
The Nearest Colored Node in a Tree
Paweł Gawrychowski∗1, Gad M. Landau†2, Shay Mozes‡3, and
Oren Weimann‡4

1 University of Warsaw, gawry@mimuw.edu.pl
2 University of Haifa, landau@cs.haifa.ac.il
3 IDC Herzliya, smozes@idc.ac.il
4 University of Haifa, oren@cs.haifa.ac.il

Abstract
We start a systematic study of data structures for the nearest colored node problem on trees.
Given a tree with colored nodes and weighted edges, we want to answer queries (v, c) asking for
the nearest node to node v that has color c. This is a natural generalization of the well-known
nearest marked ancestor problem. We give an O(n)-space O(log logn)-query solution and show
that this is optimal. We also consider the dynamic case where updates can change a node’s
color and show that in O(n) space we can support both updates and queries in O(logn) time.
We complement this by showing that O(polylogn) update time implies Ω(logn

log logn) query time.
Finally, we consider the case where updates can change the edges of the tree (link-cut operations).
There is a known (top-tree based) solution that requires update time that is roughly linear in
the number of colors. We show that this solution is probably optimal by showing that a strictly
sublinear update time implies a strictly subcubic time algorithm for the classical all pairs shortest
paths problem on a general graph. We also consider versions where the tree is rooted, and the
query asks for the nearest ancestor/descendant of node v that has color c, and present efficient
data structures for both variants in the static and the dynamic setting.

1998 ACM Subject Classification E.1 Data Structures – Trees. F.2 Analysis of Algorithms and
Problem Complexity. F.2.2 Nonnumerical Algorithms and Problems – Pattern Matching.

Keywords and phrases Marked ancestor, Vertex-label distance oracles, Nearest colored descend-
ant, Top-trees

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.25

1 Introduction

We consider a number of problems on trees with colored nodes. Each of these problems can
be either static, meaning the color of every node of a tree T on n nodes is fixed, or dynamic,
meaning that an update can change a node’s color (but the tree itself does not change). The
edges of T may have arbitrary nonnegative lengths and dist(u, v) denotes the total length of
the unique path connecting u and v. Depending on the version of the problem, given a node
u and a color c we are interested in:

The nearest colored ancestor: the first node v on the u-to-root path that has color c.

∗ Currently holding a post-doctoral position at Warsaw Center of Mathematics and Computer Science.
† Partially supported by the National Science Foundation Award 0904246, Israel Science Foundation grant

571/14, Grant No. 2008217 from the United States-Israel Binational Science Foundation (BSF) and
DFG.

‡ Partially supported by Israel Science Foundation grant 794/13.

© Paweł Gawrychowski, Gad M. Landau, Shay Mozes, and Oren Weimann;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 The Nearest Colored Node in a Tree

The nearest colored descendant: the node v of color c such that the v-to-root path goes
through u and the distance from u to v is as small as possible.

The nearest colored node: the node v of color c such that the distance from u to v is as
small as possible.

In the static case, if the number of colors is constant, there is a trivial (and optimal)
solution for all three problems with O(n)-space and O(1)-query. In fact, this can be achieved
even for a logarithmic number of colors [7]. For an arbitrary number of colors, a lower bound
of Ω(log logn)-query for any O(n polylogn)-space solution to each of these problems (in fact,
even on strings) follows from a simple reduction from the well known predecessor problem.
We present tight O(n)-space O(log logn)-query solutions to all three problems. To achieve
this, for every color c we construct a separate tree T (c). If there are total s nodes of color c
then T (c) is only of size O(s) but (after augmenting it with appropriate additional data) it
captures for all n nodes of the original tree their nearest node of color c.

In the dynamic case, the nearest colored ancestor problem has been studied by Alstrup-
Husfeldt-Rauhe [3] who gave a solution with O(n)-space, O(logn

log logn)-query, and O(log logn)-
update. They also gave a lower bound stating that O(polylogn)-update requires Ω(logn

log logn)-
query. This holds even when the number of colors is only two (then a node is either marked
or unmarked and the problem is known as the marked ancestor problem). We show that
this lower bound (with the same statement and only two colors) extends to both the nearest
colored node and the nearest colored descendant. For upper bounds, we show that the nearest
colored node problem can be solved with O(n)-space, O(logn)-update, and O(logn)-query.
Our solution can be seen as a variant of the centroid decomposition tweaked to guarantee
some properties of top-trees.

