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—— Abstract
We present parallel algorithms for exact and approximate pattern matching with suffix arrays,
using a CREW-PRAM with p processors. Given a static text of length n, we first show how to
compute the suffix array interval of a given pattern of length m in (9(% +lgp+1glgp-lglg n)
time for p < m. For approximate pattern matching with k& differences or mismatches, we show
how to compute all occurrences of a given pattern in

O(% max (k,1glgn)+(1 + %) lgp-lglgn + occ) time, where o is the size of the alphabet
and p < oFmF. The workhorse of our algorithms is a data structure for merging suffix array
intervals quickly: Given the suffix array intervals for two patterns P and P’, we present a data
structure for computing the interval of PP’ in O(lglgn) sequential time, or in (9(1 +1g,lg n)
parallel time. All our data structures are of size O(n) bits (in addition to the suffix array).
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1 Introduction

We consider parallelizing indexed pattern matching queries in static texts, using (com-
pressed) suffix arrays [14, 16] and (compressed) suffix trees [17, 19] as underlying indexes.
We work with the concurrent read exclusive write (CREW) parallel random access machine
(PRAM) with p processors, as this model most accurately reflects the design of existing
multi-core CPUs. Our starting point is that a (possibly very long) pattern can be split up
into several subpatterns that can be matched in parallel. In a suffix array, this will result
in p intervals, each corresponding to one of the subpatterns. These intervals, called subin-
tervals, will then be combined (using a merge tree approach) to finally yield the interval for
the entire pattern. From this interval, all occurrences of the pattern in the text could then
be easily listed.

We also consider parallel indexed pattern matching with k errors, again using the same
indexes as in the exact case. Here, we follow the approach of Huynh et al. [10], whose
basic idea is to first make all possible modifications of the pattern within distance k, and
then match those modifications in the suffix array. To avoid repeated computations of
subintervals, a preprocessing is performed for every prefix and suffix of the pattern. We
show how to parallelize both steps (preprocessing and the actual matching), resulting in
a fast parallel matching algorithm. We stress that in the case of approximate pattern
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matching, parallel pattern matching algorithms are of even more practical importance than
in the exact case, as this is an inherently time-consuming task in the sequential case, even
for short patterns.

1.1 Our Results

In the abstract, we stated the results for uncompressed suffix arrays [14] as the underlying
index, which requires O(nlgn) bits of space for a text of length n. However, there exists a
wealth of compressed versions of suffix arrays (CSAs) [16], which are smaller (using |CSA|
bits), but often have nonconstant access time fsa. (See also Table 1 for known trade-offs.)
Here, we state our results more generally, using the parameters |[CSA| and tsa.

Our first result (Thm. 8) is an index of size |CSA| + O(n) bits that, with p < m
processors, allows us to compute the suffix array interval of a pattern of length m in
(’)(tSA (% +lgp+lglgp- 1glgn>) time and O(tsa (m + min (p,lgn) (Igp +1glgp - 1glgn)))
work. Our second result (Thm. 12) is an index of the same size |CSA| 4+ O(n) bits that can
find all occ occurrences of a pattern
in (’)(tSA (ml;"k max (k,lglgn) + (1+ ) lgp- lglgn) —|—OCC) time, for p < mFo*. Both
results rely on the ability to merge two suffix array intervals quickly, a task for which we
give a data structure of size O(n) bits on top of CSA that allows us to do the merging in
O(tsalglgn) sequential (Lemma 4) or in O(tsa(1 +1g,lgn)) parallel time (Lemma 7).

1.2 Related Work

We are only aware of one article addressing the parallelization of single queries [11]. Their
main result is to augment a suffix tree with a data structure of size O(nlgp) words that
answers pattern matching queries using O (% lg p) time and O(mlgp) work, which is worse
than ours in all three dimensions. Parallelizing approximate pattern matching has not been
done earlier, to the best of our knowledge. Another natural approach for exploiting paral-
lelism would be distributing the patterns to be matched onto the different processors and
answer them in parallel; this is more of a load balancing problem and cannot be compared
with our approach. Parallel construction of text indices is another road of research [4, 12],
and could easily be combined with our approach. Finally, in the early 1990’s, some work
has been done on parallelizing online pattern matching algorithms [2, 3].

