
Space-Efficient Dictionaries for Parameterized and
Order-Preserving Pattern Matching
Arnab Ganguly∗1, Wing-Kai Hon†2, Kunihiko Sadakane3,
Rahul Shah4, Sharma V. Thankachan5, and Yilin Yang6

1 School of Electrical Engineering and Computer Science, Louisiana State
University, USA
agangu4@lsu.edu

2 Department of Computer Science, National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

3 Department of Mathematical Informatics, University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

4 School of Electrical Engineering and Computer Science, Louisiana State
University, USA; and
National Science Foundation, USA
rahul@csc.lsu.edu, rahul@nsf.gov

5 School of Computational Science and Engineering, Georgia Institute of
Technology, USA
sharma.thankachan@gatech.edu

2 Department of Computer Science, National Tsing Hua University, Taiwan
yilinyang@cs.nthu.edu.tw

Abstract
Let S and S′ be two strings, having the same length, over a totally-ordered alphabet. We consider
the following two variants of string matching.

Parameterized Matching: The characters of S and S′ are partitioned into static characters
and parameterized characters. The strings are a parameterized match iff the static charac-
ters match exactly, and there exists a one-to-one function which renames the parameterized
characters in S to those in S′.
Order-Preserving Matching: The strings are an order-preserving match iff for any two integers
i, j ∈ [1, |S|], S[i] ≺ S[j] ⇐⇒ S′[i] ≺ S′[j], where ≺ denotes the precedence order of the
alphabet.

Let P be a collection of d patterns {P1,P2, . . . ,Pd} of total length n characters, which are chosen
from a totally-ordered alphabet Σ. Given a text T , also over Σ, we consider the dictionary
indexing problem under the above definitions of string matching. Specifically, the task is to
index P, such that we can report all positions j (called occurrences) where at least one of the
patterns Pi ∈ P is a parameterized match (resp. an order-preserving match) with the same-
length substring of T starting at j. Previous best-known indexes occupy O(n logn) bits, and can
report all occ occurrences in O(|T | log |Σ| + occ) time. We present space-efficient indexes that
occupy O(n log |Σ|+d logn) bits, and reports all occ occurrences in O(|T |(log |Σ|+log|Σ| n)+occ)
time for parameterized matching, and in O(|T | logn+ occ) time for order-preserving matching.

1998 ACM Subject Classification F.2.2 Pattern Matching

∗ The work of Arnab Ganguly was supported by National Science Foundation Grants CCF–1017623 and
CCF–1218904.

† The work of Wing-Kai Hon was supported by National Science Council Grants 102-2221-E-007-068-MY3
and 105-2918-I-007-006.

© Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan,
and Yilin Yang;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Compact Parameterized and Order-Preserving Dictionaries

Keywords and phrases Parameterized Matching, Order-preserving Matching, Dictionary Index-
ing, Aho-Corasick Automaton, Sparsification

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.2

1 Introduction

Designing succinct data-structures for the classical pattern matching problem of finding all
occurrences of a pattern P in a fixed text T can be traced back to the seminal work of Grossi
and Vitter [14], Ferragina and Manzini [8], and Sadakane [26]. This established an active
research area of designing succinct data structures. (See [25] for a comprehensive survey.)
The focus was now on either improving these initial breakthroughs [5, 9, 10, 11, 13, 22, 23, 27],
or on designing succinct data structures for other variants [4, 6, 12, 17, 24, 30]. Dictionary
matching, a typical example of these variants, is a classical problem in string matching and
is defined as follows. Let P be a collection of d patterns {P1,P2, . . . ,Pd} of total length n
characters which are chosen from a totally-ordered alphabet Σ of size σ. Given a text T ,
also over Σ, the task is to report all positions j (called occurrences) such that at least one of
the patterns Pi ∈ P exactly matches an equal-length substring of T that starts at j. The
classical solution for this problem is the Aho-Corasick (AC) automaton [1] which occupies
Θ(m logm) bits of space, where m ≤ n+ 1 is the number of states in the automaton, and
finds all occ occurrences in time O(|T | log σ + occ). The query complexity can be improved
to optimal O(|T | + occ) using perfect-hashing techniques. To the best of our knowledge,
the first two succinct indexes for the problem are by Hon et al. [16] and Tam et al. [29].
Later, Belazzougui [4] presented an m log σ +O(m) +O(d log(n/d)) bit index with optimal
O(|T |+ occ) query time.