The original top-trees of Alstrup-Holm-de Lichtenberg-Thorup [2] were designed for only
two colors (i.e., for the nearest marked node problem). They achieve O(logn) query and
update and also support updates that insert and delete edges (i.e., maintain a forest under
link-cut operations). The straightforward generalization of top-trees from two to k colors
increases the space dramatically to O(nk). We believe it is possible to improve this to O(n)
using similar ideas to those we present here. However, because we do not allow link-cut
operations, compared to top-trees our solution is simpler. Moreover, our query time can be
improved to (optimal) O(logn

log logn) at the cost of increasing the update time by a logε n factor
and the space by a log1+ε n factor. Whether such an improvement is possible with top trees
remains open. We note that in both the O(nk) and the O(n) space solutions with top-trees,
while queries and color-changes require O(logn) time the time for link/cut is O(k · logn).
This can be significant since k can be as large as n (we emphasise that our solution does not
support link/cut at all). We show that Õ(k) is probably optimal by showing that O(k1−ε)
query and update time implies an O(n3−ε) solution for the classical all pairs shortest paths
problem on a general graph with n vertices. The non existence of such an algorithm has
recently been widely used as an assumption with various consequences [19].

Finally, for the nearest colored descendant problem, we give a solution with O(logn
log logn)-

query and O(log2/3+ε n)-update by reducing the problem to 3-sided emptiness queries on
points in the plane. We then show that the O(polylogn)-update Ω(logn

log logn)-query lower
bound of [3] also applies to the nearest colored descendant problem by giving a reduction
from nearest colored ancestor to nearest colored descendant.

Related work. The approximate version of the nearest colored node problem (where we
settle for approximate distances) has recently been studied (as the vertex-to-label distance

P.Gawrychowski, G. M. Landau, S. Mozes, and O. Weimann 25:3

query problem) in general graphs [8, 12, 20] and in planar graphs [1, 13, 14]. In fact, the
query-time in [14] is dominated by a O(log logn) nearest colored node query on a string
(which we now know is optimal).

Preliminaries. A predecessor structure is a data structure that stores a set of n integers
S ⊆ [0, U], so that given x ∈ [0, U] we can determine the largest y ∈ S such that y ≤ x. It
is known [15] that for U = n2 any predecessor structure of O(n polylogn)-space requires
Ω(log logn)-query, and that linear-size structures with such query-time exist [16, 18].

A Range Minimum Query (RMQ) structure on an array A[1, . . . , n] is a data structure for
answering queries min{A[i], . . . , A[j]}. When the array A is static, RMQ can be optimally
solved in O(n)-space and O(1) query [5, 6, 11]. In the dynamic case, we allow updates
that change the value of array elements. When the query range is restricted to be a suffix
A[i, . . . , n] we refer to the problem as the Suffix Minimum Query (SMQ) problem.

A Lowest Common Ancestor (LCA) structure on a rooted tree T is a data structure for
finding the common ancestor of two nodes u, v with the largest distance from the root. For
static trees, LCA is equivalent to RMQ and thus can be solved in O(n)-space and O(1)-query.

A perfect hash structure stores a collection of n integers S. Given x we can determine
if x ∈ S and return its associated data. There exists O(n)-space, O(1)-query perfect hash
structure [10], which can be made dynamic with O(1)-update (expected amortized) [9].

2 Static Upper Bounds

We root the tree at node 1 and assign pre- and post-order number pre(u), post(u) ∈ [1, 2n] to
every node u. All these numbers are distinct, [pre(u), post(u)] is a laminar family of intervals,
and u is an ancestor of v if and only if pre(v) ∈ (pre(u), post(u)). We order edges outgoing
from every node according to the preorder numbers of the corresponding nodes.

We assume the colors are represented by integers in [1, n]. We will construct a separate
additional structure for every possible color c. The size of the additional structure will be
always proportional to the number of nodes of color c, which sums up to O(n) over all colors
c. Below we describe the details of the additional structure for every version of the problem.

Nearest colored descendant. Let v1, v2, . . . , vs be all nodes of color c sorted so that
pre(v1) < pre(v2) < . . . < pre(vs). We insert the preorder numbers of all these nodes
into a predecessor structure, so that given an interval [x, y] we can determine the range
vi, vi+1, . . . , vj consisting of all nodes with preorder numbers from [x, y] in O(log logn) time.
Additionally, we construct an array D[1..s], where D[i] = dist(1, vi). The array is augmented
with an RMQ structure. To answer a query, we use the predecessor structure to locate
the range consisting of nodes v such that pre(v) ∈ [pre(u), post(u)]. Then, if the range is
nonempty, a range minimum query allows us to retrieve the nearest descendant of u with of
color c. The total query time is hence O(log logn).

Nearest colored ancestor. Let v1, v2, . . . , vs be all nodes of color c. We insert all their pre-
and postorder numbers into a predecessor structure. Additionally, for every i we store (in an
array) the nearest ancestor with the same color for the node vi (or null if such ancestor does
not exist). To answer a query, we use the predecessor structure to locate the predecessor of
pre(u). There are two cases:
1. The predecessor is pre(vi) for some i. Because [pre(v), post(v)] create a laminar family,

either pre(u) ∈ [pre(vi), post(vi)] and vi is the answer, or u has no ancestor of color c.