2 Preliminaries

Let T =1t ...t, be a text of length n consisting of characters contained in an integer alphabet
¥ of size 0 = |X| = n®M). TJi..j] represents the substring t;...t; for 1 <i < j < n. We
call T'[i..n] the i-th suffiz of T and T'[1..7] the i-th prefix of T. We denote the length of the
longest common prefiz of the i-th and j-th suffix, i.e., T[i..n] and T[j..n], by lcp(i, 7). The
suffiz array of a text T of length n is a permutation of {1,...,n} such that T[SA[i]..n] is
lexicographically smaller than T[SA[i 4+ 1]..n] for all : = 1,...,n — 1. We denote the inverse
of SA with SA™".

An interval T = [b..€] is the set of consecutive integers from b to e, for b < e. For an
interval Z, we use the notations b(Z) and e(Z) to denote the beginning and end of Z; i.e.,
T = [b(Z)..e(T)]. We write |Z| to denote the length of Z; i.e., |Z| = e(Z) — b(Z) + 1.

For a pattern a € ¥*, let Z(«) be the interval with T[SA[i]..SA[{] + |a| — 1] = a <
i € Z(«). If we consider two intervals Z(«) and Z(8) and the corresponding merged in-
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Table 1 Different representations of the compressed suffix array using |CSA| bits with the time
bound tsa for accessing a value of SA and SA™'. The sampling rate s satisfies s = w(lg, n).

|CSA| tsa reference
2nlgn o) [14]
(I1+e)nlgn O(e) [15]
nHy, +O(nHk)+O(TL+O’k+1 lgn—|—nlgn/s) O(lg s) 1]

terval Z(a3), we call Z(a) the left side interval, Z(3) the right side interval. Let WF[i] =
SA™![SA[i] + k] be the position of the suffix T[SA[i] + k..n] in the suffix array.

2.1 Suffix Trees

The suffix tree of a text T is the tree obtained by compacting the trie of all suffixes of T
it has n leaves and less than n internal nodes, where n is the length of T'. Each edge is
labeled with a string. We enumerate the leaves from left to right such that the i-th leaf has
1 — 1 lexicographically preceding suffixes; we write leafrank(¢) = i if the leaf ¢ is the i-th leaf.
We extend the notion of intervals to nodes; i.e., Z(v) denotes the interval [b..e] such that
SA[b],...,SA[e] are exactly the suffixes below node wv.

Since we target small space bounds, our focus is on a compressed representation of suffix
trees [19, 17, 6, 7]. The main ingredient of the so-called compressed suffix tree is a compressed
suffiz array [16]. Depending on its implementation, a compressed suffix array takes |[CSA]|
bits of space, and gives tsa time access to SA and SA™! — see Table 1 for a comparison of
the uncompressed and a compressed suffix array. With additional O(n) [19] or even o(n)
bits [5], a compressed suffix tree can answer queries on the LCP-array that stores the values
lcp(SA[i], SA[i + 1]) for each 1 < 4 < n — 1. The last ingredient of a compressed suffix
tree is the tree topology (either explicitly [19] or implicitly [17]), and o(n)-bit succinct data
structures for navigating in it [20, 9].

For our purpose, we need the following queries on the suffix tree: Ica(u,v) returns the
lowest common ancestor of two nodes w and v, label(e) returns the label of an edge e,
pathlabel(v) returns the labels on the edges of the path from the root to v. These queries
can be answered by all common compressed suffix trees [17, 19, 6, 7].