The first problem that we consider is popularly known as the Parameterized Pattern
Matching problem. The problem has significant attention [2, 15, 18, 19, 21] since its inception
by Baker in 1993 [3]. The alphabet Σ is partitioned into two disjoint sets: Σs containing
static-characters (s-characters) and Σp containing parameterized characters (p-characters).
Two strings S and S′, both over Σ, are a parameterized match (p-match) iff |S| = |S′| and
there is a one-to-one function f such that S[i] = f(S′[i]). For any s-character c ∈ Σs, we
have f(c) = c. Thus, for Σs = {A,B,C} and Σp = {w, x, y, z}, the strings AxBxCy and
AzBzCx are a p-match, but AxBxCy and AzBwCx are not. We consider the Parameterized
Dictionary Matching problem which was introduced by Idury and Schäffer [18]. This is
similar to the standard dictionary problem, just that Σ is partitioned into Σs and Σp, and
we consider the p-matches of a pattern with the text. Idury and Schäffer presented an
AC-automaton like solution which occupies O(m logm) = O(n logn) bits and reports all occ
occurrences in O(|T | log σ + occ) time. The following theorem summarizes our contribution.

I Theorem 1. By maintaining an index of P in O(n log σ+ d logn) bits, all occ occurrences
where a pattern in P and T are a p-match can be reported in O(|T |(log σ + logσ n) + occ)
time.

The second problem we consider is a variant of the recently introduced Order-Preserving
Pattern Matching problem [7, 20]. Two strings S and S′ are an order-preserving match
(o-match) iff |S| = |S′| and for any two integers i, j ∈ [1, |S|], we have S[i] ≺ S[j] ⇐⇒
S′[i] ≺ S′[j]. Thus, for the alphabet {A,B,C,D} with the total-order A ≺ B ≺ C ≺ D,
the string ABC is an o-match with BCD, but not with CDB. Likewise, AAB matches
CCD, but does not match ABC. We consider the Order-Preserving Dictionary Matching
problem introduced by Kim et al. [20]. As with the p-dictionary matching problem, the

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.2

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang 2:3

match in this case is defined according to order-preserving matching. Kim et al. presented
an AC-automaton like approach which occupies O(n logn) bits and reports all occurrences
in O(|T | log σ + occ) time. The following theorem summarizes our contribution.

I Theorem 2. By maintaining an index of P in O(n log σ+ d logn) bits, all occ occurrences
where a pattern in P and T are an o-match can be reported in O(|T | logn+ occ) time.

1.1 Map
Our techniques are largely based on the sparsification technique of Hon et al. [16] for the
classical dictionary matching problem. For a parameter ∆, this technique condenses every ∆
characters of each pattern separately and then creates an AC-automaton for the condensed
patterns. Likewise, the text is also condensed starting at a position i. Now the condensed text
is matched in the AC-automaton, and all occurrences are reported. The occurrences reported
in this run lie in the set {i, i+ ∆, i+ 2∆, . . . }. All occurrences are reported by repeating
the process for i = 1, 2, 3, . . . ,∆. By properly choosing ∆, different trade-offs for index
sizes and query time can be obtained. Broadly speaking, we use this technique to sparsify
the AC-automaton based approaches of Idury and Schäffer [18] for p-dictionary matching
and of Kim et al. [20] for o-dictionary matching. However, the sparsification technique
does not immediately extend to the case of parameterized matching and order-preserving
matching. For example, it is not clear whether a condensed alphabet has to be treated as a
p-character or an s-character. Also, how do we define the one-to-one mapping? Similarly,
how do we impose the total-order on the condensed alphabet in the case of order-preserving
matching? A more serious issue is how to handle truncating of characters at the beginning
of a currently matched text, which is essential for the AC-automaton based approaches of
Idury and Schäffer and of Kim et al.

In Section 2, we first address the p-dictionary problem, and prove Theorem 1. In Section 3,
using similar techniques, we arrive at Theorem 2.

2 Parameterized Dictionary Matching

We assume that the p-characters in Pi ∈ P are from the set {0, 1, . . . , |Σp| − 1}. Also, the
s-characters are disjoint from the set of integers. (The latter assumption can be easily
removed by mapping the s-characters onto the set {|Σp|, |Σp|+ 1, . . . , σ − 1} such that the
kth smallest s-character has value |Σp|+ k − 1.) The patterns can be initially processed in
O(n log σ) time to ensure that these conditions hold.

2.1 Encoding Scheme
[3] introduced the following encoding scheme to enable matching of parameterized strings.
Given a string S, obtain a string prev(S) by replacing the first occurrence of every p-character
in S by 0 and any other occurrence by the difference in position from its previous occurrence.
Thus, prev(A1B2A1C0) = A0B0A4C0. Baker [3] showed that two strings S and S′ are a
p-match iff prev(S) = prev(S′). Although this scheme makes p-matching of strings easier to
handle, for our purposes, it suffers from a drawback. Specifically, prev(S) is a string over an
alphabet of size Θ(n) in the worst case, whereas the original alphabet size σ may be much
smaller in comparison.

In order to alleviate this, we introduce the following encoding scheme, which is still simple
and does not suffer from this drawback. Given a string S over Σ, let c0, c1, . . . , ck be the
order in which every ci ∈ Σp appears in S. We obtain a string pEncode(S) by replacing every

CPM 2016

2:4 Compact Parameterized and Order-Preserving Dictionaries

occurrence of ci by i in S. Thus, pEncode(A1B2A1C0) = A0B1A0C2. By maintaining an
integer-array of length |Σp|, we can compute pEncode(S) in O(|S|) time1. The following
observations are immediate.

