
Fully-online Construction of Suffix Trees for
Multiple Texts
Takuya Takagi1, Shunsuke Inenaga2, and Hiroki Arimura3

1 Graduate School of IST, Hokkaido University, Japan
tkg@ist.hokudai.ac.jp

2 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

3 Graduate School of IST, Hokkaido University, Japan
arim@ist.hokudai.ac.jp

Abstract
We consider fully-online construction of indexing data structures for multiple texts. Let T =
{T1, . . . , TK} be a collection of texts. By fully-online, we mean that a new character can be appen-
ded to any text in T at any time. This is a natural generalization of semi-online construction of
indexing data structures for multiple texts in which, after a new character is appended to the kth
text Tk, then its previous texts T1, . . . , Tk−1 will remain static. Our fully-online scenario arises
when we maintain dynamic indexes for multi-sensor data. Let N and σ denote the total length
of texts in T and the alphabet size, respectively. We first show that the algorithm by Blumer et
al. [Theoretical Computer Science, 40:31-55, 1985] to construct the directed acyclic word graph
(DAWG) for T can readily be extended to our fully-online setting, retaining O(N log σ)-time
and O(N)-space complexities. Then, we give a sophisticated fully-online algorithm which con-
structs the suffix tree for T in O(N log σ) time and O(N) space. A key idea of this algorithm is
synchronized maintenance of the DAWG and the suffix tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases suffix trees, DAWGs, multiple texts, online algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.22

1 Introduction

Text indexing is a fundamental problem in computer science, which plays important roles in
many applications including text retrieval, molecular biology, signal processing, and sensor
data analysis. In this paper, we focus on indexing a collection of multiple texts, so that
subsequent pattern matching queries can be answered quickly. In particular, we study
online indexing for a collection T of multiple texts, where a new character can be appended
to each text at any time. Such fully-online indexing for multiple growing texts has potential
applications to continuous processing of data streams, where a number of symbolic events or
data items are produced from multiple, rapid, time-varying, and unbounded data streams [2,
11]. For example, motif mining system tries to discover characteristic or interesting collective
behaviors, such as frequent path or anomalies, from data streams generated by a collection
of moving objects or sensors [14, 11].

It is known that suffix trees [13] and DAWGs [4] can be efficiently constructed for a
collection of growing texts in the semi-online setting, where only the last inserted text can
be grown. However, these existing semi-online algorithms to maintain a suffix tree or a
DAWG for multiple texts are not sufficient to construct indexing structures for multiple
data streams which grow in a fully-online manner.

© Takuya Takagi, Shunsuke Inenaga, and Hiroki Arimura;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Fully-online Construction of Suffix Trees for Multiple Texts

We propose how the DAWG and the suffix tree can be incrementally constructed for
a fully-online text collection. First, we observe that Blumer et al.’s construction [4] for
DAWGs and Weiner’s right-to-left construction [15] for suffix trees can readily be adapted
to solve this problem. Hence, at any moment during the fully-online growth of the texts, we
can find all occ occurrences of a given pattern of length M in the current text collection in
O(M log σ + occ) time.

Our next goal is to extend Ukkonen’s construction [13] to fully-online left-to-right con-
struction of suffix trees for multiple texts. A motivation of this goal is that a growing suffix
tree can be enhanced with powerful semi-dynamic tree data structures such as those for
nearest marked ancestor (NMA) queries [16], lowest common ancestor (LCA) queries [7],
and level ancestor (LA) queries [1]. Note that these data structures cannot be applied to
DAWGs, and that the same query results cannot be obtained on the suffix tree maintained
in a Weiner-like right-to-left online manner since the suffix tree obtained in this manner
inherently indexes the reversed texts in the collection. However, it turns out that this goal
is a big algorithmic challenge, because: (A) In Ukkonen’s algorithm, a pointer called the
active point keeps track of the insertion points of suffixes in decreasing order of length. The
efficiency of Ukkonen’s algorithm is due to the monotonicity of the tracking path of the
active point. However, unfortunately this monotonicity does not hold in the fully-online
setting for multiple texts. (B) Due to the non-monotonicity mentioned above, Ukkonen’s
technique to amortize the cost to track the suffix insertion points does not work in our
case. (C) Ukkonen’s “open edge” technique to maintain the leaves does not work in our
case, either. In Section 5 we will explain in more details why and how these problems arise
in our fully-online setting. In this paper, we present a number of new novel techniques to
overcome all the difficulties above. As a final result, we propose the first optimal O(N log σ)-
time O(N)-space fully-online left-to-right construction algorithm for a suffix tree of multiple
texts over a general ordered alphabet of size σ, where N is the final total length of the texts.

1.1 Related work
We note that we can obtain fully-online text index for multiple texts using existing more
general dynamic text indices as follows. To use the index of Ferragina and Grossi [8] which
permits character-wise updates, we build a text $1 · · · $K which initially consists only of
K delimiters. Then, appending a character a to the kth text in the collection reduces to
prepending a to the kth delimiter $k. Using this approach, the index of Ferragina and
Grossi [8] takes O(N logN) total time to be constructed, requires O(N logN) space, and
allows pattern matching in O(M+logN+N logM+occ) time. Using the compressed index
for a dynamic text collection of Chan et al. [6], we can append a new character a to the
kth text Tk by removing Tk and then adding Tka in O(|Tk|) time. This yields a fully-online
index with O(N2 logN) construction time and O(N) bits of space (or O(N/ logN) words of
space assuming Θ(logN)-bit machine word), supporting pattern matching in O(M logN +
occ log2 N) time.