2.2 Integer Dictionaries

An integer dictionary is a set consisting of tuples of the form (k,v), where k € U := [1..|U|]
is an integer from a universe U with |U| = n®("); we call k a key and v a value. A common
task is to find a tuple in a dictionary by a given key. Besides, we might be interested
in finding the successor (predecessor) of a key k, i.e., the largest (smallest) key k' in the
dictionary with &' < k (k' > k). We define the operations key((k,v)) = k and val((k,v)) = v.

A well-known dynamic integer dictionary representation is the y-fast trie [23]. It can
perform lookups, predecessor and successor queries in O(lglgn) expected time, and uses
O(nlgn) bits of space for storing n elements. It consists of an z-fast trie whose leaves store
binary search trees. In more detail, the z-fast trie stores O(n/lgn) entries in O(lgn) hash
tables, and each leaf stores O(Ign) entries in its balanced binary search tree. Here, we only
need a static version. Therefore, we use perfect hashing [8] as our hashing method, resulting
in O(lglgn) time w.h.p. in worst case for all queries, while keeping the same space bounds
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and linear deterministic construction time. Alternatively, we can construct the hash tables
in O(nlglgn) deterministic time [18, Theorem 1], resulting in O(lglgn) deterministic worst
case time for all queries. Further, we exchange the balanced binary search trees with sorted
arrays, which will be useful later when we parallelize the queries.

3  Suffix Array Interval Merging

To perform the merging of two suffix array intervals in O(tsalglgn) time, we adapt the
idea from Lam et al. [13, Lemma 19]. In their method, the aim is to output all occurrences
resulting from the merging of two suffix array intervals in O(tsa(lglgn + occ)) time. Here,
we show how to modify their approach such that only the resulting interval is returned,
leading to O(tsalglgn) time. Although our method is similar to Lam et al. [13], we give
the full proof for completeness.

The idea is to sample the ¥- and Icp-values of each (Ig* n)-th suffix array position. The
sampling is stored in y-fast tries such that a search in a sorted array can be broken down to a
y-fast trie query, or to a binary search on a range of size O(lg2 n) — both can be performed in
O(lglgn) time. To lower the space consumption, the sampling is done only for certain nodes
determined by the heavy path decomposition of the suffix tree, whose definition follows.

3.1 Heavy Path Decomposition

The heavy path decomposition of a rooted tree assigns a level to each node of the tree. The
level of the root is 1. A node inherits the level of its parent if its subtree is the largest
among the subtrees of all its siblings (ties are broken arbitrarily); we call such a node heavy.
Otherwise, it has the level of its parent incremented by one; we then call the node light.
Further, we define the root to be light. A maximal connected subgraph consisting of nodes
on the same level is called heavy path. A heavy path starts with a light node, called head,
and ends at a heavy leaf.

3.2 Precomputed Data Structures

We first present a simple data structure for the child-operation child(u, ¢) in a (compressed)
suffix tree, i.e., for finding the child v of u such that the label of the edge between u and v
starts with character c. We use A = (lgn) as the sampling rate throughout this section.

» Lemma 1. The suffiz tree of a text of length n can be augmented with a data structure of
size O(nlgn/A) bits answering child(v, ¢) in O(tsalg A) time.

Proof. We sample the children of each internal node u and store the sampled children in a
y-fast trie with the first character of the edge label between u and the respective child as
key. Given a node u with k children, we sample every A-th child of u so that u’s y-fast trie
contains [k/A| elements. Since the suffix tree has less than 2n nodes, storing the y-fast
tries for all internal node takes O(nlgn/A) bits overall.

Given a character ¢, we search child(u,¢) in the following way: Since the children of a
node u are sorted by the first character of the edge connecting u with its respective child, the
y-fast trie of w can retrieve the first child v whose edge label label(u,v) is lexicographically
at least as large as ¢. If ¢ is a prefix of label(u,v), then we are done. Otherwise, say that
v is the i-th child of u, we can find child(u, c) by a binary search on the range between the
(i — A)-th child and the i-th child in O(tsalg A) time. <
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We also need a simple O(n)-bit data structure to find the heavy leaf of a given heavy
path in constant time [13, Lemma 15].