CPM 2016

25:4 The Nearest Colored Node in a Tree

2. The predecessor is post(vi) for some i. Consider an ancestor u′ of u with the same color.
Then pre(u′) < post(vi), so u′ is also an ancestor of vi. Similarly, consider an ancestor v′
of vi with the same color, then post(v′) > pre(u) so v′ is also an ancestor of u. Therefore,
the nearest ancestor of color c is the same for u and vi, hence we can return the answer
stored for vi.

The query time is hence again O(log logn).

Nearest colored node. We define the subtree induced by color c, denoted T (c), as follows.
Let v1, v2, . . . , vs be all nodes of color c. T (c) consists of all nodes vi together with the lowest
common ancestor of every pair of nodes vi and vj . The parent of u ∈ T (c) is defined as the
nearest ancestor v of u ∈ T such that v ∈ T (c) as well; if there is no such node, u is the root
of T (c) (there is at most one such node). Thus, an edge (u, v) ∈ T (c) corresponds to a path
from u to v in T .

I Lemma 1. T (c) consists of at most 2s − 1 nodes and can be constructed in O(s) time
assuming that we are given a list of all nodes of color c sorted according to their preorder
numbers and a constant time LCA built for T .

Proof. Let v1, v2, . . . , vs be the given list of nodes of color c. By assumption, pre(v1) <
pre(v2) < . . . < pre(vs). We claim that T (c) consists of all nodes vi and the lowest common
ancestor of every vi and vi+1. To prove this, consider two nodes vi and vj such that i < j

such that their lowest common ancestor u is different than vi and vj . Then, u is a proper
ancestor of vi and vj , and furthermore vi is a descendant of ua and vj a descendant of ub,
where a < b and u1, u2, . . . , u` is an ordered list of the children of u. vi can be replaced by
the node vi′ of color c with the largest preorder number in the subtree rooted at ua. Then
the lowest common ancestor of vi′ and vi′+1 is still u, so it is indeed enough to include only
the lowest common ancestor of such pairs of nodes and the bound of 2s− 1 follows.

To construct T (c) we need to determine its set of nodes and edges. Determining the
nodes is easy by the above reasoning. To determine the edges, we use a method similar to
constructing the Cartesian tree of a sequence: we scan v1, v2, . . . , vs from the left to right
while maintaining the subtree induced by v1, v2, . . . , vi. We keep the rightmost path of the
current subtree on a stack, with the bottommost edge on the top. To process the next vi+1,
we first calculate its lowest common ancestor with vi, denoted x. Then, we pop from the
stack all edges (u, v) such that u and v are both below (or equal to) x in T . Finally, we
possibly split the edge on the top of the stack into two and push a new edge onto the stack.
The amortized complexity of every step is constant, so the total time is O(s). J

The first part of the additional structure is the nearest node of color c stored for every
node of T (c). Given a node u, we need to determine its nearest ancestor u′ such that u′ ∈ T (c)
or u′ lies strictly inside some path corresponding to an edge of T (c). In the latter case, we
want to retrieve the endpoints of that edge. This is enough to find the answer, as any path
from u to a node of color c must necessarily go through u′ (because u′ is the lowest ancestor
of u such that the subtree rooted at u′ contains at least one node of color c, and a simple
path from u to a node of color c must go up as long as the subtree rooted at the current node
does not contain any node of color c), and then either u′ ∈ T (c) and we have the answer for
u′ or the path continues towards one of the endpoints of the edge of T (c) strictly containing
u′ (because the subtrees hanging off the inside of a path corresponding to an edge of T (c) do
not contain any nodes of color c). Hence after having determined u′ we need only constant
time to return the answer.

P.Gawrychowski, G. M. Landau, S. Mozes, and O. Weimann 25:5

To determine u′, we use the structure for the nearest colored ancestor constructed for a
subset of O(s) marked nodes of T . These marked nodes are all nodes of T corresponding to
the nodes of T (c), and additionally, for every path u1 → u2 → . . . → u` corresponding to
an edge of T (c), the node u2 (where u1 is closer to the root than u` and ` ≥ 2). For every
marked node of the second type we store the endpoints (u1, u`) of its corresponding edge
of T (c). Then, locating the nearest marked ancestor of u allows us to determine that the
sought nearest ancestor u′ is a node of T (c), or find the edge of T (c) strictly containing u′.
By plugging in the aforementioned structure for the nearest colored ancestor, we obtain the
answer in O(log logn) time with a structure of size O(s).

This concludes the description of our static solution. Before moving on to the dynamic
case, we note that the above solution can be easily extended to the case where every node
v ∈ T has an associated set of colors C(v) and instead of looking for a node of color c we
look for a node v such that c ∈ C(v).

3 Dynamic Upper Bounds

In the dynamic setting, we allow updates to change a node’s color. To be even more general,
we assume that every node v ∈ T has an associated (dynamically changing) set of colors
C(v), and an update can either insert or remove a color c from the current set C(v).