2 Preliminaries

2.1 Strings
Let Σ be a general ordered alphabet. Any element of Σ∗ is called a string. For any string
T , let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. If T = XY Z,
then X, Y , and Z are called a prefix, a substring, and a suffix of T , respectively. For any

T. Takagi et al. 22:3

a

a

a

a

a b

c

c

c

bb

b

c

c b
b

2

2

2

2

2

1

1

1,3

1,3

Suffix Tree

a

a

a

a

a b

c

c

c

bb

b

c

c b
b

2

2

2

2

2

1

1

1,3

1,3

3

Suffix Trie

a
b

2

a

a

b

c

b

a

b

c

c
a

b
b

c

1

1,3

1,3

3

DAWG

c

Figure 1 Illustration for STrie(T), STree(T), and DAWG(T) with T = {T1 = aaab, T2 =
ababc, T3 = bab}. The solid arrows and broken arrows represent the edges and the suffix links of
each data structure, respectively. The number k (k = 1, 2, 3) beside each node indicates that the
node represents a suffix of Tk. The nodes [ab]T and [b]T are separated in DAWG(T) since the node
bab in STrie(T) is represents a suffix of T3, while the node abab does not (see also the subtrees
rooted at nodes ab and b in STrie(T)).

1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends at
position j in T . For any 1 ≤ i ≤ |T |, let T [i] denote the ith character of T . For any string
T , let Suffix(T) denote the set of suffixes of T , and for any set T of strings, let Suffix(T)
denote the set of suffixes of all strings in T . Namely, Suffix(T) =

⋃
T∈T Suffix(T). For any

string T , let T denote the reversed string of T , i.e., T = T [|T |] · · ·T [1].
Let T = {T1, . . . , TK} be a collection of K texts. For any 1 ≤ k ≤ K, let lrsT (Tk) be

the longest repeating suffix of Tk that occurs at least twice in T .

2.2 Suffix trees and DAWGs for multiple texts
The suffix trie for a text collection T = {T1, . . . , TK}, denoted STrie(T), is a trie which
represents Suffix(T). The size of STrie(T) is O(N2), where N is the total length of texts
in T . We identify each node v of STrie(T) with the string that v represents. A substring
x of a text in T is said to be branching in T , if there exist two distinct characters a, b ∈ Σ
such that both xa and xb are substrings of some texts in T . Clearly, node x of STrie(T) is
branching iff x is branching in T . For each node av of STrie(T) with a ∈ Σ and v ∈ Σ∗, let
slink(av) = v. This auxiliary edge slink(av) = v from av to v is called a suffix link.

The suffix tree [15] for a text collection T , denoted STree(T), is a “compacted trie”
which represents Suffix(T). STree(T) is obtained by compacting every path of STrie(T)
which consists of non-branching internal nodes (see Fig. 1). Since every internal node of
STree(T) is branching, and since there are at most N leaves in STree(T), the numbers of
edges and nodes are O(N). The edge labels of STree(T) are non-empty substrings of some
text in T . By representing each edge label x with a triple 〈k, i, j〉 of integers s.t. x = Tk[i..j],
STree(T) can be stored with O(N) space. We say that any branching (resp. non-branching)
substring of T is an explicit node (resp. implicit node) of STree(T). An implicit node x is
represented by a triple (v, a, `), called a reference to x, such that v is an explicit ancestor of
x, a is the first character of the path from v to x, and ` is the length of the path from v to
x. A reference (v, a, `) to node x is called canonical if v is the lowest explicit ancestor of x.
For each node av of STree(T) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v.

The directed acyclic word graph [3, 4] of a text collection T , denoted DAWG(T), is
a smallest DAG which represents Suffix(T). DAWG(T) is obtained by merging identical
subtrees of STrie(T) connected by the suffix links (see Fig. 1). Hence, the label of every
edge of DAWG(T) is a single character. The numbers of nodes and edges of DAWG(T) are