Next, we define three types of integer dictionaries that we are going to index in y-fast
tries to allow fast lookups. For every light node v, we define the integer dictionary

P(v) = { (P00 f] ) 1 i = 1 (mod A) and i € T(v) } .
Given a heavy leaf ¢ and its head v, we define the two integer dictionaries
Hy,(4) := {(Icp(SAlleafrank(¢)],SA[i]) ,i) : i =1 (mod A) and ¢ € Z(v) and i < leafrank(¥)}
and

Hg(£) := {(Icp(SA[leafrank(¢)], SA[i]) ,i) : i =1 (mod A) and ¢ € Z(v) and ¢ > leafrank(¢)} .

We store I'(v) in a y-fast trie for each light node v, Hy,(¢) and Hgr(¢) in a y-fast trie for each heavy
leaf ¢. Given an interval J C [1..n], we can find
an i € T'(v) with b(7) < key(i) = WlPathbel (W)l [y4)(;)] < e(7),

an 4 € Hy(£) with b(J) < key(i1) = lep(SA[leafrank(¢)], SA[val(i1)]) < e(J), and
e

an i € Hr(¢) with b(J) < key(ir) = lcp(SA[leafrank(¢)], SA[val(i;)]) < e(J),
all in O(tsa -1g A) time.

» Lemma 2. We need O(n 1g? n/A) bits of space to store the y-fast tries for all T'(-), Hy(-), and
Hg(:).

Proof. Since the subtrees of the light nodes on the same level are disjoint, summing over the sizes
of I'(v) for all light nodes v on the same level yields at most n/A elements. Since the heavy path
decomposition has at most O(lgn) different levels and a y-fast trie uses O(lgn) bits per stored
element, the claim for |T'(v)| follows.

We analyze the size of Hy(-) by identifying a leaf with its leafrank. The sampling of Hy,(-)
considers only n/A leaves. A leaf ¢ has at most O(lgn) light nodes as ancestors. So there are
at most O(lgn) heavy leaves ¢y having leafrank(¢) as a value in their dictionary Hy (¢m). Hence,
summing over Hr,(¢u) for all heavy leaves ¢i yields O(nlgn/A) elements. The same considerations
lead to the same size bounds for Hg(-). <

» Lemma 3. Given the compressed suffix tree of T and the dictionaries I'(-), Hy(-) and Hgr(-) as
defined above, we can merge two suffic array intervals in O(tsalg A) time.

Proof. Let Z(a) and Z(3) be two suffix array intervals and P := af. Our task is to search the
interval Z(P) C Z(a) with ¥!°l[i] € Z(B) for all i € Z(P). Since i ~ ¥!°l[i] is monotonically
increasing for ¢ € Z(«), the merge could be solved with two binary searches in Z(«). To obtain the
O(tsalg A) time bound we will either use the y-fast tries, or perform a binary search on O(A)-large
intervals.

Let us take the node v whose suffix array interval is Z(«), i.e., the lowest common ancestor of
the leaves with leafrank b(Z(«)) and e(Z(«)). We consider two cases:

Node v is heavy. Let H be the heavy path to which v belongs, ¢ its heavy leaf, and u its head.

If T'(u) is empty, there are less than A leaves in the subtree rooted at u. Since Z(P) C Z(u), we
can find Z(P) by binary search in O(tsalgA).

Otherwise (I'(u) # 0), let g := Icp (SA[\IIM [leafrank(2)]], SA[b(I(B))]). The value ¢ is the length
of the longest common prefix of P and the path label of ¢, subtracted by |a|. By definition of g,
there is a node r on H whose path label coincides with a3[1..¢]. In particular, this is the node
on the path H whose path label is the longest prefix of P with respect to the path labels of all
other nodes on H. Since Z(P) C Z(r), our task is to find 7 in O(tsalg A) time. To this end, we
locate a leaf whose LCA with £ is r.