Nearest colored descendant. As in the static case, we construct a separate structure
for every possible color c. We also maintain a mapping from the set of colors to their
corresponding structures. Let v1, v2, . . . , vs be all nodes of color c. We create a set of points
of the form (pre(vi), dist(1, vi)). Then, a nearest colored descendant query can be answered
by locating the point with the smallest y-coordinate in the slab [pre(u), post(u)]× (−∞,∞).
We store the points in a fully dynamic 3-sided emptiness structure of Wilkinson [17]. The
structure answers a 3-sided emptiness query by locating the point with the smallest y-
coordinate in a slab [x1, x2]× (−∞,∞) in O(logn

log logn) time and can be updated by inserting
and removing points in O(log2/3+ε n) time, with both the update and the query time being
amortized. Consequently, we obtain the same bounds for the nearest colored descendant.

Nearest colored ancestor. This has been considered by Alstrup-Husfeldt-Rauhe [3]. The
query time is O(logn

log logn) and the update time O(log logn). While not explicitly stated in
the paper, the total space is linear.

Nearest colored node. Our data structure is based on a variant of the centroid decom-
position. That is, we recursively decompose the tree into smaller and smaller pieces by
successively removing nodes. The difference compared to the standard centroid decomposition
is that each of the obtained smaller trees has up to two appropriately defined boundary
nodes (similarly to the decomposition used in top-trees).1

We assume the degree of every node is at most 3. This can be achieved by standard
ternerization with zero length edges. The basis of our recursive decomposition is the following
well-known fact.
I Fact 1. In any tree T on n nodes there exists a node c ∈ T such that T \ {c} is a collection
of trees of size at most n

2 each.

1 Using standard centroid decomposition leads to update time of O(log2 n), compared to O(log n) when
controlling the number of boundary nodes.

CPM 2016

25:6 The Nearest Colored Node in a Tree

Figure 1 Schematic depiction of a single step of our centroid decomposition. After removing the
grayed out node and its adjacent edges we obtain 6 pieces. One of them contains three boundary
nodes and hence needs to be further partitioned into 4 smaller pieces.

We apply it recursively. The input to a single step of the recursion is a tree T on n nodes
with at most two distinguished boundary nodes. We use Fact 1 to find node c1 ∈ T such that
T \ {c1} is a collection of smaller trees T1, T2, Each neighbor of c1 in the original tree
becomes a boundary node in its smaller tree Ti. A boundary node u ∈ T such that u 6= c1 is
also a boundary node in its smaller tree Ti. Because T contains at most two boundary nodes,
at most one smaller tree Ti contains three boundary nodes, while all other smaller trees
contain at most two boundary nodes. If such Ti containing three boundary nodes u1, u2, u3
exists, we further partition it into even smaller trees T ′1, T ′2, This is done by finding a
node c2 ∈ Ti which, informally speaking, separates all u1, u2, u3 from each other. Formally
speaking, we take c2 to be any node belonging to all three paths u1 − u2, u1 − u3, u2 − u3
(intersection of such three paths is always nonempty). Then, Ti \ {c2} is a collection of
trees T ′1, T ′2, . . . such that each T ′j contains at most one of the nodes u1, u2, u3. Finally, each
neighbor of c2 in Ti becomes a boundary node in its smaller tree T ′j ; see Figure 1.

I Lemma 2. Given a tree T on n nodes with at most two boundary nodes b1, b2, we can find
two nodes c1, c2 ∈ T , called the centroids of T , such that T \ {c1, c2} is a collection of trees
T1, T2, . . . with the property that each Ti consists of at most n

2 nodes and contains at most
two boundary nodes, which are defined as nodes corresponding to the original boundary nodes
of T or nodes adjacent to c1 or c2 in T .

Let T0 denote the original input tree. We apply Lemma 2 to T0 recursively until the tree is
empty. The resulting recursive decomposition of T0 can be described by a decomposition tree
T as followed. Each node of T corresponds to a subtree of T0. The root r of T corresponds to
T0. The children of a node u ∈ T , whose corresponding subtree of T0 is T , are the recursively
defined decomposition trees of the smaller trees Ti obtained by removing the centroid nodes
from T with Lemma 2. For a node u ∈ T whose corresponding subtree is T we define C(u)
to be C(c1) ∪ C(c2), where c1 and c2 are the centroids of T . Because the size of the tree
decreases by a factor of two in every step, the depth of T is at most logn. We will sometimes
abuse notation and say that a tree T in the decomposition is the parent of T ′ if the node of
T whose corresponding tree is T is the parent of the node of T whose corresponding tree is
T ′. This concludes the description of our recursive decomposition.

We now describe the information maintained in order to implement dynamic nearest
colored node queries. For every tree T in the decomposition, every boundary node b of T ,
and every color c such that c ∈ C(v) for some v ∈ T , we store the node of T with color c
that is nearest to b. Observe that, since the degree is bounded, this information can be
used to compute in constant time the nearest node with color c to each centroid ci of T , by
considering the nearest nodes with color c to each of the adjacent (to c1 or to c2) boundary

P.Gawrychowski, G. M. Landau, S. Mozes, and O. Weimann 25:7

nodes of the children Ti of T in T .
For every node v ∈ T0 we store a pointer to the unique node of T in which v is a centroid.