CPM 2016

22:4 Fully-online Construction of Suffix Trees for Multiple Texts

O(N) [4], and hence DAWG(T) can be stored with O(N) space. DAWG(T) can be defined
formally as follows: For any string x, let EposT (x) be the set of ending positions of x in
the texts in T , i.e., EposT (x) = {(k, j) | x = Tk[j − |x| + 1..j], 1 ≤ j ≤ |Tk|, 1 ≤ k ≤ K}.
Consider an equivalence relation ≡T on substrings x, y of texts in T such that x ≡T y iff
EposT (x) = EposT (y). For any substring x of texts of T , let [x]T denote the equivalence
class w.r.t. ≡T . There is a one-to-one correspondence between each node v of DAWG(T)
and each equivalence class [x]T , and hence we will identify each node v of DAWG(T) with its
corresponding equivalence class [x]T . Let long([x]T) denote the longest member of [x]T . By
the definition of equivalence classes, long([x]T) is unique for each [x]T and every member
of [x]T is a suffix of long([x]T). If x, xa are substrings of some text in T with x ∈ Σ∗
and a ∈ Σ, then there exists an edge labeled with character a ∈ Σ from node [x]T to
node [xa]T . This edge is called primary if |long([x]T)| + 1 = |long([xa]T)|, and is called
secondary otherwise. For each node [x]T of DAWG(T) with |x| ≥ 1, let slink([x]T) = y,
where y is the longest suffix of long([x]T) which does not belong to [x]T . In the example
of Fig. 1, [aaab]T = {aaab, aab}. The edge labeled with b from node [aaa]T to node
[aaab]T is primary, while the edge labeled with b from [aa]T to node [aaab]T is secondary.
slink([aaab]T) = [ab]T .

The following fact follows from the definition of branching substrings:
I Fact 1. For any substring x of texts in T , node x is branching (explicit) in STree(T) iff
node [x]T is branching in DAWG(T).

2.3 Fully-online text collection
We consider a collection {T1, . . . , TK} of K growing texts, where each text Tk (1 ≤ k ≤ K)
is initially the empty string ε. Given a pair (k, a) of a text id k and a character a ∈ Σ which
we call an update operator, the character a is appended to the k-th text of the collection.
For a sequence U of update operators, let U [1..i] denote the sequence of the first i update
operators in U with 0 ≤ i ≤ |U |. Also, for 0 ≤ i ≤ |U | let TU [1..i] denote the collection of
texts which have been updated according to the first i update operators of U . For instance,
consider a text collection of three texts which grow according to the following sequence
U = (1, a), (2, b), (2, a), (3, a), (1, a), (3, c), (3, b), (2, b), (1, a), (1, b), (3, c), (3, b), (1, c), (3, b),
(2, c) of 15 update operators. Then,

TU [1..0] =

ε

ε

ε

 , . . . , TU [1..14] =

1
a

5
a

9
a

10
b

13
c

2
b

3
a

8
b

4
a

6
c

7
b

11
c

12
b

14
b

 , TU [1..15] =

1
a

5
a

9
a

10
b

13
c

2
b

3
a

8
b

15
c

4
a

6
c

7
b

11
c

12
b

14
b

where the superscript i over each character a in the k-th text implies that U [i] = (k, a). For
instance, U [15] = (2, c) and hence c was appended to the 2nd text T2 = bab in TU [1..14],
yielding T2 = babc in TU [1..15].

If there is no restriction on U like the one in the example above, then U is called
fully-online. If there is a restriction on U such that once a new character is appended
to the k-th text, then no characters will be appended to its previous k − 1 texts, then
U is called semi-online. Hence, any semi-online sequence of update operators is of form
(1, T1[1]), . . . , (1, T1[|T1|]), . . . , (K,TK [1]), . . . , (K,TK [|TK |]).

Section 3 reviews previous algorithms which incrementally construct the DAWG and the
suffix tree for a growing text collection in the semi-online setting. Sections 4 and 5 propose
our new algorithms which incrementally construct the DAWG and the suffix tree for a text
collection in the fully-online setting, respectively.

T. Takagi et al. 22:5

3 Semi-online construction algorithms

3.1 Blumer et al.’s semi-online DAWG construction algorithm

We recall Blumer et al.’s algorithm [4] which incrementally builds DAWG(TU) for a given
semi-online sequence U of update operators of length N . Since U is semi-online, at each
step i (0 ≤ i ≤ N) of the semi-online update, there exists a unique k (1 ≤ k < K) such that
T1, . . . , Tk−1 will be static for all the following i′th steps (i ≤ i′ ≤ N), Tk is now growing
from left to right, and Tk+1, . . . , TK are still the empty strings. Assume that U [i] = (k, a),
and hence a new character a is appended to the kth text in the collection at the ith step.
For ease of notation, let T ′ = TU [1..i−1] and T = TU [1..i]. Also, assume that DAWG(T ′) has
already been constructed. In updating DAWG(T ′) to DAWG(T), we have to assure that
all suffixes of the extended text Tka will be represented by DAWG(T). These suffixes are
categorized to three different types:
Type-1 The suffixes of Tka that are longer than lrsT ′(Tk)a.
Type-2 The suffixes of Tka that are not longer than lrsT ′(Tk)a and are longer than

lrsT (Tka).
Type-3 The suffixes of Tka that are not longer than lrsT (Tka).

Blumer et al.’s algorithm inserts the suffixes of Tka in decreasing order of length, from
the Type-1 ones to the Type-2 ones. By definition, the Type-3 ones are already represented
by DAWG(T ′), and hence, we need not insert them explicitly.

Their algorithm maintains an invariant v which indicates node [Tk]T ′ , called the active
point, from which the update starts. There are two cases to happen:
1. If there is an out-going edge labeled with a from v, then Tka = lrsT (Tka), which implies

all suffixes of Tka are of Type-3. There are two subcases:
a. If the edge labeled with a is primary, then no updates to the graph topology are

needed. The new active point for the next step is on [lrsT (Tka)]T .
b. If the edge labeled with a is secondary, then the graph topology needs to be updated.