CPM 2016
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The interval boundaries can be found by a coarse search on the y-fast tries of Hy,(¢) and Hg(¢),
and a subsequent refinement step using binary search. Let k := leafrank({). Since i +—
lcp(SA[é], SA[K]) is monotonically increasing for ¢ < k, and monotonically decreasing for i > k, we
can perform the binary search for a value on the key-sorted integer dictionaries
{(lcp(SA[i],SA[K]) ,4) : i < k} and {(Icp(SA[i], SA[k]) , i) : ¢ > k} conceptionally. The y-fast tries
at Hy,(¢) and Hg(¢) help us computing the tuple ji € Hy,(£) U {(|pathlabel(¢)|, k)} with

lep(SA[val(ji) — A], SA[K]) < |af + g < key(ji) = lep(SA[val(51)], SA[K])
and the tuple j. € Hr(¢) U {(|pathlabel(¢)|, k)} with
key(jr) = lep(SA[val(j.)], SA[K]) < |af 4 ¢ < lep(SAlval(jr) + A], SA[K]) .

Since lep(SAlval(j1) — A],SA[k]) < |a] + g < lep(SA[val(j:) + A], SA[k]), we can find one of the
positions 71 € [val(ji) — A..val(51)] and ¢ € [val(j:)..val(j:) + A] by binary search such that
lcp(SA[a], SALK]) = lep(SA[ir], SA[k]) = |a| + ¢. The binary search takes O(tsalgA) time. On
finding 4, or i, we can retrieve r, i.e., the lowest common ancestor of ¢ and the i-th or i,-th
leaf. If the pattern P is a prefix of the path label of r, then Z(P) = Z(r), and we are done.
Otherwise, we choose the child w of r whose edge label S starts with 8[¢+1]; w can be retrieved
in O(tsalgA) time by Lemma 1. The child w must be a light node, for otherwise we get a
contradiction to the definition of r. We set v < w, a + P[1..|a|+ ¢+ |S|], 8 < P[la|+1..|P|],
and jump to the next case:

Node v is light. If I'(v) is empty, then |Z(v)| < A. Therefore, we can find the interval boundaries
of Z(P) in Z(v) with a binary search in O(tsalgA) time. Otherwise, we use the y-fast trie
storing I'(v) to find the tuple 51 € I'(v) with the smallest key satisfying b(Z(8)) < key(ji)
Ulel[val(5)] and the tuple j, € I'(v) with the largest key satisfying key(j.) = ¥!®/[val(j)]
e(Z(B)). If both exist, we can find the positions b(Z(P)) € [val(ji) — A..val(51)] and e(Z(P))
[val(jr) ..val(j:) + A] by two binary searches. If there is no tuple ¢ € I'(v) with b(Z(3))
key(i) < e(Z(B)), we search with the y-fast trie of I'(v) the tuple ki € I'(v) with

IAN MmNl

key(k1) = W val(k)] < b(Z(8)) < ¥'*[val(k) + A]
and the tuple k; € I'(v) with
Tl val(k,) — A] < e(Z(B)) < U'*val(k:)] = key(k:) .

Both values exist, and val(k:) — val(ki) < A. So we find the interval Z(P) by applying two
binary searches to the range val(k:) .. val(k:).
<

Setting A :=1g°n for ¢ > 2 yields:

» Lemma 4. Given the compressed suffiz tree of T, there is a data structure of size O(n) bits that
allows us to merge two suffix array intervals in O(tsalglgn) time.

4 Parallel Exact Pattern Matching

We parallelize the merging of suffix array intervals that we presented in Section 3 and show that
queries in the suffix tree using consecutive subpatterns and linear space can be solved in parallel on
a CREW-PRAM. For this, we use parallel binary search:

» Lemma 5 ([21, Theorem 2.1]). Given a sorted array of size n, a binary search requires O(l +lg, n)
time when operating on a CREW-PRAM with p processors.