I Observation 3. Two strings S and S′ are a p-match iff pEncode(S) = pEncode(S′). A
string S matches another string S′ at a position i iff pEncode(S) = pEncode(S′[i, i+ |S|−1]).

I Observation 4. For a string S, assume that the parameterized characters in pEncode(S) be-
long to the set {0, 1, 2, . . . , |Σp| − 1}. Then, pEncode(S[i, |S|]) = pEncode(pEncode(S)[i, |S|]).

2.2 Overview
We design our index by classifying the patterns into long and short based on a parameter
∆ = dlogσ ne. The patterns are encoded and maintained explicitly occupying n log σ bits
in total. For short patterns (having length less than ∆), we create a trie and use a rather
brute-force approach to find all occurrences. On the other hand, reporting the occurrences of
long patterns (having length at least ∆) requires sophisticated (and more involved) indexing
and querying techniques. Moving forward, when we refer to an occurrence, we imply both
the position in the text where a pattern occurs and also the pattern itself. Also, we report
all patterns that occur at a particular position. (The query process can be easily adapted
to the case when only the position is to be reported.) Then, the set of occurrences of long
patterns and short patterns are mutually disjoint and are handled separately. Specifically,
we prove the following lemmas of which Theorem 1 is an immediate consequence.

I Lemma 5. Let P be a dictionary consisting of d patterns, each having length at least
dlogσ ne. By indexing P in a data-structure occupying O(n log σ+d logn) bits, we can report
all occ occurrences of the patterns in O(|T |(log σ + logσ n) + occ) time.

I Lemma 6. Let P be a dictionary consisting of d patterns, each having length less than
dlogσ ne. By indexing P in a data-structure occupying n log σ+O(d logn) bits, we can report
all occ occurrences of the patterns in O(|T |(log σ + logσ n) + occ) time.

We assume that no two patterns Pi and Pj exist such that pEncode(Pi) = pEncode(Pj). For
such patterns, we can keep only one pattern in the dictionary, and it is trivial to handle
reporting of all patterns for an occurrence in the claimed space-time bounds. We also
assume that the p-characters in T are from {0, 1, . . . , |Σp| − 1} and the s-characters are
either disjoint from the set of integers or belong to the set {|Σp|, |Σp|+ 1, . . . , σ − 1}. An
initial pre-processing of the text in O(|T | log σ) time ensures that these conditions hold. The
O(|T | log σ) factor in the query complexity of Lemmas 5 and 6 and Theorem 1 is due to this
pre-processing.

2.3 Long Patterns (Proof of Lemma 5)
We consider the patterns which are of length at least ∆, where ∆ = dlogσ ne. For a
string S and ∆, we use tail(S) to denote the largest suffix of S whose length is a multiple
of ∆ and head(S) is the remaining (possibly empty) prefix of S. We begin by obtaining

1 Initialize a counter C = 0 and an integer array A such that A[c] = −1 for every c ∈ Σp. Traverse the
string S from left to right. If S[i] ∈ Σp (i.e., S[i] < |Σp|) check A[S[i]]; otherwise, pEncode(S)[i] = S[i].
If A[S[i]] = −1 then assign pEncode(S)[i] = A[S[i]] = C, increment C by one and proceed. Otherwise,
assign pEncode(S)[i] = A[S[i]] and proceed. Note that s-characters remain unchanged.

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang 2:5

pEncode(tail(Pi)) for every Pi ∈ P , and maintain the encoded tails explicitly. Now, we encode
head(Pi) from right to left using the same encoding that was used for its tail. More specifically,
form the string P′

i by concatenating tail(Pi) with the reverse of head(Pi). Then, the desired
encoding of the jth character in the reversed head is given by pEncode(P′

i)[|tail(Pi)|+ j]. The
following observation is due to the definition of p-match and Observation 3.

I Observation 7. Let S and S′ be two strings having equal length. Then S and S′ are a
p-match iff both the conditions are satisfied: (i) the p-encoded tails of both S and S′ are
equal, and (ii) the p-encoded heads (as described above) of both S and S′ are equal.

The space needed for maintaining the encoded heads and tails of all patterns combined is
n log σ bits.

2.3.1 Creating the Index
We create a tree Tout with d nodes where node vi corresponds to the pattern Pi. A node
vj is the parent of a node vi iff Pj is the longest pattern such that it is a p-match with a
proper-suffix of Pi. In other words, vj is the parent of a node vi iff Pj is the longest pattern
such that |Pj | < |Pi| and pEncode(Pj) = pEncode(Pi[|Pi| − |Pj |+ 1, |Pi|]). This output tree
will be useful for reporting occurrences of a pattern and is analogous to the report links
in the AC-automaton [1]. Specifically, let k be a position in the text T such that Pi is the
longest pattern which has an occurrence ending at k. Then all patterns whose occurrence
ends at k can be found out by following the parent pointers starting at node vi. Clearly,
the start position of all such occurrences can be easily found. Space occupied by the tree is
O(d logn) bits.