Since the edge is secondary, every member Xa of u = [lrsT (Tka)]T ′ that is longer
than Tka is not a suffix of Tka, while every member Y a of u = [lrsT (Tka)]T ′ that is
not longer than Tka is a Type-3 suffix of Tka. This implies that EposT (lrsT (Tka)) ⊃
EposT (Xa). By the definition of the nodes of DAWGs (recall Section 2.2), the node
u is split into two nodes z = [Xa]T and w = [lrsT (Tka)]T : First, a new node w is
created. All secondary in-coming edges of u corresponding to Type-3 suffixes Y a are
redirected to w. This can be done by traversing the chain of the suffix links starting
from v. All the out-going edges of u are copied to w. Now, node w is complete, and
the node u with its remaining in-coming edges is the other new node z. The suffix
link of u is inherited by w, and the suffix link of z is set to w. The new active point
for the next step is on node w.

2. If there is no out-going edge labeled with a from the active point v, then a new sink s
is created. The Type-1 suffixes are inserted by making a new edge labeled by a from
v = [Tk]T ′ to s. To insert the Type-2 suffixes, the active point v moves by updating
v ← slink(v). Then the following procedure is repeated until an out-going edge labeled
with a from the active point is found: (i) A new edge labeled with a from v to s is
created. (ii) The active point v moves by updating v ← slink(v). The node u where
the above procedure ends is [lrsT (Tka)]T ′ , and the new sink s is exactly [Tka]T which
represent all Type-1 and Type-2 suffixes of Tka. There are two cases:

CPM 2016

22:6 Fully-online Construction of Suffix Trees for Multiple Texts

a. If the edge labeled with a from the last locus v of the active point to u is primary,
then u = [lrsT (Tka)]T . Thus no updates to the graph topology are needed. The suffix
link of the new sink s = [Tka]T is set to u.

b. If the edge labeled with a from the last locus v of the active point to u is secondary,
then as in Case 1b, u is split into two nodes w and z where w represents the members
of u that are longer than the longest repeating suffix lrsT (Tka) (none of these members
is a suffix of Tka), and z represents the members of u which are Type-3 suffixes of
Tka. The suffix link of the new sink s is set to z.

In both subcases above, the new active point is on the new sink s = [Tka]T .

It is not difficult to see that if the total number of new nodes, edges, and suffix links is q,
then the above update takes O(q log σ) time, where the log σ term is due to searching for
an out-going edge labeled by a. Since no existing nodes, edges, or suffix links are deleted
during the updates, and since the size of DAWG(TU) is O(N), the amortized time for the
update is O(log σ). Hence, DAWG(TU) can be constructed in O(N log σ) time and O(N)
space in the semi-online setting.

3.2 Ukkonen’s semi-online suffix tree construction algorithm

Ukkonen [13] proposed an algorithm to incrementally construct the suffix tree of a single
text. His algorithm can easily be extended to incrementally construct the suffix tree for
multiple texts in the semi-online setting.

Let U be a semi-online sequence ofN update operators such that the last update operator
for each k (1 ≤ k ≤ K) is (k, $k), where $k is a special end-marker for the kth text in the
collection. For ease of notation, T ′ = Tu[1..i−1] and T = Tu[1..i], Also, assume that we have
already constructed STree(T ′) and that the next update operator is U [i] = (k, a). Thus a
new character a is appended to the kth text Tk of T ′, and the kth text of T becomes Tka.

As in the case of semi-online DAWG construction, the suffixes of Tka are inserted in
decreasing order of length. The Type-1 suffixes are maintained as follows. Let s be any
suffix of Tk which is represented by a leaf of STree(T ′). Since s is a non-repeating suffix
of Tk in T ′, sa is a non-repeating suffix of Tka in T , which implies that sa will also be
a leaf of STree(T). Based on this observation, the label of the in-coming edge of s is
represented by a triple 〈k, b,∞〉 called an open edge, where b is the beginning position of
the label of the in-coming edge in the kth text. This way, every existing leaf will then be
automatically extended. Hence, updating STree(T ′) to STree(T) reduces to inserting the
Type-2 suffixes of Tka. For this sake, the algorithm maintains an invariant which indicates
the locus of x = lrsT ′(Tk) on STree(T ′) called the active point. Since x can be an implicit
node, the algorithm maintains the canonical reference (v, c, `) to x. For convenience, if x
is an explicit node, then let its canonical reference be (x, ε, 0). The update starts from the
current active point x represented by its canonical reference pair, and the Type-2 suffixes
of Tka are inserted in decreasing order of length, by using the chain of (virtual) suffix links.
There are two cases:
I. If it is possible to go down from x with character a, then no updates to the tree topology

are needed. The new active point is xa, and the reference to xa is made canonical if
necessary. The update ends.

II. If it is impossible to go down from x with character a, then we create a new leaf. Let j
be the beginning position of the suffix of Tka which corresponds to this new leaf. The
following procedure is repeated until Case I happens.