We conclude that we can parallelize the query on y-fast tries in the same way:

» Lemma 6. A y-fast trie can do lookups, predecessor and successor queries in
(9(1 +1g,lg n) time using p processors.
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Proof. We can find an element in an z-fast trie in 0(1 +lg,lg n) time using parallel binary search
(Lemma 5) on the O(lgn) hash tables. The sorted arrays stored at the leaves can similarly be
searched in O(l +1g,lg n) time, again using Lemma 5. |

Let us focus on the merging of two suffix array intervals as treated in Section 3. The dominant
term of its running time is due to the query time of the y-fast tries and the binary searches.
As we can parallelize both, a parallelization of the merging algorithm improves the time bounds
significantly:

» Lemma 7. Given p processors and two suffiz array intervals Z(a)) and Z(B), the merged interval
Z(apB) can be computed n @] (tSA(l +1g,1g n)) time and
(’)(tSA min (p,lgn) (1 +1g, lg n)) work.

Proof. We can merge two suffix array intervals in O(tsa lglgn) time using Lemma 4. Recalling the
proof of Lemma 3, we took the node v whose suffix array interval is Z(«). There, in both cases (v is
either heavy or light), the time is dominated by searching in y-fast tries, and/or by binary searching
in O(A) sampled - or Icp-values. Both can be parallelized by Lemmas 5 and 6, respectively.
This yields O(tSA(l +1g,lg n)) time using p processors. During the parallel searches, we use at
most O(lgn) processors (9(1 +lg,lg n) times. This amounts to O(tSA min (p,lgn) (1 +1g, lg n))
work. <

Being able to merge two suffix array intervals in parallel, we now show how to compute the
suffix array interval of a pattern P in parallel. To this end, we decompose the pattern in subpat-
terns ai,...,ap such that P = ajag...ap, and then compute the suffix array intervals for the
subpatterns. Then we merge those intervals in parallel.

» Theorem 8. Given a text of size n and a pattern of size m. With p < m processors, we
can compute the suffix array interval of the pattern in O(tSA (% +lgp+lglgp - lglg n)) time and
O(tsa (m + min (p,1gn) (gp +1glgp - lglgn))) work. In order to achieve this time bound we need

an indezx of size |CSA| + O(n) bits.

Proof. Let P = afa3...a) be a pattern of length m such that |af| = @(%) fori=1,...,p.

The computation of all intervals 7 (a?) requires O(tSA%) time. In the first merge step we have

two processors to compute each of the intervals I(a}) = I(agi_lagi) fori =1,...,%. In each
merge step we halve the number of intervals. So in the k-th merge step (1 < k < lgp), we have
2" processors to compute each of the intervals I(af) = I(a’z“;lla';;l) fori = 1,...,%. As

we require O(lgp) merge steps and can use Lemma 7 with 2F processors in the k-th merge step,
the interval Z(P) can be computed in O(tSA Zlgpl (1+1gon lg n)) = O(tsa (Igp + 1glgp - 1glgn))

k=
time, given the intervals I(a?) of the subpatterns — see Figure 1. In total, Z(P) can be found in
O(tSA (% +lgp+1glgp- lglgn)) time.
During the computation of the suffix array intervals of the subpatterns of P we use all p pro-
cessors, which results in O(tsam) work. The same holds for each merging step, as we use all
processors to parallelize the binary search. We have O(lgp) merge steps. During the k-th merge

step, we merge £ suffix array intervals with 2% processors each. Using Lemma 7 the total work is
O(tsa (m + min (p,1gn) (Igp +1glgp - 1glgn))). <

5 Parallel Approximate Pattern Matching

In this section, we consider two different distances for the approximate string matching problem.
The first distance we consider is the Levenshtein distance, where the distance between two patterns
P and P’ is the minimal number of the operations insert, change and remove required to change
P’ into P. The second one is the Hamming distance, where the distance of two pattern P and P’
of equal length is the number of mismatching positions, i.e., [{i: P[i] # P'[i],1 < i < |P[}|. We
consider two problems related to these distances.
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Figure 1 Schedule for the merging of p suffix array intervals, i.e., the suffix array intervals of the
subpatterns. The number in each node denotes the number of processors available for the merging
of the two considered suffix array intervals.

k-difference problem Given a text T of length n and a pattern P of length m, we want to report
all occurrences i € {1,...,n} such that T'[i..i + j] and P have a Levenshtein distance of at most
k for at least one j € {0,...,n —i}.

k-mismatch problem Given a text T of length n and a pattern P of length m, we want to report
all occurrences ¢ € {1,...,n —m} such that T'[i..i + m] and P have a Hamming distance of at
most k.