We also preprocess the original tree T0 so that the distance between any two nodes can
be calculated in constant time: we root the tree at node 1, construct an LCA structure,
and store dist(1, v) for every v ∈ T0. Such preprocessing actually allows us to compute the
distance between any two nodes in any of the smaller trees in the decomposition.

Queries. Given a tree T in the decomposition, a node v ∈ T and a color c, we need to find
the node u ∈ T with color c that is nearest to v.

Let ci (i = 1, 2) be the centroids of T . Either some ci lies on the v-to-u path in T , or v
and u belong to the same child Ti of T . In the former case u is the closest node to ci in T
with color c. Note that this information is already stored. In the latter case, the query is
reduced to a query in Ti.

It follows that, in order to find the closest node to v with color c in T0, it suffices to
consider the closest nodes with color c to each of the centroids of each of the trees on the path
in T from the node of T in which v is a centroid to the root of T . There are O(logn) such
centroids, and each of them can be checked in constant time using the stored information.

Updates. Consider adding or removing color c from C(v). We implement the updates in a
bottom-up fashion along the same path used for the query. Subtrees on this path are the
only ones in the decomposition containing v, so only their information should be updated.

Repairing the information for the boundary nodes of a subtree T along the path in T is
done in a similar manner to that of the query. For each boundary node bi of T (i = 1, 2),
we need to find the nearest node u ∈ T with color c. Let cj (j = 1, 2) be the centroids of
T . Let Ti denote the child of T in T that contains bi. Either bi and u both belong to Ti, or
u = cj for some j, or u is in some other child T` of T and some cj lies on the bi-to-u path in
T . In all cases we can use the information stored at the children of T to correctly determine
the information stored at T . If bi, u ∈ Ti then bi is a boundary node of Ti, so we use the
information stored for Ti. If u = cj then we verify that c ∈ C(cj). Finally, in the last case,
the closest node to bi with color c in T` is also the closest node to the boundary node of T`
adjacent (in T) to cj , so we use the information stored for T`.

Summary. To summarize, both the query and the update time is O(logn). The space is
O(logn ·

∑
v∈T0

|C(v)|), because every c ∈ C(v) contributes constant space at every level.

Decreasing the space. The space can be reduced to O(n+
∑
v∈T0

|C(v)|). Let T be a tree in
the decomposition. Recall that for each boundary node u ∈ T and color c such that c ∈ C(v)
for some v ∈ T we maintain the nearest node of T with color c. Hence, every c ∈ C(v) might
contribute constant space at every tree T such that v ∈ T . Now we describe how this can be
avoided by maintaining, for every color c, a separate structure of size proportional to the
number of nodes with color c.

Recall that we extend the colors of nodes in the original tree T0 to color sets of nodes
of the decomposition tree T . For a node u ∈ T that is associated with subtree T of T0 we
define u’s color set to be the union of the color sets of the centroids of T . For every color c we
maintain the subtree of T induced by color c (cf. Section 2 for definition of induced), denoted
T (c). Before we describe how these subtrees can be efficiently maintained, we describe how
to use T (c) instead of T to perform queries and updates.

CPM 2016

25:8 The Nearest Colored Node in a Tree

Consider a query (v, c) and let u be the node of T in which v is a centroid. The query
traverses the ancestors of u. At each such ancestor u′ ∈ T , we iterate through the centroids
ci (i = 1, 2) and consider their nearest node with color c as candidate for the answer. The
nearest node is either the centroid itself, or the nearest node with color c to a boundary
node of a child u′′ ∈ T of u′. In the former case, u′ ∈ T (c). In the latter case, u′ /∈ T (c). If
also u′′ /∈ T (c) then, by definition of T (c), c /∈ C(u′′) and u′′ has at most one child u′′′ ∈ T
containing nodes with color c in its corresponding subtree of T . Hence instead of iterating
through the boundary nodes of u′′ we can iterate through the boundary nodes of u′′′. By
repeating this reasoning, u′′ can be replaced by its highest descendant belonging to T (c)
(such highest descendant is uniquely determined, unless the subtree of T corresponding to
u′′ has no nodes with color c). Consequently, the queries can be modified to operate on T (c)
instead of T : we locate the first ancestor u′ ∈ T of u such that u′ ∈ T (c) (if there is none,
we take the root of T (c) as u′), and then iterate through all ancestors of u′ in T (c). For each
such ancestor u′′, we consider as candidates for the answer its centroid nodes ci (i = 1, 2) and
also the nearest node with color c to every boundary node of each child of u′′ in T (c). The
same reasoning allows us to recalculate, upon an update, the information stored at u ∈ T (c)
using the information stored at all of its children in T (c).