T. Takagi et al. 22:7

1. If the active point x is on an explicit node, then a new leaf node s is created as a
new child of x, with its incoming edge labeled by 〈k, b,∞〉, where b = |Tka| − |x|+ 1.
The active point x is updated to slink(x).

2. If the active point x is on an implicit node, then x becomes explicit in this step.
A new leaf node s is created as a new child of x with its incoming edge labeled
by 〈k, b,∞〉. Since the suffix link of the new explicit node x does not yet exist, we
simulate the suffix link traversal as follows: Let (vj , cj , `j) be the canonical reference
to x. First, we follow the suffix link slink(vj) of vj , and then go down along the path
of length `j from slink(vj) starting with character cj . Let this locus be x′. Let vj+1
be the longest explicit node in this path.
(i) If |vj+1| = |x′|, then we firstly create the new suffix link slink(x) = vj+1 for the

new explicit node x. The active point x is updated to x′ and is represented by
canonical reference (vj+1, ε, 0).

(ii) If |vj+1| < |x′|, then the next active point is implicit. The active point x is
updated to x′ and is represented by canonical reference (vj+1, cj+1, `j+1). The
suffix link of x will be set to x′ when x′ becomes explicit in the next step.

The most expensive case is II-b-(ii). Since the path from vj+1 to x′ contains at most `j−`j+1
explicit nodes, it takes O((`j − `j+1 + 1) log σ) time to locate the next active point x′ (note
`j − `j+1 ≥ 0 holds). All the other operations take O(log σ) time. Hence, the total cost to
insert all leaves (suffixes) for the kth text is O(

∑Nk

j=1(`j − `j+1 + 1) log σ) = O(Nk log σ),
where Nk is the final length of the kth text. Thus the amortized time cost for each leaf
(suffix) for the kth text is O(log σ). Overall, it takes a total of O(N log σ) time to construct
STree(TU) for a semi-online sequence U of update operators. The space requirement is
O(N).

4 Fully-online DAWG construction algorithm

We can easily extend Blumer et al.’s semi-online DAWG construction algorithm to the fully-
online setting. Let U be a fully-online sequence of N update operators. Our fully-online
algorithm maintains the active point vk for every growing text Tk in the collection, at any
step of the algorithm. Now, assume that we have already constructed DAWG(T ′), where
T ′ = TU [1..i−1] for 1 ≤ i ≤ N . Let U [i] = (k, a), and we are updating DAWG(T ′) to
DAWG(T), where T = TU [1..i]. The update starts from the active point vk = [Tk]T ′ , exactly
in the same way as was described in Section 3. The total cost to update DAWG(T ′) to
DAWG(T) is again O(q log σ), where q is the total number of nodes, edges, and suffix links
which were introduced in this update. Since the total size of DAWG(T) is O(N), the
amortized cost for this update is again O(log σ). By the above arguments, we obtain the
following theorem.

I Theorem 1. Given a fully-online sequence U of Nupdate operators for a collection of
K texts, we can update DAWG(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and
O(N) space.

Assume for now that each text Tk in a collection T begins with a special character
#k which does not appear elsewhere in T . Then, the tree of the (reversed) suffix links of
DAWG(T) forms the suffix tree STree(T) for the collection T = {T1, . . . , TK} of the reversed
texts of T [4]. Hence, the next corollary follows from Theorem 1, which gives right-to-left
fully-online suffix tree construction.

CPM 2016

22:8 Fully-online Construction of Suffix Trees for Multiple Texts

I Corollary 2. Given a fully-online sequence U of Nupdate operators for a collection of K
texts, we can update STree(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and O(N)
space.

5 Fully-online suffix tree construction algorithm

5.1 Difficulties in fully-online construction of suffix trees
Unlike the case with DAWGs, it is not easy to extend Ukkonen’s semi-online suffix tree
construction algorithm to our left-to-right fully-online setting, because:
(A) Let U [i] = (k, a) which updates the current kth text Tk to Tka, and assume that we have

just constructed STree(TU [1..i]). Recall that we defined the initial locus of the active
point for Tka on STree(TU [1..i]) to be the longest repeating suffix of Tka in TU [1..i].
However, since U is fully-online, any other text Th (h 6= k) in the collection would be
updated by following update operators U [r] with r > i. Then, the longest repeating
suffix of Tka in TU [1..r] can be much longer than that of Tka in TU [1..i]. In other words,
some Type-1 suffixes of Tka in TU [1..i] can become of Type-2 in TU [1..r]. What is worse,
updating Th can affect the longest repeating suffix of any other text in the collection as
well. If we maintain all these active points naïvely, it takes O(KN log σ) time.

(B) Even if we somehow manage to efficiently maintain the active point for each text in
the collection, there remains another difficulty. Let j be the beginning position of the
longest repeating suffix of Tka in TU [1..i], and let (vj , cj , `j) be the canonical reference
to this suffix. Let U [i′] = (k, a′) be the first update operator in U which updates the
kth text after U [i] = (k, a). Let (v′j , c′j , `′j) be the canonical reference to the longest
repeating suffix of Tka in TU [1..i′], which is the “real” initial active point where insertion
of the Type-2 suffixes should start at this i′th step. By the property of suffix trees
`′j ≥ `j holds, and what is worse, this length `′j is unbounded by the number of Type-2
suffixes inserted at this i′th step. Thus, the amortization technique we used for the
semi-online construction does not work in the fully-online setting.