We apply the results from Section 3 to parallelize the approximate string matching algorithm
by Huynh et al. [10]. To do so, we first present an approach to compute the suffix array intervals
of all prefixes and suffixes of the pattern in parallel — see Figure 2.

» Lemma 9. Given a text of length n and its suffiz array, we can compute the suffiz array intervals of
all prefizes and suffizes of a pattern of length m in O(tSA(l + %) lgp-lglg n) parallel time operating
on a CREW-PRAM with p processors.

Proof. Let P = apa ... ap—1 be a pattern of length m such that |o;| = % fori=0,...,p—1. Thus,
the j-th prefix of a subpattern «; is P[l—i—i%,.i% +j]foralli=0,...,p—landj=1,..., %. First,
we compute the suffix array intervals for all those prefixes in parallel, which requires O(1 + m/p)
time, as no merging is necessary during this step.

In the second step, we merge the suffix array intervals in parallel. Since we want the suf-
fix array intervals of all prefixes of the pattern, during the first merge step we merge the suf-
fix array intervals 7 (P[l + 207 ..(2i + 1)%]) as the left side interval with each of the intervals

(P + (2i+1)2..(2i + 1)2 + j) as right side interval for all i = 0,...,8 —1and j = 1,..., 2.
This results in the intervals I(P[l + 22‘%..(22‘ + 1)% +j) fori=0,....,5 -landj=1,..., =
During each merge step, we halve the number of left side intervals that we have to consider during
the next merge step but double the number of right side intervals that are merged, i.e., in the
k-th merge step, we merge the intervals I(P[l + 2%‘%..(2'%‘ + 2’“_1)%]) with each of the intervals
I(PIL+ 2%+ 2" 2 (2% 42" )2 +4]) for i = 0,..., % —1and j = 1,...,2°7' 2 This
amounts to O(m) intervals that need to be merged in each step. In the end, we obtain the suffix
array intervals of the prefixes of P, i.e., the intervals Z(P[1..j]) for j = 1,...,m. Since we start
with p left side intervals, and each merge step halves the number of left side intervals, we end up
with lgp merge steps.

The computation of the suffix array intervals of all suffixes of P works analogously. Using
Lemma 4, we can compute the suffix array intervals of all prefixes and suffixes of the pattern in

O(tSA(l + %) lgp-lglg n) time. <

» Theorem 10. With |[CSA|+ O(n) bits of space, the 1-difference and 1-mismatch problems can be
solved in parallel in O(tSA lglgn (% + 1+ 7) lgp) + occ) for p < mo.
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Figure 2 Schematics of the merging process to compute the suffix array intervals of all prefixes
of a pattern P = a; ... a4 of length m = 12 using p = 4 processors. The gray blocks above the first
dashed line represent the suffix array intervals of all prefixes of the subpatterns a; (for i =1,...,4).
The blocks between the dashed lines represent the suffix array intervals after the first merge step.
The intervals that are merged are shown by arrows. The blocks below the second dashed line are
the suffix array intervals computed in the second merge step.