Let Σ′ be an alphabet such that each character in Σ′ corresponds to a ∆-length string over
the alphabet Σ. Thus, Σ′ contains at most σ∆ characters, and each character can be represen-
ted in ∆ log σ bits. Starting from left, we group every ∆ characters of pEncode(tail(Pi)), and
replace it by the corresponding character from Σ′. In order to efficiently map this ∆-length
string over Σ to its corresponding character in Σ′, we maintain a perfect hash-table H. Note
that the number of ∆-length strings to be stored is at most dn/∆e. The space occupied by
H is O(n/∆×∆ log σ) = O(n log σ) bits. Create a trie Ttail for all the condensed encoded
pattern tails of P. Specifically, if the pattern length is not a multiple of ∆, then we ignore
its head while creating the trie. Note that Ttail has at most dn/∆e nodes. Each edge in
Ttail corresponds to a ∆-length substring of some pEncode(Pi). We maintain a pointer to
the start location of this substring in pEncode(Pi). (Given an edge, this allows us to find
any jth character of the corresponding ∆-length substring of pEncode(Pi) in O(1) time. The
purpose of this will become clear when we discuss how to query the trie.) The space needed
to store this information is O((n/∆) logn) = O(n log σ) bits.

For any node u in Ttail, we use path(u) to denote the string obtained by concatenating
the edge labels (which are characters from Σ′) one the path from root to the node u, and
pathe(u) to denote the expanded string for path(u) i.e., the string obtained by mapping
each character of path(u) to its corresponding ∆-length string over Σ. For each node u, we
maintain the following information.

a goto link as in the case of the AC-automaton for navigating the trie: given a node u
and a character c ∈ Σ′, we can find its child v where the edge (u, v) is (conceptually)
labeled by c, or report that no such child exists. (This is facilitated by the hash-table H,
whereby we read ∆ characters from T , encode it, and use it to find the corresponding
character from Σ′.)

CPM 2016

2:6 Compact Parameterized and Order-Preserving Dictionaries

a failure link as in the case of the AC-automaton: Let S be the largest proper suffix of
path(u) for which there exists a node v, such that pathe(v) is same as the string obtained
by expanding S, re-encoding it according to Observation 4, and then compressing it back.
Then, the failure link of u points to v.
an output link from u to the node vi in Tout such that Pi is the longest pattern satisfying
pEncode(Pi) = pEncode(pathe(u)[|pathe(u)| − |Pi|+ 1, |pathe(u)|]), where the re-encoding
is according to Observation 4.
alphaDepth(u) i.e., the number of distinct integers less than |Σp| in pathe(u). (Conceptu-
ally, this is the number of distinct p-characters.)

The space required to maintain goto links, failure links, output links, and alphabet depth
over all nodes is O(dn/∆e(∆ log σ + logn+ log σ)) = O(n log σ) bits.

Lastly, we maintain a succinct representation of Ttail using the techniques of Sadakane
and Navarro [28]. Using this, in O(1) time, we can find (i) node-depth of a node, and (ii)
levelAncestor(u,D) = the node (if any) on the path from root to u that has node-depth D.
(The root has depth zero.) The space needed is 2dn/∆e+ o(n/∆) = O(n/∆) bits.

In summary, Ttail occupies O(n log σ + n/∆ + d logn) = O(n log σ + d logn) bits.
Now, we focus on the head of each pattern. Consider a pattern Pi. First, we reverse

head(Pi), then encode it (as described in the beginning of this section). Create two copies
of the resultant head, each of which is obtained by appending two special s-characters $i
and #i, neither of which belongs to Σ. Locate the (distinct) node u such that pathe(u) is
same as pEncode(tail(Pi)). Note that u is defined and we call it the locus of Pi. Consider all
patterns which have the same locus u. Create a compacted trie for the modified heads of
all those patterns, and let u be the root of that trie. We call this the head-trie of u and is
denoted by Thead(u). The parent of each leaf in Thead(u) corresponds to a pattern, say Pj , in
the dictionary. We mark all such nodes in Thead(u) and label them with the corresponding
pattern index j. Furthermore, for each node in Thead(u), we maintain a pointer to its nearest
marked ancestor. The space occupied by each node for marking and labeling is O(logn) bits.
Each edge in Thead(u) is labeled by a substring (of length less than ∆) of the encoded head
of some pattern Pj . We maintain a pointer to the start point of the corresponding substring
of pEncode(Pj), and also its length. This occupies O(logn) bits for each edge. We also equip
Thead(u) to allow constant time navigation operation from a node to the edge where the
next character of an encoded head matches. This can be facilitated using perfect hashing
based on the (unique) first character of the edge to its children, and occupies O(log σ) bits
for each transition (edge). Since there are d patterns, the number of nodes and edges in all
such tries combined is O(d). Thus, the total space occupied for maintaining all head-tries is
O(d logn+ d log σ) = O(d logn) bits.