(C) The phenomenon mentioned in Difficulty A also causes a problem of how to represent
the labels of the in-coming edges to the leaves. Assume that we created a new leaf w.r.t.
an update operator (k, a), and let 〈k, bk,∞〉 be the triple representing the label of the
in-coming edge to the leaf, where bk is the beginning position of the edge label in the
kth text. It corresponds to a Type-1 suffix of the kth text, but the leaf can later be
extended by another growing text Th. Then, the triple 〈k, bk,∞〉 has to be updated to
〈h, bh,∞〉, where bh is the beginning position of the edge label in the hth text. Notice
that this update may happen repeatedly.

5.2 Constructing suffix trees with the aid of DAWGs
We utilize DAWGs to overcome Difficulties A, B and C in fully-online construction of suffix
trees. Namely, we construct STree(T) in tandem with DAWG(T).

A high-level description of our algorithm is as follows. We insert the Type-2 suffixes of
Tka in increasing order of length, starting from the locus of the longest Type-3 suffix of
Tka. The idea of inserting the Type-2 suffixes in increasing order of length was also used
by Breslauer and Italiano [5], for quasi real-time left-to-right construction of the suffix tree
for a single text. To efficiently find the locus where the next longer Type-2 suffix should be
inserted in the tree from the locus where the last Type-2 suffix was inserted, we introduce
a simpler amortized variant of the suffix tree oracle of Fischer and Gawrychowski [10, 9].

T. Takagi et al. 22:9

a
b

a

a

b

c

b

a

b

c

c
a

b
b

c

DAWG

c

c

a
b

a

a

b

c

b

a

ba

b
c

LPT

c

a

a

a

a

a b

c

c

c

bb

b

c

c
b

b

Suffix Tree

Figure 2 Illustration for DAWG(T), LPT(T), and STree(T ′), where T ′ = {T1 = aaab, T2 =
ababc, T3 = bab} and T = {T1c, T2, T3}. The bold solid arrows represent the primary edges of
DAWG(T), the gray nodes are the marked nodes of LPT(T), and the dashed arrows represent the
links between the marked nodes of LPT(T) and the corresponding branching nodes of STree(T ′).
lrsT (T1c) = abc, and hence we perform an NMA query from node abc on LPT(T), obtaining node
ab. We then access the suffix tree node ab using the pointer from LPT(T), and obtain the locus of
abc on STree(T ′).

These will overcome Difficulties A and B. To overcome Difficulty C, we introduce new lazy
representation of the labels of edges leading to the leaves. The next is a key lemma.

I Lemma 3. We can compute, in amortized O(log σ) time, the canonical reference to the
longest Type-3 suffix lrsT (Tka) of Tka on STree(T ′), using a data structure which requires
space linear in the total length of the texts in T .

Proof. We introduce the longest path tree of T ′, denoted LPT (T ′), which is the spanning
tree of DAWG(T ′) consisting only of the primary edges of DAWG(T ′). Every node of
LPT (T ′) is marked iff its corresponding node on DAWG(T ′) is branching. Every marked
node of LPT (T) is linked to its corresponding node of STree(T ′) which is also branching
by Fact 1 (see also Fig. 2). LPT (T ′) is enhanced with the nearest marked ancestor (NMA)
data structure of Westbrook [16], which supports the following operations in amortized O(1)
time using linear space: 1) find the NMA of any node; 2) insert an unmarked node; 3) mark
an unmarked node.

When DAWG(T ′) is updated to DAWG(T), at most two new primary edges are in-
troduced to DAWG(T), one for the new sink and one for the split node. We insert these
new edges to LPT (T ′) and obtain LPT (T). Because of these new edges, at most two
non-branching nodes of DAWG(T ′) can become branching in DAWG(T). We mark their
corresponding nodes in LPT (T), and link them to the corresponding suffix tree nodes after
we have constructed STree(T). This is because the corresponding nodes of STree(T ′) are
still non-branching.

We use LPT (T) to quickly move from the DAWG to the suffix tree (see Fig. 2 for a
concrete example). Since lrsT (Tka) is the longest in [lrsT (Tka)]T , there always exists a
node y of LPT (T) which represents lrsT (Tka). We conduct an NMA query from y on
LPT (T), and let v be the NMA of y. Let ` = |y|− |v|, and let c be the label of the first edge
in the path from v to y. We move from v to its corresponding node x in STree(T ′). Then,
(x, c, `) is a reference to lrsT (Tka) in STree(T ′). Since v is the NMA of y in LPT (T), and
since updating Tk to Tka does not explicitly insert any suffix shorter than lrsT (Tka), this
reference is canonical by Fact 1.