By Lemma 1, the size of the subtree induced by color c is at most 2|{v ∈ T : c ∈ C(v)}|−1.
Summing over all colors we obtain that the total size of all induced subtrees is 2

∑
v∈T0

|C(v)|.
We still need to show how to maintain them and also how to efficiently locate the first ancestor
u′ ∈ T of u such that u′ ∈ T (c). The latter is implemented with a nearest colored ancestor
structure. We only describe how to update T (c) after adding c to some C(v), where v ∈ T0,
and do not change T (c) after removing c (so our trees will be in fact larger than necessary).
Whenever the total size of all maintained subtrees exceeds 4

∑
v∈T0

|C(v)|, we rebuild the
whole structure. This does not increase the amortized complexity of an update and can be
deamortized using the standard approach of maintaining two copies of the structure.

After adding c to some C(v), where v ∈ T0, we might also need to include c in C(u) for
some u ∈ T , thus changing T (c). Inspecting the proof of Lemma 1 we see that the change
consists of two parts: we need to include u in T (c), and in particular insert it onto the
sorted list of nodes of T of color c. Then, we might also need to include the lowest common
ancestor of u and its predecessor on the list, and also the lowest common ancestor of u and
its successor there. We implement the list with a balanced search tree, so that all these new
nodes can be generated in O(logn) time. We also need to generate new edges (or, more
precisely, split some existing edges into two and possibly attach a new edge to the new middle
node). This is easy to do if we are able to efficiently find the edge of T (c) corresponding
to a path containing a given node u ∈ T . To this end, we also maintain a list of all nodes
of T (c) sorted according to their preorder numbers in T . Then binary searching over the
list gives us the highest descendant of u belonging to T (c). By implementing the list with a
balanced search tree we can hence find such an edge in O(logn) time. Thus, the update and
the query time is still O(logn) and the space linear.

Decreasing the query time. The query time can be decreased to O(logn
log logn), which

is optimal, at the cost of increasing the update time to O(log1+ε n) and the space to
O(log1+ε n

∑
v∈T |C(v)|).

For trees of constant degree, Lemma 2 decomposes T into a constant number of trees,
each of size n

2 , by removing at most two nodes. By iterating the lemma ε log logn times we
obtain the following.

P.Gawrychowski, G. M. Landau, S. Mozes, and O. Weimann 25:9

I Lemma 3. Given a tree T on n nodes with at most two boundary nodes, we can find
O(logε n) centroid nodes c1, c2, . . . ∈ T such that T \ {c1, c2, . . .} is a collection of trees
T1, T2, . . . with the property that each Ti consists of at most n

logε n nodes and contains at most
two boundary nodes, which are defined as nodes corresponding to the original boundary nodes
of T or nodes adjacent to any ci in T .

We apply Lemma 3 recursively. Now the depth of the recursion is O(logn
log logn).

Note that, because the number of centroids ci and trees Ti is no longer constant, it is no
longer true that the nearest node to centroid ci with color c in T can be computed in O(1)
time from the information stored for boundary nodes of the Tis. Therefore, to implement
query (v, c) in O(logn

log logn) time, we maintain explicitly, for each centroid node ci, its nearest
node of T with color c. This allows us to process the case when v = ci in constant time.
If v is not a centroid of T , then v ∈ Tj for some j. We recurse on Tj . The only remaining
possibility is that the sought node u does not belong to Tj . In such case, the path from v

to u must go through one of the boundary nodes of Tj . Each of these boundary nodes is
adjacent to a constant number of the centroid nodes ci of T (because of the constant degree
assumption). We iterate through every such centroid ci and consider its nearest node with
color c as a candidate for the answer in constant total time.

Implementing updates is again done in a bottom-up fashion. However, now we also need
to recalculate the nearest node with color c to every centroid node ci. Recalculating the
nearest node with color c (to either a boundary or a centroid node) takes now O(logε n) time,
because we need to consider boundary nodes of up to O(logε n) subtrees Ti and also O(logε n)
centroid nodes. Hence the total update time at every level of recursion is O(log2ε n). By
adjusting ε we get that the total update time is O(log1+ε n).

4 Lower Bounds

Static nearest colored node, descendant, and ancestor. First we consider the static
nearest colored node. In such case, there is a lower bound stating that O(n polylogn) space
requires Ω(log logn) query time. In fact, the lower bound already applies for paths, and follows
easily from Belazzougui and Navarro [4]: they show (via reduction from predecessor [15]) that
any data structure that uses O(n polylogn) space to represent a string S of length n over
alphabet {1, . . . , n} must use time Ω(log logn) to answer rank queries. A rankσ(i) query asks
for the number of times the letter σ appears in S[1, . . . , i]. The reduction to nearest colored
node is trivial: each letter corresponds to a color, we create a path on n nodes where the
color of the i-th node is S[i], and additionally the node stores rankSi. Then, to calculate
an arbitrary rankσ(i), we consider the i-th node and find its nearest node of color σ. Then, if
that nearest node is on the left of i, we return its stored answer, and otherwise we return its
stored answer decreased by one. This also shows that one cannot beat O(log logn) time with
a structure of size O(n polylogn) for the static nearest colored descendant and ancestor.

