size tables, its inverse permutation T−1, and the table for
DT (1, j), j = 1, . . . , n. The inverse permutation is easily computed in O(n) time.

Recall that DT (1, j) is the number of points with strictly smaller coordinates than (j, tj).
The problem of computing this number for all n points is known as 2D offline dominance
counting. A point in the plane dominates another point if each one of its coordinates is
strictly larger. In the 2D offline dominance counting problem we are given a set of n points,
and we want to count the number of other points that each point dominates. This problem
is solved in O(n

√
logn) time using the algorithm by Chan and Pătraşcu [8]. In fact, since

we only need to compute this table for i = 1, we can afford to use the trivial O(n2)-time
algorithm as well.

4.3.2 Preprocessing of the Pattern
For the pattern we need two O(m)-size tables, the table for DP (1, k), k = 1, . . . ,m, and the
table storing the (ak, bk) values for k = 1, . . . ,m. Computing the table for DP (1, k) can be
done in O(m

√
logm) time exactly as we did for the text.

We will compute the (ak, bk) values incrementally using an algorithm very similar to the
flattening box algorithm. Recall that (ak, bk) denote the number of points that must be
removed from a prefix box B of size k, from above and below, respectively, to obtain its
preceding prefix box. Initially, we set (a1, b1) = (0, 0). Let T = P , i.e., we treat the set of
points {(1, p1), . . . , (m, pm)} as the text. Now consider a box Bk = (1, k, 1,m). This box is
clearly a prefix box, since it matches Pk, and hence it is also the maximum prefix box of the
form (1, k, ·, ·). Let B′k denote the second largest prefix box on (1, k, ·, ·), i.e., the preceding
prefix box of Bk. The idea is to compute B′k, for k = 1, . . . ,m. It is easy to see that this
will give us the (ak, bk) values as the number of points above and below B′k, respectively.
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It follows from Lemma 2 that we can compute B′k from B′k−1 as follows: Starting with
B′k−1 (which we have computed), we check each of the prefix boxes (1, k−1, ·, ·) in decreasing
order of their size. The first one, which has an extension (increasing or empty) of size less
than k, gives us B′k. Note that as we have already computed (ak′ , bk′) for k′ < k, we
can compute the preceding prefix box of B′k−1 (and any of its predecessors) by simply
removing (ak−1, bk−1) points from above and below using exactly the same approach as
in the flattening box algorithm (See Section 4.2). This requires that we also compute the
inverse permutation of P in O(m) time and space.

The time for computing all (ak, bk) values can be bounded by O(m2), for the same reason
the flattening box algorithm runs in O(n2) time (See the next section).

5 Analysis

We now summarize the time analysis of our algorithm.
As already argued, we need O(n

√
logn) time and O(n) space for preprocessing the text,

and preprocessing of the pattern takes O(m2) time and O(m) space. To prove that the
algorithm runs in O(n2) time, we show that a single iteration of the outer-most for-loop
only takes O(n) time. Checking if a prefix box can be extended only requires constant-time
table lookups. To see that the total time spent computing preceding prefix boxes is O(n),
it suffices to note that once a point is excluded, it can never be included again. Hence the
total time spent decrementing ymax and incrementing ymin is O(n).

Consequently, the total time complexity is O(n2 +m2) = O(n2).

6 Open Problems

We have shown that boxed permutation pattern matching can be solved in O(n2) time,
which is optimal. Our algorithm uses O(n) space, which leaves open the problem of reducing
the space to O(m). The main challenge in doing this is the apparent absence of a suitable
decomposition of a problem instance into O(n2/m2) independent subproblems of size O(m2).
We do believe that an O(n2) time and O(m) space algorithm exists, but note that with our
current techniques, it seems difficult to reduce the space to O(m) without increasing the
time to at least O(n2 log logn), for computing the rank of a point in a given box.

Another interesting direction for future work is the possibility of designing output-
sensitive algorithms. That is, can an instance of boxed permutation pattern matching with
occ occurrences of the pattern be solved in O(n2−ε + occ) time, for some ε > 0?

Finally, we note that indexing and approximate variants of boxed permutation pattern
matching also have not been studied yet.
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