In summary, the total space occupied by the resultant trie (denoted as Tlong), all encoded
patterns, and the hash-table H is O(n log σ + d logn) bits.

2.3.2 Finding Occurrences
Starting from position j = 1, we obtain pEncode(T [j,∆]) and use its corresponding character
from Σ′ to traverse the trie Tlong from the root. We repeat this process for the next ∆
characters from T , and so on. More specifically, suppose we have reached a node u in Thead
such that pathe(u) = pEncode(T [j, j + |pathe(u)| − 1]). At this point, we have the following
cases to consider.

There is an output link associated with u, implying the existence of a pattern which is a
p-match with a suffix of T ending at j + |pathe(u)| − 1. All such patterns and starting
locations can be found out in O(1) time per output by using the output link and Tout.

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang 2:7

Thead(u) is non-empty implying that there is a pattern Pi such that the encoded tail
of Pi is same as pathe(u). To report all possible occurrences of such patterns ending
at (j + |pathe(v)| − 1), we use the encoded characters corresponding to T [j − 1], T [j −
2], . . . , T [j −∆ + 1] to traverse Thead(u) until no more traversal is possible. Suppose the
last encountered node in this trie is v. We report all patterns with an occurrence ending
at j by following the marked ancestor linkage from v.
There is a child v of u such that the edge label of (u, v) is same as the character from Σ′

corresponding to the last ∆ characters of pEncode(T [j, j + |pathe(v)| − 1]). In this case,
we traverse to v, and continue the process. Otherwise, follow the failure link of u.

Note that following the output link results in occurrence of at least one pattern. Each
occurrence (i.e., the index and the corresponding pattern) can be reported in O(1) time.
Moving forward we show how to deal with the head-trie, failure links, and goto links.

For our purposes, we maintain an array A of length |Σp| such that for any c ∈ Σp, A[c]
equals the last position at which c appeared in T that has been read so far. (Initially each
entry in the array A is empty.) We also maintain an array B of length |Σp| such that for any
c ∈ Σp, B[c] gives us the desired encoding.

First, we show how to appropriately encode the incoming characters T [j − 1], T [j −
2], . . . , T [j −∆ + 1] when we traverse Thead(u). Initialize the array B to be empty. Note
that it suffices to find the encoding for the first occurrence of every p-character starting from
j − 1 as the encoding for all future occurrences remains the same and can be obtained using
B. Let c be a p-character. If B[c] is not empty then use it to obtain the desired encoding.
Otherwise, find the last occurrence of c using A[c]. We use the state of the array A at node
u, and do not modify it while traversing the head-trie. We have the following two cases.

c appears in T [j, j + |pathe(u)|− 1]: Assume that the last occurrence is the λth char-
acter starting from j and (u′, v′) be the edge on which this occurrence lies i.e., |path(u′)| <
λ/∆ ≤ |path(v′)|. We locate v′ = levelAncestor(u,D) and u′ = levelAncestor(u,D − 1),
where D = |path(v′)| = dλ/∆e is the node-depth of v′. The encoding corresponding to
c is exactly the (λ − ∆ · |path(u′)|)th character of the label on this edge, and can be
found using the pointer from the edge to the start of the corresponding substring of
some encoded pattern tail. Set B[c] to the encoded value. The time needed is O(1) per
character.
c does not appear in T [j, j + |pathe(u)| − 1]: We maintain a counter C initialized
to alphaDepth(u). Whenever we encounter such a c, the encoding is given by the value
of C. Set B[c] to the value of the counter. Following this, we increment C by one. The
time needed is O(1) per character.

Thus, the time required to traverse each head-trie is O(∆) and each occurrence in the
head-trie is reported in O(1) time by following the marked ancestor linkage.

Now, we concentrate on the failure link from u to v and show how to re-encode the text
when we truncate characters from position j. Assume that k is the number of edges on the
path from root to u (i.e., k is the node-depth of u) and that the failure link truncates k′∆
characters starting from j. Clearly, 1 ≤ k′ ≤ k. Therefore, we are now trying to find a match
for the positions starting from j′ = j + k′∆ and we need to re-encode the text T starting
from j′. Since it is ensured that pEncode(T [j′, j′ + (k − k′)∆− 1]) is same as pathe(v), we
are required to find the encoding of every p-character starting from j′′ = j′ + (k − k′)∆.