Clearly the total size of the above data structures is linear in the total length of the
texts in T . We analyze the time complexity. Recall Case 2 when updating DAWG(T ′) to

CPM 2016

22:10 Fully-online Construction of Suffix Trees for Multiple Texts

DAWG(T). At the end of the update, we find (or create) in amortized O(log σ) time the
node of DAWG(T) which represents [lrsT (Tka)]T . Hence we can find node y = lrsT (Tka)
in amortized O(log σ) time. Updating LPT (T ′) to LPT (T) takes O(log σ) time. Inserting
a new node and querying an NMA from a given node takes amortized O(1) time. We can
link a new marked node of LPT (T) to the corresponding new branching node of STree(T)
in O(1) time, since we can remember this new branching node when updating STree(T ′) to
STree(T). Hence, the amortized bound is O(log σ). J

To find the insertion point of the shortest Type-2 suffix from the longest Type-3 suffix
lrsT (Tka), and to insert the Type-2 suffixes of Tka in increasing order of length, we maintain
the labeled reversed suffix links for each explicit node of the suffix tree. Namely, if slink(bv) =
v for two nodes bv, v with v ∈ Σ∗ and b ∈ Σ, let rslinkb(v) = bv. We leave rslinkb(v)
undefined if bv is not a substring of any text in the collection, or if node bv is implicit in the
suffix tree.

A suffix tree oracle for a suffix tree S is a data structure which efficiently answers the
following query: given a pair (v, b) of a node v of S and a character b ∈ Σ, return the
nearest ancestor u of v for which rslinkb(u) is defined. The state-of-the-art suffix tree oracle
by Fischer and Gawrychowski [10, 9] answers queries and supports updates in worst-case
O(log logn+ (log log σ)2/ log log log σ) time each, using O(n) space, where n is the number
of leaves in S. We present a simpler suffix tree oracle with amortized O(log σ) bound.

I Lemma 4. For a suffix tree with n leaves, there is a suffix tree oracle of size O(n) which
answers each query in amortized O(log σ) time. It takes amortized O(log σ) time to update
this suffix tree oracle, per insertion of a new leaf or a new suffix link to the suffix tree.

Proof. (Sketch) We follow the approach by Fischer and Gawrychowski [10, 9]. The log logn
term in the running time of their suffix tree oracle is due to the fringe nearest marked
ancestor data structure by Breslauer and Italiano [5], which answers each NMA query in
a special case in worst case O(log logn) time. It is possible to replace the fringe nearest
marked ancestor data structures with the NMA data structures of Westbrook [16], so the
time cost for each NMA query is amortized to O(1). The other (log log σ)2/ log log log σ
term is due to fast predecessor data structures for integer alphabets. Since our alphabet is
more general, we use balanced search trees with O(log σ)-time operations. Hence our bound
is O(log σ) amortized. A complete proof can be found in a full version of this paper [12]. J

To overcome Difficulty C, we employ lazy maintenance for leaves, namely, we maintain
only the first character of the label of every edge leading to a leaf. On the other hand, we
eagerly maintain the whole label of every edge leading to an internal explicit node.

I Lemma 5. The lazy representation of the in-coming edges of leaves allows for updating
the suffix tree in amortized O(log σ) time per insertion of a new leaf.

Proof. Let U [i] = (k, a) and T = TU [1..i] as previously. Let xa be a Type-2 suffix of the
extended text Tka that will be inserted to the suffix tree. Using the suffix tree oracle of
Lemma 4, we obtain the canonical reference (v, c, `) to x from which a new leaf for the suffix
xa is to be inserted.

The difficult case is when x is on the edge e from v to a leaf and ` ≥ 2, since we only
know the first character c of the label of e. We create a new internal node x on e, and
create a new leaf as a child of x and its in-coming edge labeled with the first character a.
We can determine the label of the in-coming edge of the new internal explicit node x as
follows. Let y be the node of LPT (T) which corresponds to the node [v]T of DAWG(T),

T. Takagi et al. 22:11

a
b

a

a

b

c

ca

b b d

DAWG

a
b

a

a = T3[3]

b

c

a

b

d

LPT

a

a b

b

Suffix Tree

a

a

a b

b

b

d

c

b

d
length=2

T1 = a a

a =T2

b

a a

b d
4 6 7 13 14

3 5 9

b
10

T3 = a ab b c
1 2 8 11 12 T1[2..5]=babd

insert
v

y

= T3[3..4]

: active point of T1

v

d
c

acdba
acd

d
c

cdba
acd

Figure 3 Illustration of how to determine the label of the in-coming edge of a new internal
explicit node which is created on an edge leading to an existing leaf. Let T ′ = {T1 = abab, T2 =
aaab, T3 = ababc}, and T = {T1d, T2, T3}. Now we are inserting a new leaf w.r.t. Type-2 suffix
babd of T1d. The canonical reference to the insertion point of this suffix is (b, a, 2), and hence we
create a new internal node on the middle of the out-going edge of node b whose edge label begins
with a. Now, since long([b]T) = ab, we access the LPT node y = ab. Since the label a of the
out-going edge of y in LPT(T) is now represented by pair 〈3, 3〉, we can label the new suffix tree
edge leading to the new internal node by 〈3, 3, 3 + 2− 1〉 = 〈3, 3, 4〉.

namely y = long([v]T). We represent the label of each edge of LPT (T) by a pair of the
text id and the position of the character in the text of that id. Let 〈h, j〉 be the label of
the out-going edge of node y of LPT (T) such that Th[j] = c. Since we insert the Type-2
suffixes of Tka in increasing order of length, the path in LPT (T) of length ` starting with
this edge from y is non-branching. Thus, we can label the in-coming edge of the suffix tree
by triple 〈h, j, j + `− 1〉. See also Fig. 3.