In all dynamic problems, the lower bounds hold even if we have only two colors, that is,
every node is marked or not.

Dynamic nearest marked node and ancestor. We next show that the following lower
bound of Alstrup-Husfeldt-Rauhe [3] for marked ancestor also applies to dynamic nearest
marked node. Notice that Theorem 4 implies that any O(polylogn) update time requires
Ω(logn

log logn) query time. In the marked ancestor problem, the query is to detect if a node has
a marked ancestor, and an update marks or unmarks a node, so we immediately obtain a
lower bound for the dynamic nearest marked ancestor.

CPM 2016

25:10 The Nearest Colored Node in a Tree

I Theorem 4 ([3]). For the marked ancestor problem, if tu is the update time and tq is the
query time then

tq = Ω
(

logn
log tu + log logn

)
The lower bound holds under amortization and randomization.

The proof of Theorem 4 uses a (probabilistic) sequence of operations (mark/unmark/marked
ancestor query) on an unweighted complete tree T on n leaves and out-degree ≥ 2. To show
that the bounds of Theorem 4 also apply to dynamic nearest marked node, we add edge
weights to T that increase exponentially with depth: edges outgoing from a node at depth
d has weight 2d. This way, if a node has a marked ancestor, then its nearest marked node
is necessarily the nearest marked ancestor (because in the worst case the distance to the
nearest marked ancestor is 20 + 21 + . . .+ 2d−1, while the distance to any proper descendant
is at least 2d). Hence the marked ancestor problem reduces to nearest marked node. In fact,
it is possible to achieve a reduction without using weights by replacing each weight W with
a path of W nodes. Since T is balanced, this will increase the space of T to be O(n2) which
is fine since the bound of Theorem 4 is independent of space.

Dynamic nearest marked descendant. We next show that the bounds of Theorem 4 also
apply to the case of nearest marked descendant. This requires three simple reductions:
1. dynamic existential marked ancestor → planar dominance emptiness.

Dynamic existential marked ancestor is a simpler variant of the dynamic marked ancestor
problem where a query does not need to find the nearest marked ancestor but only
to report if there exists a marked ancestor. In fact, the proof [3] of the lower bound
of Theorem 4 is for the dynamic existential marked ancestor problem. In the planar
dominance emptiness problem, we need to maintain a set S ⊆ [n]2 of points in the plane
under insertions and deletions, such that given a query point (x, y) we can determine if
there exits a point (x′, y′) in S that dominates (x, y) (i.e., x′ ≥ x and y′ ≥ y). As shown
in [3], since we can assume the input tree is balanced, there is a very simple reduction
obtained by embedding the tree nodes as points in the plane where node (x′, y′) is an
ancestor of node (x, y) iff x′ ≥ x and y′ ≥ y.

2. planar dominance emptiness → dynamic SMQ.
In the dynamic SMQ problem we are given an array A[1, . . . , n] where each entry A[i] is
in {1, . . . , n}. An update (i, j) changes the value of A[i] to be j, and a suffix maximum
query SMQ(i) returns the maximum value in A[i, . . . , n]. The reduction is as follow: For
each x in {1, . . . , n} we set A[x] to be the largest y s.t (x, y) ∈ S (or zero if there is no
(x, y) ∈ S). It is easy to see that a dominance query (x, y) in S reduces to checking
whether SMQ(x) > y. Upon an insertion or deletion of a point (x, y) we need to update
A[x]. For this we need to maintain for every x the maximum y s.t. (x, y) ∈ S. This can
be done in O(log logn) time and linear space using a predecessor structure for each x.

3. dynamic SMQ → dynamic nearest marked descendant.
The reduction is as follows: Given an array A, we build a tree T of size n2. The tree is
composed of a spine v1, . . . , vn where each vi has two children: the spine node vi+1 and
the unique path vi,n → vi,n−1 → · · · → vi,1. The weight of each spine edge (vi, vi+1) is 1
and the weight of each non-spine edge (vi,j , vi,j−1) is n (again, we could replace weight n
with n weight-1 edges, which increases |T | to n3). In each path vi,n → vi,n−1 → · · · → vi,1
there is exactly one marked node: If A[i] = j then the marked node is vi,j . It is easy to
see that SMQ(i) indeed corresponds to the nearest marked descendant of vi.

P.Gawrychowski, G. M. Landau, S. Mozes, and O. Weimann 25:11

Dynamic nearest colored node and descendant with link-cut operations. Recall that, to
support insertion and deletion of edges (i.e., maintain a forest under link and cut operations),
the (top-tree based) solution of Alstrup-Holm-de Lichtenberg-Thorup [2] can be extended
from two colors to k colors at the cost of increasing the update time to Õ(k). We show
that this is probably optimal. Namely, we prove (via a simple reduction) that a solution
with O(k1−ε) query and update time implies an O(n3−ε) solution for the classical All Pairs
Shortest Paths (APSP) problem on a general graph with n vertices.