Initialize the array B to be empty. Note that it suffices to find the encoding for the first
occurrence of every p-character starting from j′′, as the encoding for all future occurrences
remains the same and can be obtained using the array B. Let c be a p-character. If B[c] is

CPM 2016

2:8 Compact Parameterized and Order-Preserving Dictionaries

non-empty, then use it to obtain the desired encoding. Otherwise, find the last occurrence
of c using A[c]. Note that we need the state of the array A at node u, which can be easily
obtained by maintaining a copy of it whenever a new edge is traversed. (We delete the
old copy when a new edge is traversed as it will not be required any more.) We have the
following two cases.

c appears in T [j′, j′′ − 1]: As described previously using levelAncestor(·, ·) queries, we
locate the position on the edge of the last occurrence. Then using the pointer from the
edge we find the desired encoding and set B[c]. The time needed is O(1) per character.
c does not appear in T [j′, j′′−1]: Wemaintain a counter C initialized to alphaDepth(v).
Whenever we encounter such a c, the encoding is given by the value of C. Following this,
we increment C by one. The time needed is O(1) per character.

The goto transition is achieved easily as follows. We read the next ∆ characters from the
text, encode them, and use the hash table H to traverse to the desired node. Since encoding
each character can be performed in O(1) time (using the arrays A and B as described
previously), each goto operation takes O(∆) time.

Now, we bound the query complexity. Initially, encoding the string T starting from j = 1
can be performed in O(|T |) time. Recall that on following a failure link, we truncate at
least ∆ characters starting from j. We read ∆ characters on the failed edge (i.e., the one
which was read unsuccessfully immediately before following the failure link). Thus, we can
charge the characters on the failed edge to the first truncated ∆ characters. This gives us
an amortized complexity of O(1) per character. The number of failure link operations is at
most d|T |/∆e. Thus, the number of nodes and edges traversed in the tail-trie is O(|T |/∆).
For each edge, we read ∆ characters and encoding the p-characters can be performed in O(1)
time per character. For each node in the tail-trie, we will examine less than ∆ characters in
the head-trie; each of these characters can be appropriately encoded in O(1) time. Thus, the
time required to traverse Tlong (without reporting occurrences) is O((|T |/∆) ·∆) = O(|T |).
Each occurrence in the head-trie or the output tree is reported in O(1) time.

At the end of this process, for j = 1, we have reported occurrences of all patterns which
end at a position of the form j, j + ∆, j + 2∆, The time required is O(|T |+ occj). By
repeating the process for j = 2, 3, . . . ,∆, all occ` occurrences of long patterns are reported in
O(|T |∆ + occ`) = O(|T | logσ n+ occ`) time.

Summarizing the discussions in this section, we obtain Lemma 5.

2.4 Short Patterns (Proof of Lemma 6)
Processing short patterns (having length less than ∆) is similar to that for head-tries. For
all short patterns Pi, we create a compacted trie Tshort for the strings pEncode(Pi) ◦ $i and
pEncode(Pi) ◦#i, where ◦ denotes concatenation. The number of nodes in the trie is O(d).
As in case of tail tries, we maintain a pointer from each edge to the start of the corresponding
substring labeling the edge, and the length of the substring. We also equip each edge of
Tshort to support constant time navigation. Mark all nodes u if there is an encoded pattern
which is the same as that obtained by concatenating the edge labels from root to u. The
total space is bounded by O(d logn) bits.

To find occurrences of short patterns, we use a rather brute force approach. Starting
from j = 1, simply encode the next ∆ characters of T , and use it to traverse the trie Tshort
until no more traversal is possible. Report j if at least one marked node is encountered
in this traversal, and in that case, also report the patterns corresponding to these marked
nodes. We repeat the process for j = 2, 3, . . . , |T |. Since for each j at most 2∆ characters are

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang 2:9

checked, the time required to report all occs occurrences of short patterns is O(|T |∆+occs) =
O(|T | logσ n+ occs).

Summarizing the discussions in this section, we obtain Lemma 6.

3 Order-Preserving Dictionary Matching

As in the case of parameterized matching, we assume that the patterns are over an alphabet
Σ = {1, 2, . . . , σ}, where the total-order on Σ is the natural order of integers. By initially
pre-processing the patterns in O(n log σ) time this condition is ensured. We use the following
encoding scheme to convert a string S over Σ to a string oEncode(S). For every character
S[i], oEncode(S)[i] is the number of distinct characters in S[1, i] having value at most S[i].
For example, consider the string S = 5452316, where each character is a single-digit integer.
Then, oEncode(S) = 1121216. The following is due to Kim et al. [20].

I Observation 8. Two strings S and S′ are an o-match iff oEncode(S) = oEncode(S′). A
string S matches another string S′ at a position i iff oEncode(S) = oEncode(S′[i, i+ |S|− 1]).

3.1 Creating the Index
As in case of p-patterns, we categorize o-patterns into long and small w.r.t the same parameter
∆ = dlogσ ne. We also define the head and tail of the pattern similar to that in case of
p-patterns. The tails are encoded using oEncode(·) and are maintained explicitly. The
encoding for the head of a pattern Pi is obtained as follows. Create a string P′

i first by
reversing head(Pi), then appending it at the end of tail(Pi). Then, the encoding of the
jth character in the reversed head is given by oEncode(P′

i)[|tail(Pi)| + j]. The following
observation is due to the definition of o-match and Fact 8.