While updating DAWG(T ′) to DAWG(T), we have visited the node [x]T . We can obtain
node y on LPT (T) by an NMA query from node long([x]T), and associate to y each Type-2
suffix xa of Tka whose length is in range [s + 1, l + 1], where s and l are the lengths of
the shortest and longest members of [x]T , respectively. As we insert the Type-2 suffixes of
Tka to the suffix tree in increasing order of length, for each Type-2 suffix xa the time cost
to access its corresponding node y on LPT (T) is O(log σ) amortized. It takes amortized
O(log σ) time to query the suffix tree oracle by Lemma 4. All the other operations take
O(1) time each. J

Assume we are searching a growing text collection T for a given pattern P . If we stuck
on the parent node u of a leaf in STree(T) due to our lazy leaf representation, then we can
move to the DAWG node which corresponds to the parent node u via LPT (T), and continue
searching for P on DAWG(T). This way we can find the locus of P on STree(T) in optimal
O(M log σ) time, where M = |P |. Also, since the tree topology is correctly maintained with

CPM 2016

22:12 Fully-online Construction of Suffix Trees for Multiple Texts

our lazy leaf representation, semi-dynamic NMA [16], LCA [7], and LA [1] queries can be
correctly supported in O(1) time on our suffix tree representation.

Finally, we obtain the main result of this section.

I Theorem 6. Given a fully-online sequence U of Nupdate operators for a collection of K
texts, we can update STree(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and O(N)
space.

After the whole U has been processed, we determine the triples representing the entire
labels of the in-coming edges of all leaves of STree(TU) in a total of O(N) time. We can
then discard DAWG(TU) and LPT (TU).

6 Conclusions and open problems

The main contribution of this paper is an O(N log σ)-time algorithm to maintain the suffix
tree for a text collection in the left-to-right fully-online setting, where N and σ are the total
text length and the alphabet size, respectively. The key was a non-trivial use of the DAWG.

There are interesting open problems for the left-to-right fully-online suffix tree construc-
tion:
1. Is it possible to efficiently maintain complete labels of the edges leading to the leaves?
2. Our bound is amortized, namely, for each new character our algorithm takes O(log σ)

amortized time. Is it possible to de-amortize it, e.g. by using techniques in [5, 9, 10]?

References
1 Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dy-

namic trees. In ICALP 2000, pages 73–84, 2000.
2 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and issues in data stream systems. In PODS 2002, pages 1–16, 2002.
3 Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and

Joel Seiferas. The smallest automaton recognizing the subwords of a text. TCS, 40:31–55,
1985.

4 Anselm Blumer, Janet Blumer, David Haussler, Ross Mcconnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595,
1987.

5 Dany Breslauer and Giuseppe F. Italiano. Near real-time suffix tree construction via the
fringe marked ancestor problem. J. Discrete Algorithms, 18:32–48, 2013.

6 Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Compressed
indexes for dynamic text collections. ACM Transactions on Algorithms, 3(2), 2007.

7 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. In SODA 1999,
pages 235–244, 1999.

8 Paolo Ferragina and Roberto Grossi. Improved dynamic text indexing. J. Algorithms,
31(2):291–319, 1999.

9 Johannes Fischer and Pawel Gawrychowski. Alphabet-dependent string searching with
wexponential search trees. CoRR, abs/1302.3347, 2013.

10 Johannes Fischer and Pawel Gawrychowski. Alphabet-dependent string searching with
wexponential search trees. In CPM 2015, pages 160–171, 2015.

11 Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu. Finding surprising patterns
in a time series database in linear time and space. In KDD 2002, pages 550–556, 2002.

12 Takuya Takagi, Shunsuke Inenaga, and Hiroki Arimura. Fully-online construction of suffix
trees and dawgs for multiple texts. CoRR, abs/1507.07622, 2015.

T. Takagi et al. 22:13

13 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
14 Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a path using sparse

trajectories. In KDD 2014, pages 25–34, 2014.
15 Peter Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp. on

Switching and Automata Theory, pages 1–11, 1973.
16 Jeffery Westbrook. Fast incremental planarity testing. In ICALP 1992, pages 342–353,

1992.

CPM 2016

	Introduction
	Related work

	Preliminaries
	Strings
	Suffix trees and DAWGs for multiple texts
	Fully-online text collection

	Semi-online construction algorithms
	Blumer et al.'s semi-online DAWG construction algorithm
	Ukkonen's semi-online suffix tree construction algorithm

	Fully-online DAWG construction algorithm
	Fully-online suffix tree construction algorithm
	Difficulties in fully-online construction of suffix trees
	Constructing suffix trees with the aid of DAWGs

	Conclusions and open problems