Table 2 Let P’ be the resulting string of introducing an error in the pattern P[1..m] at position 4.
Further, let v be the suffix tree node with Z(v) = Z(P[1..: — 1]). We can compute the two suffix
array intervals considered for merging in O(tsalglgn) time, and perform the merging in the same
time.

operation c P’ intervals to merge

substitution c¢€ X\ {P[{]} P[l..i—1]cPli+1..m] Z(child(v,c)) and Z(P [i 4+ 1..m])

deletion - P[l.i—1]P[it+1..m] Z(v)and Z(P[i+ 1..m])

insertion ceX P[1..t — 1]cP[i..m] Z(child(v, ¢)) and Z(P [i..m])

Proof. We precompute the suffix array intervals Z(P [i..m]) and Z(P[1..i]) for all 1 < ¢ < m in
parallel by Lemma 9. This requires O(tSA(l + %) Igp-lglg n) time. The exact matches are found
in the interval Z(P [1..m]). To compute the matches with one error, we iterate over all positions
in P[1..m], and introduce an error at one position ¢ with 1 <4 < m. An error can be introduced by
an insertion, a deletion, or a substitution. Let us fix one modification occurring at position ¢, and
call the modified string P’. Our task is to find Z(P"). To this end, we exploit some already computed
results, i.e., we have Z(P'[1..i — 1]) = Z(P[1..i — 1]), and either (substitution) Z(P'[i + 1..m]) =
Z(P[i+ 1..m]), (deletion) Z(P'[i..m —1]) = Z(P[i + 1..m]), or (insertion) Z(P'[i + 1.m + 1]) =
Z(P [i..m]) — see Table 2. If P’ resulted from an insertion or substitution, the interval Z(P’ [1..i — 1])
can be enhanced to Z(P’[1..1]) by child(v, P’ [i]) in O(tsalglgn) time due to Lemma 1, where v is
the node with Z(v) = Z(P'[1..i — 1]). Finally, we can compute Z(P’) by merging two intervals in
O(tsalglgn) time with Lemma 4. Introducing an error in P at m different positions with o different
characters is embarrassingly parallel. With p < mo processors it requires O(tSA% lglgn + occ)
time in addition to the time for the preprocessing. <

Up to now, we have assumed that the time for the output is in O(occ). Unfortunately, this is
not always the case, as an occurrence of a pattern with k errors may be reported multiple times. For
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example, if we allow one error, the pattern aba could be reported twice at the first position of the
text aaa, as the second position of the pattern could either be deleted or replaced. Hence, we need
to make sure that each occurrence of a pattern is reported just once, regardless how many different
combinations of operations can be used to change the pattern to the corresponding substring. This
problem has been discussed and solved in [10].

» Lemma 11 ([10, Discussion related to Theorem 2]). Given a pattern P, we can check whether an
occurrence of the pattern P’ with at most k errors is minimal regarding its distance and its edit
operations to P in O(k) time whenever we append a character or want to report an occurrence.

Using Lemmas 9 and 11, we can solve the 1-difference and 1-mismatch problems in parallel as
described above. The same is true for the k-difference and k-mismatch problems.

» Theorem 12. Using |CSA| + O(n) bits of space, the k-difference and k-mismatch problems can
k

7 max (k,lglgn) + (1 + %)lgp~lglgn) + occ) for p < mFo"

mk
P

be solved in parallel in (’)(tSA
Processors.

Proof. The idea of the algorithm is similar to the algorithm of Theorem 10. First, we compute the
suffix array intervals of all the suffixes and prefixes of the pattern using Lemma 9. This requires
O(tSA(l + %) lgp-lglg n) time. We want to introduce at most k errors in parallel. Again, we
parallelize over the positions of the introduced errors. Similar to the idea of Theorem 10, we merge
different suffix array intervals. But in this case, we cannot parallelize over one position, instead we
have to parallelize considering up to k positions where we can include an error.
The number of patterns P’ that have a distance of at most k from P is bounded by O(Ukmk) (22,
k _k
m pO'
parallel. The O(max (k,lglgn))-term results from the check of whether the occurrence is computed
with minimal distance to the pattern P, which has to be done every time we update the considered
pattern and requires O(k) time using Lemma 11. <

Theorem 6]. Thus, we require O (tSA max (k,lglgn) + occ) time using p < o*m* processors in
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