I Observation 9. Let S and S′ two be strings having equal length. Then S and S′ are an
o-match iff both the conditions are satisfied: (i) the o-encoded tails of both S and S′ are equal
and (ii) the o-encoded heads (as described above) of both S and S′ are equal.

For long patterns, the index is similar to that for p-patterns, except that we use the
above encoding scheme. Also, we do not pre-process the resultant trie Ttail for answering
levelAncestor(·, ·)-queries. For short patterns, the index is same except that for the encoding
scheme. Thus, space is bounded by O(n log σ + d logn) bits.

3.2 Finding Occurrences
We assume that the characters in |T | are from {1, 2, . . . , σ} with the total order being same as
in that of the patterns. An initial pre-processing of the text in O(|T | log σ) time ensures that
this condition holds. Note that this does not affect the final query complexity of Theorem 2.

The querying process remains exactly similar to that for p-matching. Obviously, we use
oEncode(·) for encoding T , computing which requires a different technique. We maintain an
array A of length σ such that A[c] equals the position of last occurrence (if any) of c ∈ Σ
in the text read so far. Initially, for each c ∈ Σ, we assign A[c] = −1. Also, we maintain a
balanced binary search tree (BST) Tbin, which is initially empty. Suppose we are at position
k in the text. If A[T [k]] = −1, we add T [k] to Tbin. We find the number of characters in Tbin
that are at most T [k], which gives us the desired encoding. Then, we update A[T [k]] = k

and proceed. Note that the size of Tbin is O(σ), which implies every deletion, insertion, and
search operation requires O(log σ) time.

CPM 2016

2:10 Compact Parameterized and Order-Preserving Dictionaries

The difficulty comes when we follow a failure link or when we traverse a head-trie. We
first discuss the case of a failure link in which we may have to remove several characters from
Tbin. Suppose, after following a failure link, we are trying to find an occurrence for position j′

and we are processing characters of the text starting from j′′. (See Section 2.3.2 for detailed
definitions of j′ and j′′.) Clearly, we have to remove those characters c from Tbin for which
A[c] < j′. The total number of such deletions is at most |T |, each requiring O(log σ) time
yielding an amortized time complexity of O(log σ) per character. To find these characters
efficiently, we maintain the characters c′ ∈ Σ keyed by A[c′] in another BST T ′

bin. Note
that the size of T ′

bin is O(σ), which implies every insertion, update, and search operation
requires O(log σ) time. Using T ′

bin, we can find the desired characters to be removed in
O(log σ + outputk) time, where outputk is the number of characters to be deleted from Tbin
when we follow the kth failure link. Note that

∑
k outputk ≤ |T |. Therefore, maintaining

T ′
bin and finding the desired characters to be removed on following a failure link have an

amortized time complexity of O(log σ) per character.
Traversing a head-trie is achieved similarly. Suppose, we are considering the string

T [j, j′ − 1]. Then, we have to encode characters T [j − 1], T [j − 2], . . . , T [j −∆ + 1] based on
T [j, j′− 1]. With the aid of T ′

bin, we maintain another BST that contains only the characters
in the interval [j, j′ − 1]. The desired encoding of each character can be obtained in O(log σ)
amortized time.

Thus, the jth running of the algorithm requires O(|T | log σ+ occj) time for long patterns.
Reporting all occ` occurrences of long patterns requires O(|T |∆ log σ + occ`) = O(|T | logn+
occ`) time. For short patterns, since we follow the same brute-force strategy, it is easy to see
that time required to report all occs occurrences is O(|T | logn+ occs).

This completes the proof of Theorem 2.

References

1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

2 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-
erized matching. Inf. Process. Lett., 49(3):111–115, 1994. doi:10.1016/0020-0190(94)
90086-8.

3 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71–80, 1993. doi:10.1145/167088.167115.

4 Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Combinatorial
Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA, June 21-23,
2010. Proceedings, pages 88–100, 2010. doi:10.1007/978-3-642-13509-5_9.

5 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms, 10(4):23:1–23:19, 2014. doi:10.1145/2635816.

6 Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Forbidden ex-
tension queries. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, In-
dia, pages 320–335, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.320.

7 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio
Langiu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-
preserving incomplete suffix trees and order-preserving indexes. In String Processing and
Information Retrieval – 20th International Symposium, SPIRE 2013, Jerusalem, Israel,
October 7-9, 2013, Proceedings, pages 84–95, 2013. doi:10.1007/978-3-319-02432-5_13.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1007/978-3-642-13509-5_9
http://dx.doi.org/10.1145/2635816
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.320
http://dx.doi.org/10.1007/978-3-319-02432-5_13

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang 2:11

8 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398, 2000. doi:10.1109/SFCS.2000.
892127.