Vassilevska Williams and Williams [19] introduced this approach and showed subcubic
equivalence between APSP and a list of seven other problems, including: deciding if a graph
has a triangle whose total length is negative, min-plus matrix multiplication, deciding if a
given matrix defines a metric, and the replacement paths problem. Namely, they proved that
either all these problems have an O(n3−ε) solution or none of them does.

It is well known that in APSP we can assume w.l.o.g that the graph is tripartite. That is,
it has 3n vertices partitioned into three sets A,B,C each of size n. The edges have lengths
`(·) and are all in A×B ∪B ×C. The problem is to determine for every pair (a, c) ∈ A×C
the value minb∈B(`(a, b) + `(b, c)).

We now describe the reduction: Given a tripartite graph A = {a1, . . . , an}, B =
{b1, . . . , bn}, C = {c1, . . . , cn} we pick vertex a1 in A and make it the root of the tree.
We set its children to be b1, b2, . . . , bn where the edge (a1, bj) has the same length `(a1, bj)
as in the tripartite graph. Each bj has n children. The kth child has color ck, and the
corresponding edge has length `(bj , ck). We get a tree that is of size O(n2), and has depth
two. We then ask the n queries (a1, ck) where ck is a color. This completes the handling of
a1. I.e., for every ck ∈ C we have found minb∈B(`(a1, b) + `(b, ck)). We next want to do the
same for a2. To this end we do n updates: for each i we change the root-to-bj edge so that
its length becomes `(a2, bj). We then ask n queries, and so on.

Overall we do n2 updates and n2 queries on a tree that is of size N = n2, and k =
√
N

colors. Assuming that APSP cannot be solved in O(n3−ε) time, we get that, for dynamic
nearest colored node on a tree of size N with link-cut operations, the query or the update
must take Ω(

√
N) = Ω(k). Note that, the updates in this reduction do not alter the topology

of the tree, but only the edge lengths. Hence, the lower bound applies even to a dynamic
nearest colored node problem with just edge-weight updates (and no link or cut updates).

References
1 I. Abraham, S. Chechik, R. Krauthgamer, and U. Wieder. Approximate nearest neighbor

search in metrics of planar graphs. In 18th APPROX/RANDOM, pages 20–42, 2015.
2 S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully

dynamic trees with top trees. ACM Transactions on Algorithms (TALG), 1(2):243–264,
2005.

3 S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. Technical Report DIKU
98-8, Dept. Comput. Sc., Univ. Copenhagen, 1998. (Some of the results needed from here
are not included in the FOCS’98 extended abstract).

4 B. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.
ACM Transactions on Algorithms (TALG), 11(4):1–21, 2010.

5 M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest com-
mon ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94,
2005.

6 O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on
Computing, 22(2):221–242, 1993.

CPM 2016

25:12 The Nearest Colored Node in a Tree

7 P. Bille, G.M. Landau, R. Raman, S. Rao, K. Sadakane, and O. Weimann. Random
access to grammar-compressed strings and trees. SIAM Journal on Computing (SICOMP),
44(3):513–539, 2015.

8 S. Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In 20th ESA,
pages 325–336, 2012.

9 M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R.E.
Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–
761, 1994.

10 M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with o(1) worst case
access time. J. ACM, 31(3):538–544, 1984.

11 D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

12 D. Hermelin, A. Levy, O. Weimann, and R. Yuster. Distance oracles for vertex-labeled
graphs. In 38th ICALP, pages 490–501, 2011.

13 M. Li, C. C. Ma, and L. Ning. (1 + ε)-distance oracles for vertex-labeled planar graphs. In
10th TAMC, pages 42–51, 2013.

14 S. Mozes and E.E. Skop. Efficient vertex-label distance oracles for planar graphs. In 13th
WAOA, pages 97–109, 2015.

15 M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search. In 38th STOC,
pages 232–240, 2006.

16 P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Mathematical Systems Theory, 10:99–127, 1977. Announced by van Emde
Boas at FOCS 1975.

17 B.T. Wilkinson. Amortized bounds for dynamic orthogonal range reporting. In 22nd ESA,
pages 842–856, 2014.

18 D.E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inf.
Process. Lett., 17(2):81–84, 1983.

19 V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and
triangle problems. In 51st FOCS, pages 645–654, 2010.

20 J. Łącki, J. Oćwieja, M. Pilipczuk, P. Sankowski, and A. Zych. The power of dynamic
distance oracles: Efficient dynamic algorithms for the steiner tree. In 47th STOC, pages
11–20, 2015.

	Introduction
	Static Upper Bounds
	Dynamic Upper Bounds
	Lower Bounds