9 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

10 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An alphabet-
friendly fm-index. In String Processing and Information Retrieval, 11th International Con-
ference, SPIRE 2004, Padova, Italy, October 5-8, 2004, Proceedings, pages 150–160, 2004.
doi:10.1007/978-3-540-30213-1_23.

11 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2),
2007. doi:10.1145/1240233.1240243.

12 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-overlapping
indexing. In Combinatorial Pattern Matching – 26th Annual Symposium, CPM 2015,
Ischia Island, Italy, June 29 – July 1, 2015, Proceedings, pages 185–195, 2015. doi:
10.1007/978-3-319-19929-0_16.

13 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841–850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

14 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract). In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 397–406, 2000. doi:10.1145/335305.335351.

15 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.
In Algorithms – ESA 2004, 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, Proceedings, pages 414–425, 2004. doi:10.1007/978-3-540-30140-0_38.

16 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Com-
pressed index for dictionary matching. In 2008 Data Compression Conference (DCC 2008),
25-27 March 2008, Snowbird, UT, USA, pages 23–32, 2008. doi:10.1109/DCC.2008.62.

17 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-
efficient frameworks for top-k string retrieval. J. ACM, 61(2):9:1–9:36, 2014. doi:10.
1145/2590774.

18 Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of parameterized pat-
terns. In Combinatorial Pattern Matching, 5th Annual Symposium, CPM 94, Asilo-
mar, California, USA, June 5-8, 1994, Proceedings, pages 226–239, 1994. doi:10.1007/
3-540-58094-8_20.

19 Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized matching in the
streaming model. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, February 27 – March 2, 2013, Kiel, Germany, pages 400–411, 2013.
doi:10.4230/LIPIcs.STACS.2013.400.

20 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo
Park, Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput.
Sci., 525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

21 S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees (pre-
liminary version). In 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, 23-25 October 1995, pages 631–637, 1995. doi:10.1109/SFCS.1995.
492664.

CPM 2016

http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1007/978-3-540-30213-1_23
http://dx.doi.org/10.1145/1240233.1240243
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1007/978-3-540-30140-0_38
http://dx.doi.org/10.1109/DCC.2008.62
http://dx.doi.org/10.1145/2590774
http://dx.doi.org/10.1145/2590774
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://dx.doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1109/SFCS.1995.492664

2:12 Compact Parameterized and Order-Preserving Dictionaries

22 Veli Mäkinen and Gonzalo Navarro. Compressed compact suffix arrays. In Combinatorial
Pattern Matching, 15th Annual Symposium, CPM 2004, Istanbul,Turkey, July 5-7, 2004,
Proceedings, pages 420–433, 2004. doi:10.1007/978-3-540-27801-6_32.

23 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In
Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea,
June 19-22, 2005, Proceedings, pages 45–56, 2005. doi:10.1007/11496656_5.

24 J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V.
Thankachan. Top- k term-proximity in succinct space. In Algorithms and Computation –
25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, pages 169–180, 2014. doi:10.1007/978-3-319-13075-0_14.

25 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007. doi:10.1145/1216370.1216372.

26 Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Algorithms and Computation, 11th International Conference,
ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings, pages 410–421, 2000.
doi:10.1007/3-540-40996-3_35.

27 Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294–313, 2003. doi:10.1016/S0196-6774(03)00087-7.

28 Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct trees. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 134–149, 2010. doi:10.1137/1.
9781611973075.13.

29 Alan Tam, Edward Wu, Tak Wah Lam, and Siu-Ming Yiu. Succinct text indexing with
wildcards. In String Processing and Information Retrieval, 16th International Symposium,
SPIRE 2009, Saariselkä, Finland, August 25-27, 2009, Proceedings, pages 39–50, 2009.
doi:10.1007/978-3-642-03784-9_5.

30 Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett., 113(12):440–443,
2013. doi:10.1016/j.ipl.2013.03.012.

http://dx.doi.org/10.1007/978-3-540-27801-6_32
http://dx.doi.org/10.1007/11496656_5
http://dx.doi.org/10.1007/978-3-319-13075-0_14
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1007/3-540-40996-3_35
http://dx.doi.org/10.1016/S0196-6774(03)00087-7
http://dx.doi.org/10.1137/1.9781611973075.13
http://dx.doi.org/10.1137/1.9781611973075.13
http://dx.doi.org/10.1007/978-3-642-03784-9_5
http://dx.doi.org/10.1016/j.ipl.2013.03.012

	Introduction
	Map

	Parameterized Dictionary Matching
	Encoding Scheme
	Overview
	Long Patterns (Proof of Lemma 5)
	Creating the Index
	Finding Occurrences

	Short Patterns (Proof of Lemma 6)

	Order-Preserving Dictionary Matching
	Creating the Index
	Finding Occurrences

